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Abstract. It is shown that any group isomorphism between the Ck diffeomorphism
groups of two finite-dimensional, boundaryless paracompact manifolds is induced
by a Ck diffeomorphism between the manifolds (1 < k < oo).

I. Introduction
In [1] Whittaker proves that for a certain class of topological spaces any group
isomorphism between the homeomorphism groups of two such spaces is induced
by a homeomorphism between the spaces themselves. Since the class of spaces he
considers contains all topological manifolds it is natural to ask whether the same
result holds in the differentiable category. We will answer this question in the
affirmative by means of the following theorem:

THEOREM. Let M and N be smooth {i.e. C°°) manifolds without boundary and let
Diff (M) and Diffq (N) for l < p , q <oo denote the groups of C diffeomorphisms
of M and Cq diffeomorphisms of N. If

<£: Diff (M)-> Diff (AT)

is a group isomorphism then p = q and there is C diffeomorphism w :M-> Nsuch that

for allfe Diff (M) and neN.

The idea behind the proof is the same as that of Whittaker in that we will show
that the isomorphism <f> induces a bijection between the stabilizer subgroups of M
and N. In other words if we consider the subgroup

S"m = {/e Diff {M)\f(m) = m}

for m GM, we will show that there is a point w(m) e N such that

The mapping w:M-*N so constructed is easily seen to be a homeomorphism
inducing cf>. Takens showed in [2] that if p = q = oo then w must be a C00 diffeomorph-
ism. To complete the proof we will appeal to a deep result of Montgomery and
Zippin [3] concerning Lie groups acting by diffeomorphisms on manifolds to show
that p = q and w is a C" diffeomorphism.

In order to handle the differentiable case several of the arguments of § 2 of [1]
have to be modified to avoid the infinite patching methods employed by Whittaker
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160 R. P. Filipkiewicz

to classify the minimal normal subgroups of the homeomorphism group of a space.
These, weaker, results are presented in § 2. In order to keep this paper as self-
contained as possible we reproduce, in § 3, the proofs of the key lemmas used in
[1] to prove the main result. Finally, in § 4, the theorem stated above is proved.

Independently, and using completely different methods, in [4] M. Rubin has
shown the existence of a homeomorphism inducing an isomorphism between
diffeomorphism groups. However in this paper he was unable to show that the
homeomorphism was differentiable. Subsequently he has managed to achieve this
but I have not yet seen the proof [5].

Notation.
(i) M and N will denote connected, paracompact, differentiable manifolds

without boundary with dim(Af), dim(iV)<oo. We will assume, in addition, that
both M and N are smooth (i.e. C00). This involves no loss of generality as any
differentiable manifold has a compatible C°° structure.

(ii) If l<ifc <oo then Diff*1 (M) will denote the group of Ck diffeomorphisms of
M and Diff5 (M) the subgroup of Difffc (A/) consisting of those diffeomorphisms
compactly isotopic to the identity.

(iii) If g e Diffk (M) then

(iv) Da will denote the closed ball of radius a in R" and dDn
a its boundary.

(v) &(M) will denote the collection of open subsets U<=-M such that
U = ft(Int (D"i)) for some embedding h:D"+e-+M with e >0.

(vi) If U <=M is open then Diff£ (U) will denote the subgroup: {g eDifTfc (M)\g
is compactly isotopic to the identity by an isotopy whose support lies in U}.

(vii) If F c Diff* (Af) is a subgroup let B(F) denote the subcollection
{U <= B(Af )|DiffS (U) c F } of B(Af).

(viii) The commutator subgroup of a group H will be denoted [H, H] and if
f, geH then [/, g]=/g/ 'g • The identity element of any group will be denoted

II. Minimal normal subgroups
We will now proceed to prove two theorems which are weaker analogues of the
results of § 2 of [1]. The first states that if F <= Diffk (M) is a subgroup containing
enough local subgroups Difio(Ux) with Ux a neighbourhood of xeM then F
contains almost all of DiffS (M).

