
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Zongo P, Zorom M, Mophou
G, Dorville R, Beaumont C (2020). A model of
COVID-19 transmission to understand the
effectiveness of the containment measures:
application to data from France. Epidemiology
and Infection 148, e221, 1–12. https://doi.org/
10.1017/S0950268820002162

Received: 29 May 2020
Revised: 25 August 2020
Accepted: 27 August 2020

Key words:
Basic reproduction ratio; containment
measures; COVID-19; new wave

Author for correspondence:
P. Zongo,
E-mail: Pascal.Zongo@gmail.com

© The Author(s), 2020. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

A model of COVID-19 transmission to
understand the effectiveness of the
containment measures: application to
data from France

P. Zongo1 , M. Zorom2, G. Mophou3, R. Dorville1 and C. Beaumont4

1Laboratoire L3MA, DSI et IUT, Université des Antilles, Schoelcher, Martinique; 2Institute 2iE, B.P. 594,
Ouagadougou, Burkina Faso; 3Laboratoire LAMIA, Université des Antilles, Campus de Fouillole, 97159, Pointe à
Pitre Guadeloupe (FWI) – Laboratoire MAINEGE, Université Ouaga 3S, 06 BP 10347 Ouagadougou 06, Burkina Faso
and 4INRAE, Université de Tours, UMR Biologie des oiseaux et aviculture, F-37380 Nouzilly, France

Abstract

The main objective of this paper is to address the following question: are the containment
measures imposed by most of the world governments effective and sufficient to stop the epi-
demic of COVID-19 beyond the lock-down period? In this paper, we propose a mathematical
model which allows us to investigate and analyse this problem. We show by means of the
reproductive number, R0 that the containment measures appear to have slowed the growth
of the outbreak. Nevertheless, these measures remain only effective as long as a very large frac-
tion of population, p, greater than the critical value 1− 1/R0 remains confined. Using French
current data, we give some simulation experiments with five scenarios including: (i) the val-
idation of model with p estimated to 93%, (ii) the study of the effectiveness of containment
measures, (iii) the study of the effectiveness of the large-scale testing, (iv) the study of the
social distancing and wearing masks measures and (v) the study taking into account the com-
bination of the large-scale test of detection of infected individuals and the social distancing
with linear progressive easing of restrictions. The latter scenario was shown to be effective
at overcoming the outbreak if the transmission rate decreases to 75% and the number of
tests of detection is multiplied by three. We also noticed that if the measures studied in
our five scenarios are taken separately then the second wave might occur at least as far as
the parameter values remain unchanged.

Introduction

In December 2019, a disease that appeared in central China precisely in the city of Wuhan
(Hubei Province) started to take its toll. On 7 January 2020, Chinese authorities admitted
that the country was facing an epidemic caused by a new virus from the coronavirus family.
First named ‘2019-nCOV’, this virus and disease was named COVID-19 or SARS-CoV-2 by
the World Health Organization (WHO) [1]. COVID-19 disease has passed in a few weeks
from a localised epidemic to a pandemic. This disease is now a public health emergency at
the international level and is currently affecting more than 200 countries with more than
350 000 deaths and nearly 6 million people infected according to the WHO. It is contagious
with human-to-human transmission via respiratory droplets or by touching contaminated sur-
faces and then touching one’s face. The most common symptoms are fever, cough and diffi-
culty breathing, but it can cause acute respiratory distress, which is often fatal.

The spread of the disease has enormous consequences for all sectors of society, endangering
economics of almost all countries in the world. In the current state of knowledge, there is no pre-
ventive vaccine, biomedical means of prevention or specific therapeutic means. International,
national and local control strategies are essentially based on barrier measures, social distancing,
wearing masks, confinement, screening and diagnosis according to various methods and symp-
tomatic treatment. Today in different countries, research in all its dimensions has become an
absolute priority. In particular any research which can help to understand, prevent and treat
COVID-19 is encouraged at the highest political level of many countries. Following this urgency,
models have already been proposed in order to study the dynamics and to control the pandemic
[2–9]. In this paper, we propose a new model which could help to understand the effectiveness of
the containment measures adopted across countries. The model will be used to predict different
scenarios of the possible resurgences of the new waves of epidemic in France.

