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It is a fascinating problem in the axiomatics of any mathematical
system to reduce the number of axioms, the number of variables used in
each axiom, the length of the various identities, the number of concepts
involved in the system etc. to a minimum. In other words, one is interested
in finding systems which are apparently 'of different structures' but which
represent the same reality. Sheffer's stroke operation and. Byrne's brief
formulations of Boolean algebras [1], Sholander's characterization of
distributive lattices [7] and Sorkin's famous problem of characterizing
lattices by means of two identities are all in the same spirit. In groups,
when defined as usual, we demand a binary, unary and. a nullary operation
(respectively, say, a.b^-a-b; a~>a~1; the existence of a unit element).
However, as G. Rabinow first proved in [6], groups can be made as a
subvariety of groupoids (mathematical systems with just one binary
operation) with the operation * where a * b is the right division, ah'1.
In [8], M. Sholander proved the striking result that a mathematical
system closed under a binary operation * and satisfying the identity S:
x * ((x *z) * (y *z)) = y is an abelian group. Yet another identity, al-
ready known in the literature, characterizing abelian groups is HN:
x * ((z * y) * (z * a;)) = y which is due to G. Higman and B. H. Neumann
([3], [4])*. As can be seen both the identities are of length six and both of
them belong to the same 'bracketting scheme' or 'bracket type'. In this
paper we give four new identities of length six but of distinct bracket types
(2<» * = 1» 2, 3, 4 of Theorem 1) which characterize abelian groups in-
dividually and show that these six identities are the only identities of length
six which can characterize abelian groups. Further we show that no identity
of length less than six can have this property. Thus the above six identities
are of minimal length. Since each one of the above identities contains just
three variables they have the minimum number of variables in the sense of
McKinsey and Diamond [2]. Thus HN, S, 2 i , ]£2» ^3 a n d ^4 ^^the simplest
possible axiom systems for abelian groups in every sense of the word. They
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are not of maximal length as the theoretical existence of an identity of
length sixteen for abelian groups has been shown in [3]. In fact, to every
positive integer n one can make a law defining abelian groups (or, for that
matter, groups), of a length exceeding n. Also one can make finite irredun-
dant sets of laws, of arbitrarily large size, defining groups or abelian groups.
So what we call 'simplest' is well-defined; but there is no opposite to it.
For arbitrary groups this minimal length has been shown to be ten (see [5])1.

I wish to express my sincere thanks to Professor M. Venkataraman
for his guidance and kind encouragement given to me throughout the
prepation of this paper. My thanks are also due to Professor B. H. Neumann
for his interest in this paper.

1. Notation

G is a non-empty set and * is a binary operation in G (to be interpreted
as the analogue of the right division ab~x whenever G is thought of a group).
A word in <G, *)> in which the free symbols xx, x2, • • •, xn occur is denoted
by /(*!, •••,*„)•

DEFINITION. An identity is an equation of the form

/(*!, xz, • • -, xn) = g(ylt y2, • • -, ym)

which is supposed true for all x's and y's in G (the sets {xu • • •, £„} and
{Pi> ' ' '> Vm} need not be disjoint — usually they will not be disjoint). If the
word / is of length p and g of length q then the identity / = g is said to be of
length p+q (For example, the associative law of group theory is an identity
of length six).

Let <G, *y be a binary system satisfying a given set 2 °f identities.
By the associated system we mean the mathematical system <G, •> where
we define a • b = a * ((b * b) * b). We say <G, *, £> is an associated abelian
group (an a • a • group) if the associated binary system <G, •> becomes
an abelian group such that a * b = ab~x. It is immediately verified that
in an a • a • group <G, *, 2> the following identities must be true (i.e.
deducible from ^ ) :

(1) x*x = y * y
(2) x * (y * y) == x
(3) x * (x * y) = y
(4) (x * z) * (y * z) = x * y
(5) (z * x) * (z * y) = y * x.