LEMMA 2.1. Let <€ be a covering ofD" by open subsets of W. Then ifae (0,1] there
are fh g, e Diff? (R") for 1 < / < r such that:

(a) For each i there is an element Q e <& such that/„ g, € Diff? (Q).
(b) [/„«,]"• ••»[/,, g,](I?7)«=D2.

Proof. Let A ={a e (0,1]| lemma 2.1 is true for a}. Then A*4> since 1 eA.lt the
lemma is true for a\ < 1 then it is true for all a e [ai, 1]; hence A is an interval.
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Let a0 - Inf (A): we wish to show that a0 = 0. Assume that it is not and let Vi,..., Vs

be a finite covering of dDn
ao by elements of % and let e >0 be less than its Lebesgue

number. For each xedDln choose gx e Diff? (B(x, e)) and a neighbourhood Ux of
x in R" such that:

(i) Ux c£>ao+£/2 -£>ao-s/2 and Ux c f l fe e).
(ii) g,(t/I)cZ?20-./a and g;1 (Ux)^Un -Dn

ao+e/2.
Let {£/,}[=i be a finite covering of 3DJO by these neighbourhoods with corresponding
diffeomorphisms {g,} and let e' < e/2 be such that

i = l

Choos,e

such that

If e' is small enough and / is sufficiently near the identity in the C°° topology we
can use the techniques of lemma 3.1 of Palis and Smale [6] to factor / as a product
/ = / r o . • • o/j with fi € Diff" (t);) for 1 < / < r. If we now set ht = [/,, g,] we have:

(x) ifxef/i;

hi(x)=\gif7
1gi1

otherwise,

since by (i) and (ii) the sets Ut, gi(Ui), g, (Ut) are pairwise disjoint. It follows that
if

we have
Aro...oft1(X)=/ro...o/1(X)=/(X);

hence

Now, by construction, for each i there is an xt e 3Da0 such that

so, since e is smaller than the Lebesgue number of the covering e€, it follows that
there exists C, e ̂  with

for 1 < / < r. Hence a0 ^ «o - e 72 < a0 which is a contradiction. •

THEOREM 2.2. Let F be a subgroup of Difffc (M) and suppose that for each xeM
there is a neighbourhood Ux of x in H(F) such that

[DiffS (£/,), Difffc(t/J]<=F.
Then

[Diff5(M),DiffSM)]<=F.
Proof. Let H be the subgroup of [DiffS (M), Dirt5 (M)] generated by the groups
[Diffo (£/), DiffS (U)] as t / ranges over B(Af). Then H is normal in Difffc (Af) so
by Epstein [7]

fl" = [DiffS (Af), DiffS (Af)].
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Hence we need only show that if W e B(M) then

[Diff5(W),DiffS(W0]<=F.
Let WeB(M) be the image of Int (D") under an embedding h:D"+e^M. Then,

by hypothesis, we can cover W by Ui,..., Us e B(M) such that

[DiffS(^),Difffc (Ut)] c F .
If we set

then the Vt cover D" and we assume that 0 € Vy. For some a > 0 we have
and so by lemma 2.1 we can choose commutators [/„ g;] (1 </</•) with

/•,g,eBiff? (V,(y))
and such that

Now, since
/ ^ e D i f f ? (Int (£>?+.))

for 1 < / < r we can define

as follows:
^(x) ifxei

otherwise.

' \x otherwise.
Then

[fi, gj] € [Diffo ([/,(/)), DiffS (Uii0)]
and, if we define ip to be [/„ gr]°- • -°\_f\, gi], we have tj/eF, by hypothesis, and

UL It follows that

[DiffS (W), DiffS (W)] a .^[DifiS (Ui), DiffS (t/x)]^ <=F. •

Following Whittaker we will now attempt to classify the minimal normal subgroups
of a subgroup F of Difffc (M). Let B(F) denote the union of all the open sets in
B(F). We define a relation R on B(F) as follows:

/ / x, y eB{F) then xRy iff there are Ut e B(F) w/f̂  1 < i < fc 5MC/I rftaf x e f/i,
y e C4 a«rf £/, n t7i+i ^ 0 for 1 < / < k -1.