The paper is organised as follows. The next section presents the model. The basic reproduc-
tion ratio is established in Section ‘Basic reproduction number’. Section ‘Construction of the
containment rate’ is devoted to the formulation of the function which regulates the contain-
ment measures. In section ‘Model parameters’, we identified the values of model parameters.
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Section ‘Simulation experiments: application to data from France’
presents the simulation experiments for which five scenarios will
be implemented: validation of model by comparison with the
actual available data in France, testing the effectiveness of contain-
ment measures and longer-term forecasting of epidemic, study
of the effectiveness of the large-scale testing, study of social dis-
tancing measures and the combined study of the large-scale test-
ing and social distancing and/or wearing masks measures.
Concluding remarks will follow in Section ‘Discussion and
conclusion’.

Model formulation

To model the COVID-19 transmission, we divide the human
population into seven classes. Susceptible unconfined Su(t), sus-
ceptible confined Sc(t), exposed E(t), reported infectious Ir(t),
unreported infectious or silent carriers, Iu(t), quarantined Q(t),
recovered R(t) at any time t, see in Figure 1.

In this paper, the unreported infectious individuals depict
mainly the individuals with no clinical symptoms (asymptomatic
or silent carriers) during their infectious period. They also include
some infectious individuals with mild symptoms who thus often
go unrecognised.

In what follows, we assume that these individuals don’t die of
the disease, while the reported infectious can die of disease at a
rate (1 − q)ηr where 1− q is the fraction of reported individuals
that die, q is the fraction of reported individuals that recover
and 1/ηr is the average length of infectious period of reported
individuals (see Fig. 1).

An individual moves to the susceptible unconfined class, Su,
either from the confined class at a rate 1−m(t) or from the quar-
antined class at a constant rate θ(1− λ). The fundamental param-
eter that we have introduced in our model to study the
containment measures is the parameter m(t), it can be interpreted
as the fraction of confined susceptible individuals at any time t.
When the susceptible individuals are exposed to the virus, then
the exposition provides either the reported class, Ir or the unre-
ported class, Iu. Without making any distinction about the origin
of the infection, we assume that a fraction σ of susceptible uncon-
fined individuals which has been in contact with an infectious
individual is quarantined with contact tracing while the other
fraction (1− σ) who was not detected by the contact tracing
move to the exposed class E once effectively infected or stay in
compartment Su otherwise. Then, the quantities (1− σ)(βrIr +
βuIu)S and σ(βrIr + βuIu)S represent the inflow of new individuals

into the exposed class E and quarantined class Q respectively. The
parameters βr and βu are the transmission rate of reported and
unreported cases, respectively. We assume that reported indivi-
duals will participate in the infections with a lower rate than
those unreported because they are generally isolated at the hos-
pital or at home. However, they can transmit the infection to care-
givers or their entourage. Moreover, they may have first been
asymptomatic carriers contributing to the transmission of the
virus. To simplify the notation, we set βu = β and βr = ñβu = ñβ
where ñ∈ [0, 1]. The parameter ñ represents the infectivity of
the reported cases and for ñ = 1, the reported and unreported
have the same level of infectivity. Among the quarantined indivi-
duals, a fraction λ of individuals are effectively infected and moves
in the reported infectious class, Ir, after an average duration of iso-
lation, 1/θ, and a fraction 1− λ returns to the susceptible class
without being reported infectious. We assume that only a fraction
f of the individuals of exposed class becomes reported infectious
and enters to the class Ir at a rate μ where 1/μ represents the aver-
age length of the exposed period while the other fraction (1− f )
moves to the infectious unreported infectious class Iu at a rate μ.

With the above considerations, the model describing the
spread of COVID-19 takes the form:

dSc
dt

= m(t)Su − (1−m(t))Sc

dSu
dt

= (1−m(t))Sc −m(t)Su − b(ñIr + Iu)Su + u(1− l)Q

dE
dt

= (1− s)b(ñIr + Iu)Su − mE

dIr
dt

= mfE + ulQ− hrIr

dIu
dt

= m(1− f )E − huIu

dR
dt

= hrqIr + huIu

dQ
dt

= sb(ñIr + Iu)Su − uQ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

This model (1) is supplemented together with initial data
Sc(τ0), Su(τ0), E(τ0), Ir(τ0), Iu(τ0), R(τ0) and Q(τ0).

Let DIr(t), DIu(t), CIr(t) and CIu(t) denote the daily number of
reported cases, unreported one, the cumulative number of
reported cases and unreported cases respectively at any time t.

