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Abstract
We address a core partition regularity problem in Ramsey theory by proving that every finite coloring of the positive
integers contains monochromatic Pythagorean pairs (i.e., 𝑥, 𝑦 ∈ N such that 𝑥2 ± 𝑦2 = 𝑧2 for some 𝑧 ∈ N). We also
show that partitions generated by level sets of multiplicative functions taking finitely many values always contain
Pythagorean triples. Our proofs combine known Gowers uniformity properties of aperiodic multiplicative functions
with a novel and rather flexible approach based on concentration estimates of multiplicative functions.
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1. Introduction and main results

1.1. Introduction

A fundamental problem in Ramsey theory is to determine which patterns must appear in a single cell
for every partition of N = {1, 2, . . . } into finitely many cells. A famous example is provided by an
early theorem of Schur [44], which states that every finite partition of N has a solution to the equation
𝑥 + 𝑦 = 𝑧 where all variables 𝑥, 𝑦, 𝑧 belong to the same cell. Equations (and systems of equations) that
satisfy this property are called partition regular.

In 1933, Rado significantly extended Schur’s theorem by characterizing all systems of linear equations
that are partition regular [41]. Polynomial equations, however, have proven to be much more difficult to
tackle. In particular, the following notorious problem of Erdős and Graham [23, 24] remains unsolved.

Problem. Determine whether the equation 𝑥2 + 𝑦2 = 𝑧2 is partition regular.

Integer solutions to the equation 𝑥2 + 𝑦2 = 𝑧2 are known as Pythagorean triples, so the problem is
colloquially referred to as the partition regularity problem for Pythagorean triples. Graham in [23] places
the origin of the problem in the late 70’s and offered $250 for its solution, noting that ‘There is actually
very little data (in either direction) to know which way to guess’. While this was perhaps true a decade
ago, in the last few years there have been some positive developments. The case where one allows only
partitions of N into two sets was verified in 2016 with the help of a computer search [31]; this endeavor
was hailed as the ‘longest mathematical proof’ at the time, occupying 200 terabytes of data [36].

Pioneering work in nonlinear partition regularity goes back to the famous theorems of Furstenberg
[22] and Sárközy [42], culminating in the influential polynomial Szemerédi theorem of Bergelson and
Leibman [6]. While these results apply only to shift-invariant configurations, there are now also several
non-shift invariant configurations that are known to be or not to be partition regular. Bergelson showed
in [3] that the equation 𝑥2 + 𝑦 = 𝑧 is partition regular, and the equation 𝑥2 + 𝑦 = 𝑧2 was shown to be
partition regular by the third author in [39]. However, the equation 𝑥 + 𝑦 = 𝑧2 was shown not to be
partition regular by Csikvári, Gyarmati and Sárközy in [12] (however, it is partition regular if we restrict
to 2-colorings [28, 40]). Resolving an old conjecture, Khalfalah and Szemerédi [33] showed that the
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equation 𝑥+𝑦 = 𝑧2 is partition regular if we only require 𝑥, 𝑦 to be of the same color and allow any 𝑧 ∈ N.
Other partition regularity results of similar flavor can be found in [1, 2, 5, 14, 15, 16, 37]. Lastly, we
remark that in the case of more variables, a result by Chow, Lindqvist and Prendiville [11] establishes
that the equation 𝑥2

1 + 𝑥
2
2 + 𝑥

2
3 + 𝑥

2
4 = 𝑥2

5 is partition regular (see also [8, 10] for related results).
Despite these developments, even the question of whether in any finite partition of N there is a

Pythagorean triple with two terms in the same cell was still open. We will say informally that (𝑥, 𝑦) ∈ N2

is a Pythagorean pair if there exists 𝑧 ∈ N such that either

𝑥2 + 𝑦2 = 𝑧2 or 𝑥2 + 𝑧2 = 𝑦2.

An attempt to address the question of whether Pythagorean pairs are partition regular was made by
the first author and Host in [21], where an approach using Gowers uniformity properties and related
decomposition results of multiplicative functions was proposed. This approach covered pairs (𝑥, 𝑦)
satisfying, say, the equations 16𝑥2 + 9𝑦2 = 𝑧2 or 𝑥2 + 𝑦2 − 𝑥𝑦 = 𝑧2, but missed the case of Pythagorean
pairs for reasons that we will explain later on. Extending these ideas, Sun in [45, 46] established partition
regularity in (𝑥, 𝑦) for the equation 𝑥2 − 𝑦2 = 𝑧2, when N is replaced by the ring of integers of a larger
number field, such as the Gaussian integers. However, the methods used there do not apply to N.