This is clearly an equivalence relation. The equivalence classes, which are open
and connected, will be called F- components.

LEMMA 2.3. Let C be an F-component and {*,•}£= i, {yi}?=i fwo collections of k
distinct points of C. If dim (M) = 1 assume, in addition, that xt <Xj implies y, < y,.
77ien there is anfeFsuch that/(*,) = y,/or 1 < / </c.
Proof. It is clear that F acts transitively on C The result follows by induction on
k (replacing M by M—{x\,..., xk}). D

THEOREM 2.4. Let F be a subgroup of Difffc (M), G a normal subgroup of F, and
C an F-component. If there is an Xo e C and a go e G such that go(*o) ̂  *o then

[DiffS(C),DiffS(C)]cG.
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Proof. If goOco) £ C we must have go(C) nC = 0 since go(C) is an F- component.
We choose an / e F with Supp (/) <= C and /(JC0) # *o- Then if we set

we have g 6 G, since G is normal in F, and

Hence we can assume, without loss of generality, that
6 C.

We now wish to show that G is transitive on C. Let

y0 = go(*o)
and let y e C be point distinct from y0. If dim (M) # 1 then by lemma 2.3 there is
an feF such that /(y) = JC0 and/(y0) = yo- Then

/^goVgoCKo) = y-
If dim (M) = 1 we have two cases:

Case 1: (xo<yo and y <y0) or (xo>yo and y >y0).
By lemma 2.3 there is an fe F such that /(y0) = yo and /(y) = x0- Then

/^goVgoUo) = y.
Case 2: (jco<yo and y >y0) or (xo>yo and y <y0)-
By lemma 2.3 there is a n / e F such that/(x0) =x0 and/(y) = y0- Then

Since G is normal in JF we have shown that for all y € C there is a g e G such that
g(*o) = y; hence G is transitive on C.

Let xi, x2 be points of C distinct from JC0 and choose gi, g2 e G with g,(x0) = x.for
/ = 1, 2. Let C/o be a neighbourhood of x0 such that C/o, gi(Uo), gi^^iUo), g2{U0),
g2X (f/o) are pairwise disjoint. If

then, setting c; = [ht, g,] for i = 1, 2 we have

otherwise.
Hence \c\, c^\ = [hi, h?\. Therefore

Since G is transitive on C it follows from the previous paragraph that for each
x € C there is a neighbourhood Ux of x in C such that

[Diff5(£/x),DiffS (C/J]<=G.

From theorem 2.2, since C is an open submanifold of M, we conclude that

[Diff 5(C), Diff S(C)] c G . •

We finish this section with the following refinement of the results of Epstein in [7].

THEOREM 2.5. [DiffS (M), Diffo (Af)] is the unique minimal normal subgroup of
Dirf (M).
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Proof. Clearly by Epstein [7] [Diff £ (M), DiffS (M)] is a minimal normal subgroup
of Diffk (M) so it remains to show that if H is any normal subgroup of Difffc (M) then

H n [DiffS (M), DiffS (M)] * {e}.

To see this choose ZieH and UeU(M) such that £/, h(U), h~l{U) are pairwise
disjoint. If /, g eDiffo (U) are such that [/, g ] / « we set / = [/, h] and | = [g, A]. It
is clear that

/,ge/fnDiff5(*f)
and, by the choice of U,

If,g](x) = [f,g](x)

for all xeU. Thus [/, g] # e and

[/, fleffn [Diff 5 (M), Diff S (A/)]. D

III. Characterization of stabilizer subgroups
In this section we will reproduce the proofs of a number of lemmas due to Whittaker
[1]. This will enable us to give an algebraic characterization of the stabilizer subgroup
of a point of M.

Definition. For x e M the group denned by

Sk
x={geDifik(M)\g(x) = x}

is called the stabilizer of x.

