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I. Introduction 

Penetrative convection occurs in a fluid whenever a conyectively unstable region 

is bounded by a stable domain. This situation is encountered in many stars, and it is 

also a very common circumstance on Earth: in the oceans and in the atmosphere. One 

would therefore expect that the astrophysicists may largely benefit from the experience 

accumulated on this subject by the geophysicists. 

However, this is only partly the case. In the ocean, salinity plays a very 

important role and especially so at the interface between a stable and an unstable 

(mixed) region. In the atmosphere, the behavior of the convective planetary boundary 

layer is dominated by the 24 hour thermal cycle, so that a steady state is never achie­

ved , as it is in a star (at least in one that is not pulsating). Furthermore, the ratio 

between viscosity and conductivity, as measured by the Prandtl number, is of order unity 

for water and air, but it drops to 10 6 and less in a star. Finally, the effects of stra­

tification are much stronger in stars where convective regions often span several density 

scale heights. 

For all these reasons, the astrophysicists have developed methods of their own 

to describe stellar convection, even though some are widely inspired by those used by 

the geophysicists. The same is true for convective penetration, whose study cannot be 

separated from that of convection itself. The purpose of this review will be to recall 

those methods, and to verify if they are suited to describe the penetration of convective 

motions into stable surroundings. 

II. Phenomenological approaches 

In those approaches, one hypothesizes a flow which is plausible in that it does 

not seemingly contradict the laws of fluid dynamics and that it conserves heat and 

kinetic energy. One then calculates the gross parameters that characterize this flow: 

convective flux, mean temperature gradient. The most commonly used of such procedures 

are based on the concept of mixing length, and have already been discussed in this 

colloquium by D.O. Gough. 
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1. Non-local mixing-length treatments 

All mixing-length procedures applied to stellar convection are in fact based 

on the two differential equations describing: 

i) the variation with height z of the density excess 6"p between a convective element 

and the surrounding medium, in which the densities are respectively p* and p 

dz r dp 
dz 

(1) 

ii) the variation of the kinetic energy of that convective element 

d A 2̂  
dl ( 2 P V ) <Sp g (2) 

where g is the gravity. 

The standard prescription (Vitense 1953) is to replace these equations by 

6p = dp 
dz 

dp 
dz 

I v> = - C g f f 

(3) 

(4) 

I being the mixing length and C an efficiency factor which allows for the production 

of turbulent energy. In this treatment, both the density excess and the convective 

velocity are functions of local quantities only (the mixing length and the density 

gradients); by construction the convective motions cannot penetrate into the stable 

adjacent regions. 

That constraint may however be relaxed by treating the original differential 

equations in a less crude way. This was done by Shaviv and Salpeter (1973), Maeder (1975a) 

and Cogan (1975), to be specifically applied to the overshooting from a convective stellar 

core. The differential equations are integrated over one mixing length (or up to the 

point where the velocity vanishes, whichever happens first): 

dz 
(5) 

(6) 

£ % 
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(To formally recover certain results of the standard scheme, Maeder identifies the 

integration distance with half the mixing length). The density stratification dp/dz 

of the ambient medium is adjusted until the constancy of the total energy flux 

(convective plus radiative) is realized. 

This non-local mixing-length treatment permits the description of many features 

of penetrative convection in the laboratory or in the Earth'satmosphere. A convective 

element ceases to be buoyant at some distance from the unstable region, where also the 

convective flux vanishes; from there on its momentum carries it still further into the 

stable region, and since it is cooler than the surrounding medium, the convective flux 

is of opposite sign. In a stellar core, the Peclet number is very high and thus the con­

vection is extremely efficient; it follows that the whole domain where the motions occur 

is kept nearly adiabatic. 

The main weakness of this approach, as one may expect, is that all quantitative 

predictions depend on the assumption made for the mixing length. Another parameter plays 

here also some role, and it too can only be guessed: it serves to measure the fraction 

of space filled by the convective elements.In the bulk of the unstable domain this 

parameter is probably close to unity, but in the overshooting region, it drops to one 

half and possibly much less, because it is unlikely that many downwards moving elements 

are present there. 

In a generalization of the mixing-length procedure proposed by Spiegel (1963), 

the number of convective elements is not fixed a priori, but is governed by an equation 

of conservation similar to the radiative transfer equation. Travis and Matsushima (1973) 

have applied this non-local theory to the solar atmosphere, and they obtain an apprecia­

ble overshooting into the photosphere. In order to match the solar limb-darkening obser­

vations, they must choose a ratio of mixing length to pressure scale height of 0.35 or 

less. Unfortunately, this value is too small to yield the correct solar radius, within 

the assumptions that can be made for the chemical composition. Travis and Matsushima 

suggest that this discrepancy be removed by allowing the above mentioned ratio, between 

mixing length and scale height, to vary with depth. 
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2 . Other procedures 

A different approach has been used by the meteorologists to model cloud 

dynamics (Stommel 1947). It is based on the concept of thermals, and has since been 

applied to a variety of other problems; it was Moore (1967) who brought it to the 

attention of the astronomical community. A thermal is an organized cell which, like the 

eddy of the mixing-length treatment, exchanges heat and momentum with the surrounding 

medium, but has also the property of gaining or loosing matter through entrainment or 

turbulent surface erosion. 