Fig. 1. A schematic of the model for COVID-19 transmission. In this figure, Su
represents the number of unconfined susceptible, Sc denotes the number of
confined susceptible, E depicts the number of exposed, Ir denotes the num-
ber of reported infectious, Iu represents the number of unreported infec-
tious or silent carriers, R denotes the number of recovered and Q denotes
the number of quarantined. The arrow shows the people moving between
the compartments.
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These quantities are obtained by solving the following equations:

dDIr(t)
dt

= mfE(t)+ ulQ(t)− DIr(t)

dDIu(t)
dt

= m(1− f )E(t)− DIu(t)

dCIr(t)
dt

= mfE(t)+ luQ(t)

dCIu(t)
dt

= m(1− f )E(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with initial conditions DIr(τ0), DIu(τ0), CIr(τ0) and CIu(τ0).

Basic reproduction number

The fundamental key concept in epidemiology is the basic repro-
duction number. Commonly denoted by R0, it is the expected
number of secondary cases produced by a typical infective indi-
vidual introduced into a completely susceptible population, in
the absence of any control measure [10, 11]. Mathematically,
R0 is the spectral radius of the next-generation matrix. The next-
generation matrix can be obtained by construction (cf. for
instance [12–14]). Using the method developed in [11], we obtain
explicit formula for R0 as follows:

R0 = [(1− s)f + sl]
ñbSu(0)

hr
+ (1− s)(1− f )

bSu(0)
hu

(3)

where βu = β and βr = ñβ. In the Appendix we give some details
about the derivation of R0.

The quantity Rr := [(1− s)f + sl]ñbSu(0)/hr represents
the average number of secondary infections produced by one
reported infective individual during its infectious period, 1/ηr;
Ru := (1− s)(1− f )bSu(0)/hu represents the average number
of secondary infections produced by one unreported infective
individual during its infectious period, 1/ηu.

To take into account the containment measures, the large-scale
testing, the social distancing and wearing masks measures, some
constant parameters such as f, σ, β and Su(0) will be replaced in
Equation (3) with the aforementioned time-dependent para-
meters. In this case, we can define the effective daily reproduction
number,R0(t) which measures the number of new infections pro-
duced by a single infected individual per day. This quantity is
obtained by solving the following equation:

R0(t)
dt

= [(1− s(t))f (t)+ s(t)l]
ñb(t)Su(t)

hr

+ (1− s(t))(1− f (t))
b(t)Su(t)

hu
−R0(t) (4)

with initial condition R0(0) = R0 defined in Equation (3).

Construction of the containment rate

To analyse the effectiveness of containment measures, we assume
that a fraction m(t) of susceptible individuals in the population is
confined at any time t. Furthermore, we introduce a parameter p
which indicates the maximum percentage of the population that
the government confines. This fraction should be greater than
the quantity 1− 1/R0 to be sure of its effectiveness [13, 15].
This parameter varies from country to country and can be set

in advance for a given country. Let τ0 denotes the starting date
of epidemic, τ1 represents the date at which a government decides
to apply the containment measures, τ2 denotes the date at which a
fraction p of the population is confined, τ3 stands for the date at
which the government decides to exit progressively the contain-
ment measures because either the restrictions take effect or
there are budget or social limitations and τf denotes the date for
the end of the containment measures. Now, we divide the con-
tainment rate m(t) into four phases:

Phase 0: period without containment measures (from date τ0
to τ1), then m(t) = 0.

Phase 1: period when containment is taking place until the gov-
ernment reaches its maximum containment effort (from date τ1 to
τ2). In this phase we assume that the functionm increases exponen-
tially and reach the value p at date τ2. It follows that m takes the
form m(t) = 1− exp (− a(t− τ1)) where a =−ln(1− p)/(τ2− τ1).

Phase 2: period where the maximum effort is maintained
(from date τ3 to τ4) and m(t) = p.

Phase 3: period at which the government decides to relax the con-
tainmentmeasures (fromdate τ3 to τf). This drop is linearly depending
on the time so that the value of m at date τf equals to 0. Then m is
described as follows:m(t) = p + b(t− τ3), where b =−p/(τf− τ3).

Model parameters

Before to go further, let us point out that in our paper, the values
of the parameters f, σ, μ, θ, τ0, τ3, τf, as well as the initial values
Su(τ0), Sc(τ0) and Ir(τ0) were chosen from expert opinions. The
values of the parameters τ2, λ, ñ, p, β, σ, ηr, ηu as well as the initial
values CIu(τ0), Q(τ0) and E(τ0) were unknown. However, it is pos-
sible to identify them from specific time data. The value of the
parameter q can be easily computed from current data. By setting
x = (τ2, λ, ñ, p, β, σ, ηr, ηu, Iu(τ0), Q(τ0), E(τ0), τ2), we estimated an
optimal value of x that fit with the data from France by minimis-
ing the following error function:

x2(x) =
∑n

l=1 (obs(tl)− sim(tl , x))
2

n
(5)

where n is the number of observed data, obs(tl) and sim(tl, x) are
the observed and calculated data at time tl respectively.