1 This result is mentioned in [3].
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For future reference we point out that the binary systems <G, *, (3), (4)>
and (fi, *, (3), (5)> are a • a • groups. For, while by (3) and (4) we get
x * ((a; * z) * (y * z)) = y which is the Sholander identity for abelian groups,
(3) and (5) in a similar manner imply HN, the Higman-Neumann identity.

THEOREM 1. For a binary system (G, *> the following statements are
equivalent:

A: (G, *) is an a • a • group.
2X: % * (z * (y * (x * z))) = y for all x, y, z in G.
2 2 : (x* (z * y)) * (x*z) = y for all x, y, z in G.
2 3 : (x * ((a; * z) *y)) *z = y for all x,y,z in G.
'2A: (x *z) * ((a; * y) * z) = y for all x,y,z in G.

PROOF. A => 2 i : It is immediately verified that in any a • a • group
identity 2 i holds.

21 => 2a : Replacing z by z * (y * a;) in 2 i . we get

a; * ((z * (y * a;)) * (y * (a; * (z * (y * a;))))) = y

and this reduces, by 2i» to

a;* ((z* (y*x)) *z) =y.

Now replacing a; by x * (z * y) and using 2 i again we get

(x* (z * y)) * (x*z) = y
which is 2a-

2 2 =>• ^3 • First of all, let us observe that the system <G, *, ^2^ is

left-cancellative. For,

a * b = a * c => (d* (a * 6)) * (d*a) = (d* (a*c)) * (d*a) => b = c by ^2-

Now, putting x = z * (y * t) in £2 and applying £2 itself to the resulting
identity we get

(i) t* ((z* (y*t)) *z) =y.

Thus we have, by (i) and the left-cancellation property,

(z * (y * t)) * z = (a; * («/ * *)) * *.

Putting z = y * (£ * s) in the above equation and applying ^2 w e obtain

s * (y * (t * s)) = (a; * (y * 2)) * a;.

Putting s = x * (y * t) in the above and applying the left-cancellation
property we have

(ii) y** (tVm(x# (y*t))) = x.
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Putting t = r * (z * (y * r)) in (i) and observing that y * t = z by (ii) we
have

(r * (z * (y * r))) * ((z * z) * z) = y.

Now, replacing rhy z *z and applying }£2
 w e get 2/ * (z * z) — V> an ( ihence

(iii) x * (a * z) = (a; * (z * z)) * (a; * z) = z by ^2-

Finally, replacing z by a; * z in ^2 w e get

(a; * ((a: * z) * y)) * (a; * (x * z)) = y

and this reduces, by (iii), to

(x * ((x*z) *y)) *z = y

which is the desired identity ]£3.
2 3 => 2« : Replacing z by (a; * y) * t in ^3 an<i reducing the resulting

identity by the given ]£g we get

(x*t) * ((a;* y) *f) =«/

which is nothing but ^4 .
^4 => A: Let ^ 4 : (* * z) * ((a; *y) * z) = ybe valid in (G, *>. Putting

z = x * y in ^4 we get (a; * (a; * y)) * ((a; * y) * (a; * y)) = t/. Replacing a;
by x * y in the above equation and using ^4 w e get

y * (((* * y) * y) * ((* * y) * y)) = 2/.

Calling ((a; * y) * y) * ((a; * y) * y) = e(j/, a;) we have

(i) y * e(y, x) = y.

Now putting z = y = e(x, y) in ^4 and using (i) we find

(ii) x *x = e(x, y).

Thus the element e(x, y) is independent of its second argument y and hence
let us denote it simply by e(x). Now (i) reads as x * e(x) = x. We have

x * x = e(x, y)
= ((y * a;) * a;) * ((i/ *x) *x)
~ ((y *x) #x) * (((«/ * a;) * e(y *x)) *x) by (i)
= % * x) by £4

= (y * *) * (2/ * *) by (ii)
= [y*x)*((y* e{y)) * a;) by (i)
= e{y) by ^4
= y*y.