The only serious attempt to apply this concept to an astrophysical case was 

made by Ulrich (1970 a, b), who used it to build a model of the solar atmosphere. He 

had to overcome such difficulties as the absence of any ground level (from where the 

thermals start on Earth), fragmentation (since the thermals are bound to move over 

several scale heights) and radiative exchanges (the Peclet number becomes rather small 

above a certain level). His model displays substantial overshooting well into the 

photosphere, but one may wonder whether this is not due mainly to a simplifying assum-

tion he made for the correlation between the velocity of a thermal and its temperature 

excess. Another consequence of this is that there is no sign change of the convective 

flux in the stable region. 

A similar treatment has been proposed recently by Nordlund (1976), in which the 

medium is organized in two streams of rising and falling fluid. Those behave like the 

thermals in the sense that they too exchange matter, heat and momentum, but here there 

is no ambient medium. Dimensional arguments are invoked to write down the equations 

governing the exchanges between the two streams. Solar models constructed with this 

procedure are characterized by an appreciable penetration up to an optical depth of 

T = 0.1; the quantitative predictions of course depend on the choice of the dimen-

sionless parameters that occur in the equations. 
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III. Direct approaches 

In the past ten years a new approach has been explored thanks to the fast 

computers with large memory storage that are now available: one can start directly 

from the fluid dynamics equations, instead of replacing them by simpler ones that are 

more tractable. Of course, it is not feasible yet to treat the most general problem: 

as we will see, the solutions obtained to date all suffer from some kind of restriction. 

But at least they help to build up an intuition which has been lacking so far. We 

shall consider here only the nonlinear investigations; the main interest of the linear 

studies has been to determine the critical conditions (Gribov and Gurevich 1957, 

Stix 1970, Whitehead 1971), but they cannot be used to predict the extent of penetration, 

which is strongly related to the amplitude of the solution. 

1. Boussinesq convection 

The prototype of penetrative convection in the laboratory is the ice-water 

experiment suggested by Malkus (1960) and performed among others by Townsend (1964) and 

Myrup Zt at. (1970). Water has the peculiar property of presenting a density maximum 

at 4°C, so that a tank of water whose bottom is kept at 0°C will be convectively 

unstable up to the level of maximum density, and stable above. Veronis (1963) gave the 

criterion for the onset of the instability, which is of the finite amplitude type. There­

after Musman (1968) made the first quantitative predictions for the extent of penetra­

tion, using the so-called mean-field approximation (Herring 1963). The next improvemer 

came from Moore and Weiss (1973), who solved the two-dimensional problem without furthej: 

simplification. 

A slightly different experiment is that of a fluid heated in its bulk by Joule 

effect, in which the parabolic temperature profile creates two superposed domains of 

respectively unstable and stable stratifications (Tritton and Zarraga 1967). This 

experiment has been modelled by Strauss (1976), again with a two-dimmensional code; his 

results are similar to those of Moore and Weiss (1973). 

These two-dimensional studies are fairly successful in predicting, at moderate 

Rayleigh numbers, the mean temperature profile and thus the extent of penetration. But 

it is doubtful that they can be extrapolated to the parameter range which is of astro-

physical interest (high Rayleigh numbers and low Prandtl numbers). Moreover, these 

two-dimensional studies are unable to describe the time-dependent temperature fluctuations 

which are observed at the boundary of the well-mixed region. These seem to be excited 

randomly, and are essentially three-dimensional in their nature. The astrophysical 

importance of these oscillations must not be underestimated: in the Sun, they would 

occur just at the base of the photosphere and would generate gravity waves. 
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Another suggestion that the two-dimensional studies may be somewhat misleading 

comes from the results obtained by Latour zt at. (1977). They analyze the penetration 

of convective motions from an unstable slab into the stable adjacent regions. The 

solutions are expanded into orthogonal modes in the horizontal, and a finite differences 

scheme is used in the vertical. In the special case of a single mode with a two-dimen­

sional planform, this procedure reduces to the mean-field approximation of Herring used 

by Musman (1968). But one can also choose a three-dimensional planform representing, for 

instance, prismatic cells of hexagonal base. The comparison of solutions derived with 

the two types of planforms reveals that penetration is much stronger when the convective 

motions are allowed to be three-dimensional (Figure 1). In the simplest three-dimen­

sional case, where only a single planform is retained, the solutions are asymmetrical: 

the overshooting occurs mainly on the side to which the centerline flow is directed in 

the hexagonal cells. The mean temperature profile becomes symmetrical again when one 

superposes two patterns of hexagonal cells with opposite centerline velocities; 

remarkably enough, the total kinetic energy of the flow does not vary as one switches 

from the one-mode solution to this two-mode solution. And the total extent of penetra­

tion too remains unchanged, if it is defined as the sum of the penetration depths at 

either side of the unstable layer. 