Chosen values: f, σ, μ, θ, τ0, τ3, τf, Su(τ0), Sc(τ0) and Ir(τ0)

Initial conditions: We started the simulations at the moment
where in France, the number of reported cases were identified
with 12 individuals, i.e. precisely on the date τ0 = 25 February.
Then Ir(τ0) = 12. The population of France is around 66 999 000
inhabitants [16], thus, we set Sc(τ0) =66 999 000. At that date,
there were no confined individuals, thus Sc(τ0) = 0.

Value of parameter f: Recall that, (1− f ) stands for the fraction
of exposed individuals that becomes unreported infectious and
corresponds to the proportion of asymptomatic or silent carriers
or mild infectious. (1 − f ) ranges from 17.9% to 86% [1, 17–20]
and some reviews therein [21]. The fractions of unreported indi-
viduals in these previous studies are derived from the number of
tests performed. Therefore, the current fraction may be seriously
underestimated. During the onset of COVID-19 in France, there
were very little screening tests. That’s why, we estimated that
1− f = 0.8 (i.e. f = 0.2). Furthermore, we make it vary in the
scenario 3 (effectiveness of the large-scale testing), as soon as
the number of tests increases.
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Value of parameter σ: The value of parameter σ was calibrated
to 0.2 so that σ = f. In scenario 3, we assume that f increases in the
same order as σ when the time evolves (see Fig. 2(c)), because
when the number of tests increases, the fraction of reported
cases increases and thus the fraction σ of susceptible unconfined
individuals that is quarantined increases with contact tracing.

Value of parameter τ1: The starting date of the containment
was fixed on 17 March, then τ1 = 17 March.

Value of parameter τ3: According to the announcement of
French government of 13 April, a gradual deconfinement started
on 11 May. So for model validation, we fixed τ3 = 11 May.

Value of parameter τf: We fixed the end date of containment
measures on 1 September.

Value of parameter μ: The mean incubation period 1/μ was
fixed to 5 days see [1, 22, 23].

Value of parameter θ: We considered 14 days to isolate the
quarantined individuals, therefore, 1/θ = 14 days.

Estimated values: τ2, λ, ñ, p, β, σ, ηr, ηu, Iu(τ0), Q(τ0), E(τ0), τ2
and q

By calibrating the model with the data corresponding to the
cumulated reported cases for France, we identified some values

of model parameters giving a good fit of the observed data
obtained in [24]. The parameter values and initial conditions esti-
mated are listed in Table 1.

Value of parameters τ2 and p: We estimate that the government
has successfully confined 93% of the population on the date 12
April, thus, τ2 = 12 April and p = 0.93. This value means that
93% of the population was confined on date τ2 equals to 12
April, thus Sc(τ2) = 62 300 700. In this case, 7% of the population
that remained active and we set Su(τ2) = 4 689 300. Note that this
number corresponds to approximately 15.78% of active population
in France which was 29 700 000 according to INSEE in 2017 [25].

Value of parameters ηr and ηu: By fitting with data from France, we
estimate that the mean duration of infectious period for unreported
individuals, 1/ηu = 4 days and for reported ones, 1/ηr = 10 days.

Value of parameters βr, βu and ñ: We estimated that the infect-
ivity of reported cases ñ equals to 0.40 compared to infectivity of
unreported which is 1. The transmission rate βu = β of unreported
individuals is estimated to 2.115 × 10−8/day, then the transmission
rate of reported individuals equals to βr = βñ = 0.846 × 10−8/day.

Value of parameter q: Since 1− q represents the fraction of
reported individuals that dies, thus

1− q = Cumulative number of death among the reported individuals
Cumulative number of reported individuals .