Thus a: * a; is a fixed element of G. Call this element e. Now (i) reads as
x * e = x for all a; in G. Putting z = e in ^4 w e fm
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(3) x * (x * y) = y,

and replacing y by x * y in ^4 and using (3) we obtain

(4) (x * z) * (y * z) = x * y.

But as mentioned in the beginning of this section, the identities (3) and (4)
will imply that the binary system (G, *> is an a • a • group. Thus ^4 =*• A.
and this completes the proof of the theorem.

The identities given in the last section are of length six and we wish
to assert that no other identity of length less than or equal to six can char-
acterize an abelian group. To this end we will show the existence of some
restrictions on axiom systems for a • a • groups. All our axiom systems
consist of identities.

LEMMA 1. / / <G, *, ]£> is an a • a • group then 2 must contain at least
one identity of the form f(x1)x2, • • •, xn) = xt.

 2

PROOF. Any identity in ]£ not of the form given above must either be
of the form

(i.e. the symbol xx does not occur in the set of variables in the LHS) or of
the form

(P) /fou *2> • • •, *.) = g{xlt x2, • • •, xn)

(i.e. the symbol * occurs in both sides of the identity). If an identity of the
form (a) occurs in 2 then giving some specified set of values to x2, x3, • • •, xn

and allowing x1 to vary, we find that G consists of just one element and thus
2 is not an axiom system for arbitrary abelian groups. Thus, 2 does not
have an identity of the form given in the theorem means that every member
of 2 is of the form (fi). Now, consider the system (G, *> where G has more
than two elements and where

a * b = 0, 0 e G, for all a, & in G.

Any identity of the form (/?) is satisfied in this system but <G, *> is not an
a • a • group, since for example, the identity x * (x * y) == y fails to hold
here. Thus, if (fi, *, 2 ) is an a • a • group then 2 must include an identity
of the form f(xlt x2, • • *, xn) = xt.

If a single identity 2 m (fi> *) c a n characterize the concept of the

2 This lemma is stated for asso-groups without proof in [3].
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abelian group in the above sense then the following two things must happen,
viz: (i) 2 decoded in the --language must be a true sentence in the abelian
group <G, •> and (ii) it should be possible to deduce all abelian group
theoretic axioms from 2- Such an identity we call an a&g-identity. So,
by the Lemma 1, the rhs of an abg-identity must be a single variable which
also occurs in the expression on the Ihs. If f(xx, x%, • • •, xn) is any word
in (G, *> its group theoretic form can be written in a unique way as

where mlt m2, • • •, mn are integers. By the degree of the word / we mean
the integer 2»w«- If / is °f e v e n length k then its degree (possibly k — an
even integer) is even. So no word of even length can be the Ihs of an abg-
identity by Lemma 1. We will show some more restrictions for identities
to be a&g-identities which will ultimately yield the result that no word of
length less than or equal to six (other than the Ihs expressions of HN, S,
2i i 2a > ^3 ^ d 24) c a n b e the Ihs of an a&g-identity.

LEMMA 2. In an abg-identity *£'• f(xi> X2> ' ' '• xn) = xi> ^e element xx

cannot occur either in the first place or in the last in the expression f.

PROOF. Let the element xx occur as the first element in the Ihs of 2-
Consider the system (fi, *> where a * b = a for all a, b in G. 2 is auto-
matically satisfied in G but the system is not an a • a • group since, for
example, the identity (3) fails to hold in the system. Similarly, by consider-
ing the algebra G: <G, *> where a * b = b for all a, b in G we can prove the
other result.

LEMMA 3. In an abg-identity 2 : f{xx, xz, • • •, xn) = xx there exist at
least two distinct variables xt other than xx (in the Ihs) which do not occur only
in the form x{ * xt. In other words, if except two variables, every other variable
x( occurs only in the form xt * xt then 2 cannot give rise to the axioms of
abelian group.

PROOF. Let 2 : f(xi> x2, • • •, xn) = xx be an a&g-identity and let every
variable other than xx and another variable, say x2, occur only in the form
xt * xt. We will arrive at a contradiction.