LEMMA 3.1. Let f,g, heDitlk (M)-Sk
x for some x eM. Then:

(a) Diff (M)-Sk = SkfSk
x KjSkflSk.

(b) g e SkfSk andfg, gf£ Sk implies thatfg, gfeSkfSk.
(c) g,heSkfSk implies that there are su fj ef^S^gnSk and s2, t2ef~1Skh nSk

such that sts2 = t2ti.

Proof. Since Sk is n-transitive on M~{x} for all n if dim(M)>l and this is not
true for dim (M) = 1 the proof will be done in two parts.
(i) dim (M) > 1. Choose seSk such that sg(x) =f{x). Then

r1sg(x)=x

so f~*sg = t e Sx and g = s~xft. Thus

which implies both (a) and (b).
Setting u =f~1(x), v =g~1(x), w = h^(x) we have:

f~1SkhnSk={seSk\s(w) = u}.

Now choose y eM such that y ̂ x, y = v iff w = u, y = w iff v = u. Choose

such that s2(y) = v and
hef-l

such that ti(y) = w. If we set t2 = s1s2ti
l for arbitrary sief~lSxgnSx then t2eSx

and ^ (w) = u which shows (c).
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(ii) dim (M) = 1. If f(x), g{x) lie in the same component of M—{x} we can apply
the method of (i)(a) above to show that g e S^S*. If they lie in different components
then /"'(JC), g(x) lie in the same component so we can find s eSx such that

sg(x)=ri(x).
Then t = sfge Sx so

This proves (a).
To prove (b) we need only remark that by the proof of (a) above geStyS*

means that f(x), g(x) lie in the same component of M—{x} and hence so do the
pairs (/(*),/*(*)) and (/(*), gf(x)).

To demonstrate (c) we first note that M is diffeomorphic to the real line or the
circle. If M is diffeomorphic to the real line then g, he S^S* implies that g~l(x),
f~l{x), h~1{x) all lie in the same component of M—{x}. If M is diffeomorphic to
the circle then we choose an orientation of M to induce an ordering of M-{JC}.

The proof of (i)(c) will now work as before if we add the condition: y > v iff w > u
and y > w iff v > u. •

For the rest of this section let

<A:Diff'(Af)-»Diff'(AO

be a group isomorphism. The next two lemmas will show that if Sy is the stabilizer
of a point y eN then <f>~1{Sy) behaves very much like the stabilizer of some point
xeM.

LEMMA 3.2. Let F = <j)~x{Sqy) for some y eN and let A be a proper closed subset of
M.Iff(A)=AforeveryfeFthenA={x} and F = S"X for some xeM.

Proof. If A -Int {A) consists of a single point x then f(x) = x for all / e F and hence
F c S J , By lemma 3.1 (a) and the fact that <f> is a group isomorphism we see that
both F and Sx are maximal subgroups of Diffp (M); hence F = Sp

x.
Now assume that there are two distinct points

Xi,x2eA —Int(A).

Choose Ui, U2e B(Af) with x, e Ui for i = 1, 2 and U\ n U2 = 0 . Since xt£ Int (A)
we have

Ut-A*0

so we can choose

/i, eDiflfg (C/i)

such that hi{xi)&A for / = 1, 2. By hypothesis h^F for i — 1, 2 so lemma 3.1(a)
implies that

g2eFh1F,

where g2 = h2 or h^1- We will set gi = h\. Now gig2 and g2gi<£F so from lemma
3.1(b), since we have g2eFgiF and gieFg2F, it follows that

i.e. g,eFg3F for/= 1,2.
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Let g, for i = 1, 2, 3 be as in the previous paragraph and set

ThenAx # 0 sincexi e A1;A, c£/, for/= 1,2andA3 = AiuA2since L^n U2 = 0 .
Choose

Then
g3',-(A,.)=/;.g,.(A,.)cM-A

for some /; e F and / = 1, 2. Now f, 6 F means that

so fi(A,)cj43 for i = 1, 2. Similarly
git7

1(A3)=f71g3(A3)^M-A

so ti (A3)cAi. Thus /j(A,)=A3 and so, since we know that A i # 0 , it follows
that the three sets Au A2, A3 are non-empty.