Fig. 2. Evolution over time of parameters m, σ, f, βr, βu and τ3 according to each scenario; the other parameters of the model are fixed as shown in Table 1: (a) for
scenario 1, only the parameter m is time dependent, f = σ = 0.2, βr = 0.846 × 10

−8, βu = 2.115 × 10
−8 and τ3 = 11 May for all time. (b) For scenario 2, f = σ = 0.2, βr =

0.846 × 10−8, βu = 2.115 × 10
−8 for all time, only the parameter m is time dependent for three different values of the date at which the containment measures

are relaxed, τ3, more precisely when τ3 takes the values 11 May, 01 and 30 June. (c) For scenario 3, we set τ3 =May 11, m, f and σ evolve over time, βr = 0.846 ×
10−8, βu = 2.115 × 10

−8. (d) For scenario 4, τ3 =11 May, f = σ = 0.2, m evolves as in (a), in addition, the transmission rate βr and βu evolve. (e) For scenario 5, τ3 =
11 May, f, σ, m evolve as in (c), moreover βr and βu evolve as in (d).
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From current data (31 July), we find 1− q = 30 254/186 573 =
0.1622. It follows that the disease-induced death rate of reported
individuals, (1 − q)ηr, equals to 0.1622 × 1/10 = 0.0162/day.
Furthermore, the fraction of reported individuals that becomes
recovered equals to q = 0.8378.

Value of parameters E(τ0), Q(τ0) and Iu(τ0): We estimate that at
date τ0, we have Q(τ0) = 36, Iu(τ0) = 50 and E(τ0) = 112.

Simulation experiments: application to data from France

Scenario 1: validation of model with data from France

Weselected formodel validation, the data obtained for daily reported
(DRIr) and cumulative reported (CRIr) cases for France see [24].
Some constants and parameters involved in the model are listed in
Table 1. The results of this scenario are illustrated in Figure 3.

Scenario 2: effectiveness of containment measures

The objective of this scenario is to analyse if the outbreak might
stop for different values of the date at which the containment

measures are relaxed, namely τ3. Then, the value of the latter is
assumed varying from 11 May, 1 and 30 June. The end date of
containment measures τf, is fixed to 1 September. The values of
the parameters used are listed in Table 1 except for the contain-
ment function m that varies (see Fig. 2(b)).

The results of this scenario are illustrated in Figure 4.

Scenario 3: effectiveness of the large-scale testing

To investigate the effectiveness of the large-scale test of detection
of infected individuals, the date at which the containment mea-
sures are relaxed, τ3, is fixed to 11 May; the end date of contain-
ment measures, τf, is fixed to 1 September. We assume that
between the dates τ3 and τf, the fraction of reported cases f
increases linearly and reach 200% of its initial value and the frac-
tion of susceptible individuals which is quarantined σ is also
increased linearly to reach 200% of its initial value (see Fig. 2
(c)), the initial values is estimated in scenario 1. The values of
the other parameters are listed in Table 1 except for the contain-
ment function m that varies (see Fig. 2(b)).

The results of this scenario are illustrated in Figure 5.

Table 1. List of parameters and their meaning and the parameter ranges for which the model was solved

Name Meaning Value

p Maximum fraction of the susceptible that a government can confine 0.93

f Fraction of Exposed that becomes reported infectious 0.4

ñ Infectivity of reported individuals 0.5

λ Fraction of quarantined individuals that becomes infectious 0.3

q Fraction of reported individuals that becomes recovered 0.83

σ Fraction of individuals which is quarantined with contact tracing 0.2

βr = ñβ Transmission rate of reported individuals 0.846 × 10−8

βu = β Transmission rate of unreported individuals 2.115 × 10−8

(1− q)ηr Disease-induced death rate of reported individuals 0.016

1/μ Average length of the exposed period 5

1/ηr Average length of infectious period of reported individuals 10

1/ηu Average length of infectious period of unreported individuals 4

1/θ Average length of the quarantine period 14

m(t) The fraction of confined susceptible at any time t [0− p], see Figure 2

τ0 Starting date of the epidemic 25 February

τ1 Starting date of the containment 17 March

τ2 Date at which a fraction p of the population is confined 12 April

τ3 Decision date of relaxation of the containment measures 11 May–28 June

τf End date of containment measures 01 September

Initial values Meaning Value

Sc(τ0) Initial confined susceptible population 0

Su(τ0) Initial unconfined susceptible population 66 990 000

E(τ0) Initial exposed population 112

Ir(τ0) Initial reported population 12

Iu(τ0) Initial unreported population 50

R(τ0) Initial recovered population 0

Q(τ0) Initial quarantined population 36
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Scenario 4: social distancing and/or wearing masks measures

To study the social distancing and/or wearing masks measures, the
date at which the containment measures are relaxed, τ3, was fixed to
11 May; the end date of containment measures, τf, is fixed to 1
September. We assume that between the dates τ3, and τf, the trans-
mission rate β decreases linearly to reach 75% of its initial value (see
Fig. 2(d)). The values of the other parameters are listed in Table 1
except for the containment function m that varies (see Fig. 2(b)).