By what is given 2 is of the form g(xx, x2, x3 * x3, • • •, xn * xn) = xx.
Since 2 =*• (abelian) group axioms, the identity a;*a; = « / * y i s a logical
consequence of 2- So we have 2 =*• 2 ' w n e r e

o \ 1» 2 > 2 A%» » * 2 1*'2/ —

ii x * x = y *y

Conversely, 2 ' => 2 a nd hence the postulate system 2 ' is logically equiv-
alent to 2- Thus the assumption that 2 is a n abg-identity leads to the
conclusion that ' 2 ' => abelian group axioms' but 2 ' is a s e t °f identities
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such that each of its identity contains not more than two variables. This,
however, is a contradiction due to a result of McKinsey and Diamond [2]
according to which any axiom system for abelian groups must include at
least one axiom which has three variables.

REMARK. AS observed in [5] these three lemmas hold good in any
'asso-group'. Since the main result in this section heavily depends on these
results we have produced the proofs.

Before proceeding further we have to adapt some canonical way to
express the various words of various lengths. The main difficulty arises out
of the fact that the binary operation * is not associative. To start with we
have the simplest word x1. Let us call this a word of type 1. The most general
word of length two is xx * x2. This family of words, viz. xx*xx, x1*x2,
x2*xlt x2* %2 is denoted by bracket type 2 or simply by type 2. The most
general word of length three can be formed in two ways, that is xx * (x2 * x3)
and (x1 * x2) #x3. These families of words are respectively denoted by
type 1+2 and type 2 + 1 . Similarly there are five distinct types of length
four and so on. The degree of words of type 1 is trivially 1 and that of type 2
is 0. Suppose / is of degree m and g is of degree n. Then the word / * g = fg~x

has degree m—n. Thus all words belonging to a particular type have the
same degree. Using these facts we calculate inductively the degrees of all
words of length upto five. Among these we need only consider those words
of degree one. Let /? be a type of degree one. If the free expression corre-
sponding to /S can be reduced by some identifications, say

x*o = xh' ' ' '• xh = xh> *<• ^ 7" *" ir e {!. 2, • • •, n}
so that it reduces to

f{xlt- •-,xv, •• -,xn) = x v

where xv is neither the first element nor the last element (i.e. neither
occurs in the first place nor in the last place) in the expression /, then we
say that the type /? has a non-trivial reduction. By Lemma 2, types which
have only trivial reductions cannot yield a&g-identities. In the Appendix
below we list all types of words of length upto five, and give arguments to
show that the resulting non-trivial reductions (other than the six known
aJg-identities mentioned previously) cannot be a&g-identities. The routine
calculations involved in finding the degrees of the types etc. are left out.
The following lemma will explain the general pattern of the proof given
in the Appendix.

LEMMA 4. No word belonging to the bracket type l + ( ( l+2) + l) can be
the Ihs of an abg-identity.

PROOF. The form of the free expression corresponding to the given type
is Xj * ((x2 * (x3 *xt)) * a;5). Since the group theoretic expansion of this
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expression is a^a^a^a^a;^1 its only possible non-trivial reduction is x3 and
this can happen when and only when xxxhx^}x^ = e, the group identity.
This equation can be effected in two ways, viz. xx = x%, a:4 = xs; or xx = xit

x2 = x5. Thus the given type has only the following two identities as suitable
candidates for an a&g-identity.

S1: xx * ((% * (x3 * #4)) * xt) = xs

S2: xx * ((#2 * (#3 * *i)) * #2) = X3-

Let G be the set 0, 1, 2, 3, 4, 5, 6, 7 and define a * b = 3(a—6) (mod 8)
for all a, b in G. We have

/As of Sx = a;x * ((a;x * (3*3—3x4)) * a;4)
= xx * ((3xx—9a:3+9a;4) * xt)
= xx* (9x1—21x3+21xl—3xi)

= a;x (mod 8), the rhs of Sx.

Thus' the identity Sx is satisfied in (G, *> but, since x * (y * y) = 3a; =£ x
in general, Sx is not an a&g-identity.