In the present paper, we develop a general approach to partition regularity questions of pairs,
by combining the method of [21] together with a new input related to concentration estimates of
multiplicative functions. As a consequence, we show (among other things) that Pythagorean pairs (and
related pairs) are partition regular (see Theorem 1.1) and density regular (see Theorem 1.2). We also
show that partitions generated by level sets of multiplicative functions taking finitely many values
always contain Pythagorean triples (see Theorem 1.5). The exact statements are given in the following
subsections, and our proof strategy and comparison with the previous approach in [21] is described in
Section 2.

1.2. Partition and density regularity of Pythagorean pairs

Our first goal is to prove partition regularity and density regularity results for Pythagorean pairs, a case
covered by taking 𝑎 = 𝑏 = 𝑐 = 1 in the next two results. Our results also answer the first part of Question
3 from [21] and Problem 34 from [18].

Theorem 1.1. Let 𝑎, 𝑏, 𝑐 ∈ N be squares. Then for every finite coloring of N, there exist

1. distinct 𝑥, 𝑦 ∈ N with the same color and 𝑧 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2.
2. distinct 𝑦, 𝑧 ∈ N with the same color and 𝑥 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2.

Remarks. ◦ In [21, Corollary 2.8], part (1) was covered under the additional restriction that 𝑎 + 𝑏 is
also a square, thus missing the case of Pythagorean pairs.

◦ In fact, Theorem 1.2 implies that all four elements 𝑥, 𝑦 and 𝑦′, 𝑧′ in part (1) and (2), respectively,
can be taken to be of the same color.

◦ We can also extend [21, Theorem 2.7], covering more general homogeneous equations of the form
𝑝(𝑥, 𝑦, 𝑧) = 𝑎𝑥2 +𝑏𝑦2 + 𝑐𝑧2 +𝑑𝑥𝑦+ 𝑒𝑥𝑧+ 𝑓 𝑦𝑧 = 0, where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ Z. Our method allows to show
that if 𝑒2 − 4𝑎𝑐 and 𝑓 2 − 4𝑏𝑐 are nonzero squares, then for every finite coloring of the integers, there
exist distinct monochromatic 𝑥, 𝑦 and an integer z such that 𝑝(𝑥, 𝑦, 𝑧) = 0.1 In contrast, [21, Theorem
2.7] assumes in addition that (𝑒 + 𝑓 )2 − 4𝑐(𝑎 + 𝑏 + 𝑑) is a nonzero square.

◦ The assumption that 𝑎, 𝑏, 𝑐 ∈ N are all squares is not sufficient for partition regularity of the
equation 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2. For example, the equation 𝑥2 + 𝑦2 = 4𝑧2 is not partition regular, so in this
case, our result is optimal, as only pairs and not triples can be partition regular. See Section 1.6 for more
details and conjectural necessary and sufficient conditions for partition regularity of such equations.

1Arguing as in Step 2 of [21, Appendix C], we get parametrizations for 𝑥, 𝑦 of the form covered in Section 1.5.
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We establish a stronger density version of these partition regularity results. It is clear that the set of
odd numbers, which has additive density 1/2, does not contain integers 𝑥, 𝑦 such that 𝑥2 + 𝑦2 = 𝑧2 for
some 𝑧 ∈ N, ruling out a potential density version using additive density. However, since the equation
𝑥2 + 𝑦2 = 𝑧2 is homogeneous, the set of solutions is invariant under dilations, and using a dilation-
invariant notion of density turns out to be more fruitful.

To this end, we recall some standard notions. A multiplicative Følner sequence in N is a sequence
Φ = (Φ𝐾 )∞𝐾=1 of finite subsets of N asymptotically invariant under dilation, in the sense that

∀𝑥 ∈ N, lim
𝐾→∞

��Φ𝐾 ∩ (𝑥 · Φ𝐾 )
��

|Φ𝐾 | = 1.

An example of a multiplicative Følner sequence is given by (2.11). The upper multiplicative density of
a set Λ ⊂ N with respect to a multiplicative Følner sequence Φ = (Φ𝐾 )∞𝐾=1 is the quantity