2. Convection in a stratified medium 

In the laboratory (or Boussinesq) case, the extent of penetration is related to 

the only natural length that characterizes the problem, namely the thickness of the 

unstable layer. But what should one expect in a stratified medium, such as the solar 

convection zone, where the unstable domain spans several density or pressure scale-

heights? 

This question has not been answered yet. Toomre OX at. (1976) have studied the 

penetration from the deeper convection zone of an A-type star; this zone is due to the 

second ionization of helium, and it measures about one pressure scale height. Using the 

technique mentioned above of truncated modal expansion, and retaining only one single 

three-dimensional mode, they find that the motions penetrate up to one scale height 

into the stable region below. More recently, they have established that the convective 

motions penetrate also above, as far as to build a link between the deeper convection 

zone and the upper one, which is caused by the ionization of hydrogen. But the situation 

considered is admittedly not one of severe stratification, and these results cannot 

be extrapolated to the Sun, for instance. Moreover, the solutions obtained so far are 

all stationary, missing thereby the time-dependent character of penetrative convection 

which may be of primordial importance. 

Another difficulty with these drastically truncated modal calculations is that 

they depend on the choice made for the horizontal wavelength of their single planform. 

Fortunately, the results are not too sensitive to this parameter, which is felt mainly 

in the horizontal heat exchanges; it does not play the dominant role of the mixing 

length in the phenomenological approaches. 
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Figure 1• Modal solutions for penetrative Boussinesq convection. 

The unstable layer, which extends in depth from z = 0 to z = I, is 
imbedded in an infinite stable domain from which only a fraction of 
thickness Az - 2 on each side is shown here. The same Rayleigh number 
R - 10 characterizes the stability and the instability of the three 
superposed layers (it corresponds to about thousand times critical). 
The amplitudesof the vertical velocity, W, and of the temperature 
fluctuations,©, are displayed as functions of z. Figure la shows a 
single two-dimensional mode (which may be visualized as a horizontal 
roll), figure lb a single three-dimensional mode of hexagonal horizontal 
planform, and figure lc two non-interacting three-dimensional modes 
of that same geometry. In all cases, the value of the horizontal 
wavenumber is 2, and the Prandtl number is I. Notice that the overshooting 
into the stable surroundings is much more pronounced with the three-
dimensional motions. 
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The only way to avoid any extra assumption would of course be to directly 

integrate the basic equations in three-dimensional space. This has been done hy 

Graham (1975), whose latest results are presented in this colloquium. But even the 

most powerful computers which are presently available set a rather low limit on the 

number of gridpoints that can be used. This in turn fixes the highest Rayleigh or 

Reynolds numbers that can be reached: typically one hundred times critical. There is 

thus still a very long road to go before meeting the numbers characterizing a stellar 

convection zone, but in the meanwhile these numerical experiments are very useful as 

a workbench to test the various approximations that have been proposed. 

IV. Observational tests 

It is relatively easy to confront theoretical predictions of Boussinesq 

penetrative convection with laboratory experiments. But, as we were already reminded 

by K.H. Bohm, the comparison of astrophysical models with stellar or solar obser­

vations is more delicate, for the physical parameters that can be determined often 

depend on other factors than just the properties of convection. 

For the stars, one is forced to rely on the few gross parameters which can 

be observed. In principle the classical tests for probing the internal structure 

of a star may be used to determine the extent of the regions which are in nearly 

adiabatic stratification, at least once their location is roughly known. These tests 

can complement each other: the apsidal motion test (see Schwarzschild 1958) is more 

sensitive to the overall mass concentration in a star, whereas the pulsational period 

of a variable star (see Ledoux and Walraven 1958) depends more on the stratification 

of its envelope. There is even a slight hope to interpret the properties of the dynamical 

tide in a close binary system, which are closely related to the size of the quasi-

adiabatic core of the two components (Zahn 1977). 

But the most promising tests are probably those which sense the inhomogeneities 

in chemical composition. Prather and Demarque (1974) and Maeder (1975b, 1976) have 

included some amount of overshooting in their calculations of evolutionary stellar 

models. They find that the evolutionary tracks, lifetimes and cluster isochrones all 

are appreciably modified by an increase of the convective core. Prather and Demarque 

obtain the best fit between their theoretical isochrones and the cluster diagram of M 67 

for a penetration depth of about 10% of the pressure scale height; Maeder's value is 

slightly less and he uses it to calibrate his non-local mixing-length procedure. 