Let us prove that the assumption that S2 is an a&g-identity leads to a
contradiction. Indeed, if S2 is an a&g-identity then S2 => S* where

i (x * y) * x = (x * x) * y

iii (a: * a;) * (x * y) = y * a;
iv x * (x *y) = y

Since each one of the above sentences is true in an a • a • group. Conversely,
* => S2, for,

*i * ((^2 * (̂ 3 * *i)) * *a) = *i * ( (* 2 * a;2) * (xz * xi)) b Y (0
= a;x * ((a;3 * x3) * (x3 * xx)) by (ii)

= xi * (xi * xz) by (iii)

Hence the axiom system S* is logically equivalent to S2. Thus the assump-
tion that S2 is an a&g-identity implies that the system S* is an axiom system
for abelian groups but S* is a set of identities in which no identity contains
more than two variables. As stated in Lemma 3 this is a contradiction due
to the result of McKinsey and Diamond.

CONCLUSION. Thus the only identities of length less than or equal to
seven which are a&g-identities (i.e. which can characterize the concept of
abelian groups individually) are HN, S, 2» (*' = *> 2> 3> 4)-3 S i n c e & i s

s That the length five is minimum for abelian groups is mentioned in [3].
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known that in the case of abelian groups a * b = ab~x and a * b = a~xb
are the only binary operations which will make the class of abelian groups
as a sub-variety of groupoids (see B. H. Neumann, Topics in Algebra
(Universal algebra, 1962)) we have proved that these six identities are the
only possible simplest axiom systems for abelian groups.

Lemmas 1, 2 and 3 give certain necessary conditions for an identity
in <G, *> to be an a&g-identity. The problem of giving a characterization
for a&g-identities is open.

APPENDIX

Type Degree Non-trivial reductions, if any Whether an ofcg-identity or not

1 1
2 2
3 1 + 2
3 2 + 1
4
4
4
4
4
5

2+2

5 (2+2)+ 1
5
5

1
0
1

-1
0
2
0
0

-2
1

nil

t • (a?! • [x3 * fo • xt))) = x, Ruled out by Lemma 3
• (a;, » (a;s • (â  • xa))) = a;, a&g-identity;

S i of Theorem 1

*i* (to**8) • to**4)) =•
xt * (to»x3) * (z, • xj) =;

Discussed completely in
the Lemma 4

Ruled out by Lemma 3
HN, the Higman-
Neuman identity
S, the Sholander identity
Ruled out by Lemma 3

5
5
5

5

5
K

5

l+((2+l) + l
2+(l + 2)
2+(2+l)

(l + 2) + 2

(2+l) + 2
M _L M -i_9\\ _1-'\l-\-\l-]-4)}-\-.

(i+(2+i))+:

) 3
- 1

1

1

- 1

1 1

to *
to*
to*
to *

to*

x i )

xj
to
to:

(to

* (to
•(to
**3»

•*»))

** 3 )

* Xi) • a;3)
• xt) * x%)

* to * xi)
* to * xi)

* * 4 ) ) * *4

= *4
= a;4

= *s
= * 3

= * 3

Ruled out by Lemma 3
S4 of Theorem 1
Ruled out by Lemma 3
S 2 of Theorem 1

—

Not an a&g-identity: for.
in <0, 1, 2, 3, 4, •>

- 1
- 1
- 3

where a * 6 = 2a—36 (mod 5)
this identity is true

to * ( to * xa) * xt)) * xi = X3 S* o f Lemma 4 implies
this identity

(a;x * ( to * a;3) * aj4)) * a;3 = xt S3 of Theorem 1
(xt * ( to • xt) * xA)) *x1 = xi Ruled out by Lemma 3
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Added in Proof: The identity 2 i w a s found by A. Tarski in Fwnda-
menta Mathematica 30 (1938). The author got this information through a
prepublication copy of G. Gratzer's paper: 'On the spectra of classes of
algebras', Proc. Amer. Math. Soc, vol. 18 (1967).
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