𝑑Φ(Λ) := lim sup
𝐾→∞

��Φ𝐾 ∩ Λ
��

|Φ𝐾 | ,

and we write 𝑑Φ(Λ) if the previous limit exists. We say that Λ ⊂ N has positive multiplicative density
(or, more precisely, positive upper Banach density with respect to multiplication) if 𝑑Φ(Λ) > 0 for some
multiplicative Følner sequence Φ. A finite coloring of N always contains a monochromatic cell with
positive multiplicative density; thus, the next result strengthens Theorem 1.1.
Theorem 1.2. Let 𝑎, 𝑏, 𝑐 ∈ N be squares. Then for every Λ ⊂ N with positive multiplicative density,
there exist
1. distinct 𝑥, 𝑦 ∈ Λ and 𝑧 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2.
2. distinct 𝑦, 𝑧 ∈ Λ and 𝑥 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2.
Remarks. ◦ In fact, we prove the following stronger property: If 𝑑Φ(Λ) > 0, then there exist a sub-
sequence Ψ of Φ and distinct 𝑥, 𝑦 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2 for some 𝑧 ∈ N, and

𝑑Ψ
(
(𝑥−1Λ) ∩ (𝑦−1Λ)

)
> 0.

A similar statement also holds with the roles of x and z reversed.
◦ If 𝑎 + 𝑏 ≠ 𝑐, it is not true that every Λ ⊂ N with positive multiplicative density contains 𝑥, 𝑦, 𝑧

such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2. To see this when 𝑎 = 𝑏 = 𝑐 = 1 (the argument is similar whenever
𝑎 + 𝑏 ≠ 𝑐), let Φ be any multiplicative Følner sequence and 𝛼 be an irrational such that the sequence
(𝑛2𝛼) is equidistributed (mod 1) with respect to a subsequence Φ′ of Φ (such an 𝛼 and Φ′ exist by
the ergodicity of the multiplicative action 𝑇𝑛𝑥 = 𝑛2𝑥, 𝑛 ∈ N, defined on T with its Haar measure). Let
Λ := {𝑛 ∈ N : {𝑛2𝛼} ∈ [1/5, 2/5)}, which has positive upper density with respect to Φ′. If 𝑥, 𝑦, 𝑧 ∈ Λ,
then {(𝑥2 + 𝑦2)𝛼} ∈ [2/5, 4/5) and {𝑧2𝛼} ∈ [1/5, 2/5); hence, we cannot have 𝑥2 + 𝑦2 = 𝑧2. This
example was shown to us by V. Bergelson.

We remark that the previous results also resolve the first part of Problem 3 in [21] and also Problem
6 in [21]. The latter implies that the starting point in Sárközy’s theorem [43] (or the variant in [33]
dealing with the equation 𝑥 + 𝑦 = 𝑛2) can be taken to be a square, as the following result shows.
Corollary 1.3. For every finite coloring of N, there exist
1. distinct 𝑚, 𝑛 ∈ N such that the integers 𝑚2 and 𝑚2 + 𝑛2 have the same color.
2. distinct 𝑚, 𝑛 ∈ N such that the integers 𝑚2 and 𝑛2 − 𝑚2 have the same color.

To prove part (1), let 𝐶1, . . . , 𝐶𝑘 be a coloring of N. Using part (2) of Theorem 1.1 for the coloring
𝐶 ′
𝑖 := {𝑛 ∈ N : 𝑛2 ∈ 𝐶𝑖}, 𝑖 = 1, . . . , 𝑘 , we deduce that there exist 𝑖0 ∈ {1, . . . , 𝑘} and 𝑥, 𝑧 ∈ 𝐶 ′

𝑖0
such

that 𝑥2 + 𝑦2 = 𝑧2. Then 𝑥2, 𝑧2 ∈ 𝐶𝑖0 . Letting 𝑚 := 𝑥 and 𝑛 := 𝑦, we get that 𝑚2, 𝑚2 + 𝑛2 ∈ 𝐶𝑖0 . The proof
of part (2) is similar and uses part (1) of Theorem 1.1.
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A coloring 𝐶1, . . . , 𝐶𝑘 of the squares induces a coloring 𝐶 ′
1, . . . , 𝐶

′
𝑘 of N in the natural way:

𝐶 ′
𝑖 := {𝑛 ∈ N : 𝑛2 ∈ 𝐶𝑖}, 𝑖 = 1, . . . , 𝑘 . Applying Theorem 1.1 for the induced coloring, we deduce the

following result.
Corollary 1.4. For every finite coloring of the squares, there exist
1. distinct squares 𝑥, 𝑦 with the same color such that 𝑥 + 𝑦 is a square.
2. distinct squares 𝑥, 𝑦 with the same color such that 𝑥 − 𝑦 is a square.