By lemma 3.1(c) there are
SbtiSg^FginF

such that

and so, by the results above we have

and

t r V ( A 3 ) = r r 1 ( A 2 ) c ti1 ( A 3 ) = A U

which contradicts the fact that

Hence A - Int (A) must reduce to a single point. •

LEMMA 3.3. Let F = ̂ (Sy) for some yeN. Then there is anfeF,f*e, such that

Proof. Let Ut e B(M) for 1 < / < 4 be such that

UinUj = 0

Assume that

Int (Fix (/)) = 0

for all fe F and choose /i, # c in Diff" (fT,) such that

for some point ac, e f/; (1 ^ i's4). It is clear that hi and /i5 = h3h4 are not conjugate
since their fixed point sets are not homeomorphic. Similarly the pairs (hi, hs ),
(h2, h5), and (h2, /ij

1) are not conjugates.
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Since Int (Fix (/i,)) * 0 for 1 < / <5 we have ht£F. By lemma 3.1(a) there are s,,
r, e F for i = l , 2 such that s,/i5fj = g, where g, = A; or AT1. If there is an

x e tr1 (M - Us) n (Af - Ut)

then Siti(x) = Sih5ti(x) = g,(x) = x so

Int (Fix (5,0) 5*0.

Since g, and ft5 are not conjugate we have s,f, ^ e contradicting the assumption. It
then follows that

whenever

tteh^FginF.

By lemma 3.1(c) there are s,, f, € h^Fgt r\F such that

But then we have

52 V (M - Us) <= 5?1 (t/0 <= 52 ' (Af ~ C/5) <= t/2

and

V ' 1 (U2) <z 171 (Af - Us) c t/x,

which contradicts the choice of C/x n t/2 = 0 • Hence we must have Int (Fix (/)) # 0
for some f ¥^e. •

IV. Mam theorem
THEOREM 4.

be a group isomorphism. Then p =q and there is a C-diffeomorphism W.M-+N
inducing <$>. In other words <f>(h)(n) = whw~l{n) for all h eDiff" (Af) and neN.

Proof. The proof will proceed in three steps. First we will show that there are points
m0 e Af and noeN such that

<t>(sp
mo)=sq

no.
Then w will be constructed and shown to be a homeomorphism. Finally, using
some arguments from the theory of Lie groups, we will show that p = q and w is
a Cp diffeomorphism.

Step 1. For noeAT consider the subcollection "<?„„ of B(Af) denned by:

If ^ covers Af then by theorem 2.2

[Diffg (Af), Diffg (Af)] c F*,,

and so, since theorem 2.5 implies that <f> maps [Diffg (Af), Diffg (Af)] onto [Diffg (AT),
Diffg (N)], we must have

[Diff8(AD,Diff8(AD]cS2o.
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But [Diffg (N), Diff g (AT)] is normal in DifF (N) and stabilizers are sent to stabilizers
by conjugation; hence it follows that

[Diffg(AO,Diffg(AO]cSS for aline TV.

This is a contradiction since

and Diffo (N) is not abelian. Thus ^ cannot cover M. Now let U e <£„„ and set
V=f{U) for some / e Fno. Then

and

[Diffg(V), Diff5 (V)] =/[Diffg (*7), Diffg

Hence V e ^ and ^ is invariant under F^. If we now set

we see that C^ is a closed non-empty subset of M invariant under F^. If ^ # 0
then C ^ A f and so, by lemma 3.2, we must have F^, = S^0 for some mosM i.e.