The results of this scenario are illustrated in Figure 6.

Scenario 5: combined effects of large-scale testing and social
distancing measures

To test the combined effects of large-scale testing and social dis-
tancing social and/or wearing masks measures, we combine the
conditions of scenarios 1 and 2. The date at which the contain-
ment measures are relaxed, τ3, is fixed to 11 May; the end date
of containment measures, τf, is fixed to 1 September. Between
the dates τ3 and τf, we assume that f increases linearly to reach
200% of its initial value, σ increases linearly to reach 200% of
its initial value and β decreases of 75% of its initial value see
Figure 2(d) for these different variations of parameter values.

The results of this scenario are illustrated in Figure 7.

Discussion and conclusion

This model takes into account the measures of confinement,
distinguishing between confined individuals, quarantined indi-
viduals and isolated individuals. Many values were estimated
to fit the beginning of expansion of disease in France, other
were inferred from expert opinions, see Section ‘Model para-
meters’. The proportion (1 − f ) ranges from 17.9% to 86% [1,
17–20] and some reviews therein [21]. The lower value was
observed on board of the Diamond princess, i.e. in conditions
which are not representative of large-scale populations living
in larger surfaces. On the other hand, in [26] and in a WHO
report, it was estimated that between 80% and 86% of all infec-
tions were undocumented. Since this fraction is dependent on
the number of tests performed and since during the onset of
COVID-19 in France, there were fewer screening tests, we even-
tually chose f = 0.2.

As for f, the mean duration of infectious period is a debatable
point. In [27], the authors estimate that the asymptomatic indivi-
duals had median virus persistence duration of 8.87 days (95%
confidence interval 7.65–10.27). This duration varies also between
asymptomatic and symptomatic individuals [28], even when
mildly affected. By contrast, all severe cases were still tested posi-
tive at or beyond day 10 post-onset [29]. This longer virus persist-
ence in severe cases as compared to milder cases has been also

Fig. 3. Scenario 1: Validation of model with currently data from France. The date at which the containment measures are relaxed, τ3, was fixed to 11 May; the end
date of containment measures, τf, was fixed to 1 September. (a) The cumulative number of reported CIr and unreported CIu cases simulated, and observed data
CIrData. (b) The daily number of reported DIr and unreported DIu cases from the model and observed data DDataIr. (c) The confined and unconfined susceptible Sc
and Su. (d) The daily reproductive number R0. In this scenario, the values of the parameters were estimated and listed in Table 1 except for the containment
function m which varies between 0 and 1 (see Fig. 2(a)).
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demonstrated by [30] but not by all authors, see some reviews
therein [21]. Note also that in the literature, the estimate of the
mean duration of infectious period of reported individuals is
not always clear, since some authors include hospitalisation or
isolation period, others do not. Results vary between 2 and 8
days [26, 31, 32]. Our model implicitly takes into account a com-
bined effect of duration of infectivity and viral load, which results
in risk of transmission. Indeed, the mean duration of infectious
period estimated to be 10 days for reported individuals is coherent
with the estimation in [33] based on clinical, microbiologic, epi-
demiologic and clinical data. Since we estimate the infectivity of
the reported cases to be equal to 0.4, that of unreported cases
in term of duration of infectious period, it means that reported
individuals are infectious for 40% of their infectious period, i.e.
4 days. If the infectivity is interpreted in terms of viral load, it
means that 40% of the viral load excreted by the infectious
reported cases is infective. Such a link between duration of infec-
tious period and infectivity (i.e. interpreted in terms of viral load)
also holds in the literature except in [34] where the authors
observed no difference in viral load between asymptomatic and
symptomatic patients. In [35] the virus level in the asymptomatic
group was significantly lower than that in the symptomatic group
in the acute phase.