1.3. Pythagorean triples on level sets of multiplicative functions

Our second objective is to lend support to the hypothesis that Pythagorean triples are partition regular
by proving that the level sets of multiplicative functions that take finitely many values always include
Pythagorean triples. Since the equation 𝑥2 + 𝑦2 = 𝑧2 is homogeneous, one might expect that a presumed
counterexample to partition regularity would have ‘multiplicative structure’, so Theorem 1.5 below
addresses the most obvious possibilities. We also remark that Rado’s theorem implies that a given linear
system of equations is partition regular as soon as it has monochromatic solutions in every coloring
realized using a (finitely valued) completely multiplicative function; but of course this result does not
apply to the Pythagorean equation.
Theorem 1.5. Let 𝑓 : N → S1 be a completely multiplicative function that takes finitely many values.
Then there exist distinct 𝑥, 𝑦, 𝑧 ∈ N such that

𝑥2 + 𝑦2 = 𝑧2 and 𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓 (𝑧) = 1.

Remarks. ◦ There is nothing special about the value 1 in Theorem 1.5. If 𝜁 ∈ S1 is any other number
in the range of f, then since the equation 𝑥2 + 𝑦2 = 𝑧2 is invariant under dilations of the variables 𝑥, 𝑦, 𝑧,
we get that there exist distinct 𝑥, 𝑦, 𝑧 ∈ N, such that

𝑥2 + 𝑦2 = 𝑧2 and 𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓 (𝑧) = 𝜁 .

◦ With a bit more effort, we can extend Theorem 1.5 to cover more general equations of the form

𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2, (1.1)

where 𝑎, 𝑏, 𝑐 ∈ N are squares and we have either 𝑎 = 𝑐, or 𝑏 = 𝑐, or 𝑎 + 𝑏 = 𝑐. We outline the additional
steps needed to be taken to prove such a result in Section 8.3. Note that having one of these three
identities satisfied is a necessary condition for the partition regularity of (1.1). For more details and
related problems, see the discussion in Section 1.6.

Related linear equations 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 on the level sets of completely multiplicative functions
𝑓 : N → {−1, 1} have been studied in the works of Brüdern [9] and more recently by de la Bretèche
and Granville [7]. One consequence of such results [7, Corollary 2] is that the number of Pythagorean
triples (𝑥, 𝑦, 𝑧) modulo any prime 𝑝 ≥ 3; that is, solutions to 𝑥 + 𝑦 = 𝑧, where 𝑥, 𝑦, 𝑧 ≤ 𝑁 < 𝑝 are
quadratic residues, is at least 1

2 (𝑘
′ + 𝑜𝑁→∞(1))𝑁2, where 𝑘 ′ = .005044... is a sharp constant.

1.4. Parametric reformulation of the main results

To prove our main results, it is convenient to restate them using solutions of (1.1) in parametric form.
Our assumptions give that 𝑎 = 𝑎2

0, 𝑏 = 𝑏2
0, 𝑐 = 𝑐2

0 for some 𝑎0, 𝑏0, 𝑐0 ∈ N. Then a simple computation
shows that the following are solutions of 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2:

𝑥 = 𝑘 ℓ1 (𝑚2 − 𝑛2), 𝑦 = 𝑘 ℓ2 𝑚𝑛, 𝑧 = 𝑘 ℓ3 (𝑚2 + 𝑛2), 𝑚, 𝑛 ∈ N,

where ℓ1 := 𝑎0𝑏𝑐, ℓ2 := 2𝑎𝑏0𝑐, ℓ3 := 𝑎𝑏𝑐0.
So in order to prove Theorem 1.2, it suffices to establish the following result.
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Theorem 1.6. Suppose that Λ ⊂ N satisfies 𝑑Φ(Λ) > 0 for some multiplicative Følner sequence Φ.
Then for every ℓ, ℓ′ ∈ N, there exist

1. 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛 such that ℓ (𝑚2 − 𝑛2) and ℓ′𝑚𝑛 are distinct and

𝑑Φ
(
(ℓ (𝑚2 − 𝑛2))−1Λ ∩ (ℓ′𝑚𝑛)−1Λ

)
> 0.

2. 𝑚, 𝑛 ∈ N such that ℓ (𝑚2 + 𝑛2) and ℓ′𝑚𝑛 are distinct and

𝑑Φ
(
(ℓ (𝑚2 + 𝑛2))−1Λ ∩ (ℓ′𝑚𝑛)−1Λ

)
> 0.

Remark. Since 2(𝑚2 + 𝑛2) = (𝑚 + 𝑛)2 + (𝑚 − 𝑛)2 and 4𝑚𝑛 = (𝑚 + 𝑛)2 − (𝑚 − 𝑛)2, applying (2) with
2ℓ in place of ℓ and 4ℓ′ in place of ℓ′, we can add

(iii) 𝑚, 𝑛 ∈ N such that ℓ (𝑚2 + 𝑛2) and ℓ′ (𝑚2 − 𝑛2) are distinct and

𝑑Φ
(
(ℓ (𝑚2 + 𝑛2))−1Λ ∩ (ℓ′ (𝑚2 − 𝑛2))−1Λ

)
> 0.