A similar argument to the preceding paragraph shows that if the subcollection
^ or B(JV) defined by:

o ), Diffg

is non-empty for some moeM there is an n0 e Â  such that

It remains to show, therefore, that c€no¥^<Z for some noeN or S ^ ? ' 0 for some

Choose no&N. By lemma 3.3 we can find go ^ e in Fno such that Int (Fix (g0)) =
A * 0 . Let

and define subgroups H and iiT of Diff (M) as follows:

*: = ^"1{/i eDiff" (N)\B cFix (A)}.

Now B T6 0 since no&B and both / / and .K" are non-trivial since they contain g0.
Also /(T is clearly normal in H. If

ge Diffg (A)

then

ggog~l = go-
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Hence

= B
and so

Diffg(A)c=//.
Thus B(H) ¥" 0 . We now have the following two cases:

Case (i): If there exist xeA and keK such that k{x)T1 X then by theorem 2.4
we can find a non-empty open subset U <= A such that

[Diffg(L/),Diff 8

But <£(.fiO <= S2O) since n0 e B and so

Case (ii): If for all k e K we have A c Fix (/c) then, since

implies that

the collection 5)x is non-empty for all xeA.
Thus we have shown that either ^ ^ 0 or there exists x e M such that ®x 5* 0

as required.
Step 2. Let m0, «o be the points defined in step 1 above and let glt g2e DifF (M)
be such that gi(m0) = g2(f"0). Then we have

and so

hence

<f>(gi)(n0) = <f>(g2)(n0)-

We can therefore define w.M^N as follows: If m e M choose geDifF (M) such
that g(m0) = m and set

It is easy to see that w is a bijection between M and N inducing <f>. Furthermore,
since w induces <p, we have

Fix (</> (g)) = w (Fix (g)) for all g € -Dyf (M)

and so, since w is a bijection,

But these sets form the bases for the topologies of N and M respectively so w"1

is continuous. Similarly w is continuous.
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Step 3. First note that if w is a Ck diffeomorphism and p <q then k <p otherwise
w would induce an isomorphism between Diffp (M) and

DifP(A0#DifF(A0.

Similarly if p >q then, considering 4>~x, we see that k <q. Hence if p ^q we must
have k <min (p, q). We will show, however, that min (p, q) < k and so p = q and
w is a C diffeomorphism.

For each mo^M a result of de Rham (proposition 1, § 15 of [8]) gives the
existence of an embedding h:Ud-*U^M with the following properties (d =
dim (Af)):

(a) ft(0) = mo;
(b) Weseta(x, m) = hTxh~1 if m eU,x eUdanda(x, m) = m if mg [7(7; :Rd-»Rd

denotes translation by x). Then a is a C°° action of Rd on M.

If w is the homeomorphism defined in step 2 the induced action d(x, n) of Ud on
iV denned by: d(x, n) = w(a(jc, w~x{n))) is continuous. If xoelRd is fixed the map
m->a{x0, m) is in Diffp (M) and so, since w induces an isomorphism between
Diff" (M) and Diff" (N), the map n-+d(xo,n) is in Diff" (N). Therefore a is a
continuous action of Ud by diffeomorphisms. Since Ud is a Lie group we can apply
theorem 3 of § 5.2 of Montgomery and Zippin [3] to conclude that a is a C action.
Set n0 = w(m0). It follows that the map x -*a(x, m0) is a C°° chart around m0 and
the map x -» d(x, n0) is a C chart around n0. We have h(x) = a{x, m0); hence

K,no)) = h w w(a (x, m0))

= h~\a(x,m0))

=x

so vv"1 is C. Reversing the roles of M and N a similar argument shows that w is
C". Hence w is a Ck diffeomorphism with k = min (p,q). •

We conclude by remarking that the following questions remain open:

Question 1. Is theorem 4 true if M and N are allowed to have non-empty
boundaries? The problem here lies in the fact that the minimal normal subgroup
is now the commutator of the group of diffeomorphisms compactly isotopic to the
identity whose support lies in the interior of M.

Question 2. Is theorem 4 true in the analytic case? The methods in this paper fail
completely in this case.

I would like to thank David Epstein for suggesting the problem considered in
this paper and for his patience and encouragement during its period of gestation.
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