The thickness of a convective envelope (together with its penetrative extension) 

may be inferred from the abundance of elements which undergo nuclear destruction at 

moderate Temperatures, such as lithium, beryllium and boron. In the case of the Sun, 

additional information can be gathered from the composition of the solar wind (Bochsler 

and Geiss 1973). But when interpreting such observations, one must keep in mind that 

other instabilities than convection may also lead to a thorough mixing of the stellar 

material. 
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It looks at first sight as if the Sun should he the ideal object on which to 

check the theories of penetrative conyection. The solar atmosphere becomes convectively 

unstable below optical depth T = 1, which means that the overshooting motions should 

occur in the photosphere and thus be visible. The difficulty however is to distinguish 

in the observations of Doppler-shifted lines what is due to waves or oscillations, and 

what is due to genuine penetrative convection. The accuracy of correlation measurements 

between velocities and temperature fluctuations is still not sufficient to permit the 

separation of both types of motions (for a recent and complete review on such measure­

ments, see Beckers and Canfield 1976). And one encounters the same problem when it 

comes to the interpretation of the non-thermal energy flux: the convective (enthalpy) 

flux is blended with the flux of kinetic energy, which is carried by both convection 

and waves. But the solar observations are rapidly progressing toward better precision 

and spatial resolution, and one may hope that these questions will he settled in the 

not too distant future. 

https://doi.org/10.1017/S0252921100112448 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112448


234 

Bibliography 

Beckers,J.M., Canfield.R.C. 1976, Physique des Mouvements dans les Atmos­
pheres Stellaires, R.Cayrel and M.Steinberg eds., CNRS, p.207 

Bochsler.P., Geiss.J. 1973, Solar Phys. 32, 3 

Cogan.B.C. 1975, Astrophys. J. 201, 637 

Graham,E. 1975, J. Fluid Mech. 70, 689 

Gribov,V.N., Gurevich.L.E. 1957, Soviet Phys. JETP 4, 720 

Herring,J.R. 1963, J. Atmos. Sci. 20, 325 

Latour,J., Toomre.J., Zahn,J.P. 1977 (in preparation) 

Ledoux,P., Walraven.Th. 1958, Handbuch der Physik, t.51, p.353 (Springer) 

Maeder, A. 1975a, Astron. & Astrophys. 40, 303 

Maeder, A. 1975b, Astron. & Astrophys. 43, 61 

Maeder, A. 1976, Astron. & Astrophys. 47, 389 

Malkus,W.V.R. 1960, Aerodyn. phenomena in stellar atmosph., p.346 (Thomas edit) 

Moore,D.V/. 1967, Aerodyn. phenomena in stellar atmosph.. p.405 (Thomas edit.) 

Moore,D.R., Weiss,N.0. 1973, J. Fluid Mech. 61, 553 

Musman.S. 1968, J. Fluid Mech. 31, 343 

Nordlund.A. 1976, Astron. & Astrophys. 50, 23 

Prather.M.J. Demarque.P. 1974, Astrophys. J. 193, 109 

Schwarzschild.M. 1958, Structure and evolution of stars, p.146 (Dover) 

Shaviv.G., Salpeter,E.E. 1973, Astrophys. J. 184, 191 

Spiegel,E.A. 1963, Astrophys. J. 138, 216 

Stix.M. .1970, Tellus 22, 517 

Stommel.H. 1947, J. Meteorol. 4., 91 

Strauss,J.M. 1976, Astrophys. J. 209, 179 

Toomre.J., Zahn,J.P., Latour.J., Spiegel,E.A. 1976, Astrophys. J. 207, 545 

Townsend,A.A. 1964, Quart. J. Roy. Meteorol. Soc. 90, 248 

Travis,L.D., Matsushima,S. 1973, Astrophys. J. 138, 216 

Tritton.D.J., Zarraga.M.N. 1967, J. Fluid Mech. 30, 21 

Ulrich.R.K. 1970a, Astrophys. & Space Sci. 7, 71 

Ulrich.R.K. 1970b, Astrophys. & Space Sci. 7, 183 

Veronis.G. 1963, Astrophys. J. 137, 641 

Vitense.E. 1953, Z. fur Astroph. 32, 135 

Whitehead,J.A., Chen.M. 1970, J. Fluid Mech. 40, 549 

Whitehead,J.A. 1971, Geophys. Fluid Dynamics 2, 289 

Zahn.J.P. 1977, Astron. & Astrophys. 57, 383 

https://doi.org/10.1017/S0252921100112448 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112448