Figure 3 shows the adequacy of the model for predicting the
evolution of number of cases in the beginning of the crisis until
end of June. It also shows that as soon as confinement is reduced
or stopped, the daily reproduction number R0(t) value increases
again and a new wave of epidemics is to be expected as soon as its
value is higher than 1. As observed in Figure 4 (for longer-term
forecasting), such waves are expected to appear very shortly
after reduction of confinement, once the incubation period is
spent. These values will allow predicting the effectiveness of the
containment measures as well as risk and the intensity of possible
resurgences of the new waves of epidemic in France. Indeed, the
measures of confinement have a strong impact on the value of the
daily reproduction number R0(t). Figure 4 shows that, while it
was equal to nearly 5 in the beginning of the disease, before con-
finement, it decreased to about 0.5 as long as confinement of most
people takes place and increased to a lower value, between 2 and
2.5, that is about half its former value. But even if its value is
reduced, it remains higher than 1. It is also to note that, unexpect-
edly, its value was lower when end of confinement was earlier.
Figures 3 and 4 show that the current increase in the number
of cases could be expected as soon as containment was relaxed
from mid-May to September. However, the number of cases are
expected to decrease if a higher proportion of infected people

Fig. 4. Scenario 2: Longer-term forecasting of epidemic spreading according to different values of the date at which the containment measures are relaxed, τ3 that
varies between 11 May and 01 and 30 June. The end date of containment measures τf was fixed to 1 September. (a) The cumulative number of reported CIr cases
simulated. (b) The daily number of reported DIr cases from the model. (c) The number of confined susceptible Sc. (d) The daily (effective) reproductive number R0.
In this scenario, the values of the parameters were estimated and listed in Table 1 except for the containment function m which varies between 0 and 1 for different
values of τ3 (see Fig. 2(b)).
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are detected and confined, which is currently the case. Delaying
the very starting date of deconfinement to 30 June would have
resulted in a later and higher wave but not as late as could be
expected for a starting date to 11 May. All French people are
expected to be either reported or unreported infected individuals
at the end of 2020, i.e. before expected development of vaccines.
However, some of those values may change with evolution of
measures of prevention such as social distancing and/or wearing
masks, large-scale testing, treatment of the disease.

Social distancing and wearing masks measures directly influ-
ence the transmission rate which is expected to dramatically
decrease with the increasing tendency to wear masks. Its effect
was investigated in scenario 3 where the transmission rate was
assumed to decrease linearly to reach the value 75% of its initial
one as shown in Figure 2(d). The results of this scenario are
shown in Figure 5. The transmission rate may be dramatically
decreased. But the results show that this measure alone is insuffi-
cient to eliminate the disease.

The effectiveness of the large-scale test of detection of infected
individuals was analysed and shown in Figure 6. The fraction of
reported cases, from date τ3 to τf, the fraction of reported cases f
was assumed increase linearly to reach the value 200% of its initial

one and the fraction of susceptible individuals which is quarantined
σ was also increased linearly to reach the value 200% of its initial
one (see Figs 2(b) and (c)). These values may be observed by track-
ing all former contacts of any newly reported case, and systematic-
ally testing them. As in the former scenario dates of relaxation and
end of containment measures were fixed to 11 May and 1
September respectively. Results show that this measure without fur-
ther action is also insufficient to control the outbreak.

The combined measures of large-scale testing and social distan-
cing and/or wearing masks measures was studied in scenario
5. The transmission rates (reported and unreported individuals)
were assumed to decrease from 75% to date τ2 to τf (see Fig. 2
(d)). Figure 7 shows the effectiveness of these combined measures
and the potential of such a strategy. In particular, it shows that
predicted data are compatible with the current situation with no
evidence yet of a second wave. This result also shows that protect-
ive measures must be maintained for a long term before the
hypothesis of a second wave may be discarded.

In the absence of any control measure, the basic reproduction
number R0 is equal to 4.8739. Most of this value is due to the
weight of transmission by unreported individuals (Ru = 3.6271)
and the weight of transmission by reported cases accounts for

Fig. 5. Scenario 3: Longer-term forecasting of epidemic spreading in case of large-scale tests of detection on infected individuals. τ3 was fixed to 11 May; τf was
fixed to 01 September. Between the dates τ3 and τf, the parameter f was assumed to increase linearly to reach 200% of its initial value, σ increased linearly to reach
200% of its initial value (see Fig. 2(c)). The values of the other parameters are listed in Table 1 except for m that varies (see Fig. 2(b)). (a) The cumulative number of
simulated reported CIr and unreported CIu cases and observed data CIrData. (b) The daily number of simulated reported DIr and unreported DIu cases and observed
data DDataIr. (c) The number of simulated confined and unconfined susceptible Sc and Su. (d) The daily reproductive number R0.
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much less (Rr = 1.2468). These values show that the major
number of secondary infections is produced by the unreported
individuals. With increasing use of appropriate tests, reported indi-
viduals will be more precisely diagnosed, thus the fraction of
reported cases f will increase and thus the importance of Rr in
the total value of R0. Since the infectivity of reported individuals
was estimated at 0.4 compared to infectivity of unreported the
increase inRr will be very small showing the importance of detect-
ing infectious individuals; the evolution over time of the effective
reproductive number R0(t) and effective weight of transmission
Rr(t) and Ru(t) are shown in Figure 7(d). Therefore, the reported
individuals will have a lower propensity to transmit the virus.
Through stronger measures of prevention, the probability of con-
taminating other people will be lower.

With the confinement measures, the minimal percentage
(critical fraction) of susceptible individuals that should be con-
fined to eliminate the COVID-19 equals to 1− 1/R0 (see for
instance [13, 15]). By confining more susceptible individuals,
we increase the kinetics of elimination of the disease. By fitting
the model with the French data, we estimated this fraction to

p = 93%. This value belongs to the critical interval, namely
]1− 1/R0, 1] ≃ ]0.8, 1].

By analysing the results of simulations, we can conclude that
the containment measures appear to have slowed the growth of
the COVID-19 outbreak. Our model predicts that a second big
wave of the epidemic may not be avoided if the situation remains
unchanged and if the French government does not maintain the
current efforts on large-scale tests, obligation of wearing masks
inside and in some cases outside and other prophylactic measures.
However, it also shows that these measures are efficient to avoid
such a risk, thus preserving public health and avoiding a new con-
finement and all its terrible consequences, see Figures 3 and 4.
While if no measures were implemented, even only one infected
individual in the population would result in a new wave of infec-
tions and a new period of confinement. Some obligations will suc-
ceed in avoiding a second wave of COVID-19.

In this paper, we formulated a new model to describe the
spread of COVID-19 to understand the effectiveness of the con-
tainment and quarantine measures. It is able to reproduce
observed data from France and probably other countries.

Fig. 6. Scenario 4: Longer-term forecasting of epidemic spreading in case of the social distancing and wearing masks measures. τ3 was fixed to 11 May; τf was fixed
to 01 September. Between the dates τ3 and τf, the parameter β decreases of 75% of its initial value (see Fig. 2(d)). The values of the other parameters are listed in
Table 1 except for m that varies (see Fig. 2(b)). (a) The cumulative number of simulated reported CIr and unreported CIu cases and observed data CIrData. (b) The
daily number of simulated reported DIr and unreported DIu cases and observed data DDataIr. (c) The number of simulated confined and unconfined susceptible Sc
and Su. (d) The daily reproductive number R0.
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Appendix

Some details about the derivation of R0

In order to define R0, for model (1), we begin to find the disease-free
equilibrium point by letting the compartments Sc, Q, E, Ir, Iu, and R be zero
and Su = Su(0).

Let F (Ir, Iu, E, Q) denotes the inflow of new individuals into the infected
classes Ir, Iu, E and Q

F = (0, 0, (1− s)b(ñIr + Iu)Su, sb(ñIr + Iu)Su)
T

and V(Ir, Iu, E, Q) denotes all other flows within and out of the infected classes,

V =
−mfE− ulQ+ hrIr
−m(1− f )E + huIu

mE
uQ

⎡
⎢⎢⎣

⎤
⎥⎥⎦.

Let F = DF and V = DV be the Jacobian matrices of the maps V and F ,
respectively, evaluated at the disease free equilibrium:

F =
0 0 0 0
0 0 0 0

(1− s)bñSu(0) (1− s)bSu(0) 0 0
sbñSu(0) sbSu(0) 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦andV

=
hr 0 −mf −ul
0 hu −m(1− f ) 0
0 0 m 0
0 0 0 u

⎡
⎢⎢⎣

⎤
⎥⎥⎦.
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A straightforward computation shows that

FV−1 =

0 0 0 0
0 0 0 0

(1− s)bñSu(0)
hr

(1− s)bSu(0)
hu

(1− s)f
bñSu(0)

hr
+ (1− s)(1− f )

bSu(0)
hu

(1− s)l
bñSu(0)

hr

sbñSu(0)
hr

sbSu(0)
hu

sf
bñSu(0)

hr
+ s(1− f )

bSu(0)
hu

sl
bñSu(0)

hr

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Following [11], the matrix FV−1 is well defined, and is the next-generation matrix and R0 is the spectral radius of FV−1.
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