In order to prove Theorem 1.5, it suffices to establish the following result.

Theorem 1.7. Let 𝑓 : N → S1 be a completely multiplicative function that takes finitely many values.
Then there exist 𝑘, 𝑚, 𝑛 ∈ N, with 𝑚 > 𝑛, such that the integers 𝑚2 − 𝑛2, 2𝑚𝑛, 𝑚2 + 𝑛2 are distinct and

𝑓 (𝑘 (𝑚2 − 𝑛2)) = 𝑓 (𝑘 2𝑚𝑛) = 𝑓 (𝑘 (𝑚2 + 𝑛2)) = 1. (1.2)

1.5. Other results

Our methodology is flexible enough to allow us to handle a variety of other dilation-invariant pairs. We
record a few cases next.

1.5.1. A question from [16]
The next result is related to [16, Question 7.1]. It is only here that we use logarithmic averages

E
log
𝑚,𝑛∈[𝑁 ] :=

1
(log 𝑁)2

∑
𝑚,𝑛∈[𝑁 ]

1
𝑚𝑛

in order to have access to a result from [47].

Theorem 1.8. Suppose that Λ ⊂ N satisfies 𝑑Φ(Λ) > 0 for some multiplicative Følner sequence Φ.
Then

lim inf
𝑁→∞

E
log
𝑚,𝑛∈[𝑁 ] 𝑑Φ((𝑛

2 + 𝑛)−1Λ ∩ (𝑚2)−1Λ) > 0.

Remark. Our method also implies the following ergodic version of the previous result, as posed in [16],
using Cesàro instead of logarithmic averages: If (𝑇𝑔)𝑔∈N is a measure-preserving action of (N,×) on a
probability space (𝑋, 𝜇) and 𝐴 ⊂ 𝑋 is measurable with 𝜇(𝐴) > 0, then

lim inf
𝑁→∞

E
log
𝑚,𝑛∈[𝑁 ] 𝜇(𝑇

−1
𝑛2+𝑛𝐴 ∩ 𝑇−1

𝑚2 𝐴) > 0.

This follows from property (6.16) that we prove below.

Our argument also allows us to replace 𝑛2 + 𝑛 and 𝑚2 by 𝑛2 + 𝑎𝑛 and 𝑚𝑟 , respectively, where 𝑟 ∈ N
and a is a nonzero integer. The proof of Theorem 1.8 follows closely the argument used to prove part
(2) of Theorem 2.2. We will outline this argument in Section 6.2.
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1.5.2. General linear forms
We can also prove variants of Theorem 1.6 that cover more general patterns of the form

(𝑘 𝐿1 (𝑚, 𝑛) · 𝐿2 (𝑚, 𝑛), 𝑘 𝐿3 (𝑚, 𝑛) · 𝐿4 (𝑚, 𝑛)),

where 𝐿𝑖 (𝑚, 𝑛) = 𝑎𝑖𝑚 + 𝑏𝑖𝑛 for some 𝑎𝑖 ∈ N, 𝑏𝑖 ∈ Z, 𝑖 = 1, 2, 3, 4, and at least one of the forms, say
𝐿4 (𝑚, 𝑛), is not a rational multiple of the others.

Suppose we want to show, under the previous assumptions, that if Λ ⊂ Z satisfies 𝑑Φ(Λ) > 0 for
some multiplicative Følner sequence Φ, then there exist 𝑚, 𝑛 ∈ Z such that 𝐿1 (𝑚, 𝑛) · 𝐿2 (𝑚, 𝑛) and
𝐿3 (𝑚, 𝑛) · 𝐿4 (𝑚, 𝑛) are distinct integers and satisfy

𝑑Φ
(
(𝐿1 (𝑚, 𝑛) · 𝐿2 (𝑚, 𝑛))−1Λ ∩ (𝐿3 (𝑚, 𝑛) · 𝐿4 (𝑚, 𝑛))−1Λ

)
> 0.

Without loss of generality, we can assume that 𝑏4 ≠ 0. By making the substitution 𝑚 ↦→ 𝑏4 𝑚 and
𝑛 ↦→ 𝑛 − 𝑎4 𝑚 (an operation that preserves our assumptions about the forms 𝐿𝑖), we can assume that
𝑎4 = 0. Since the form 𝐿4 is not a rational multiple of 𝐿𝑖 for 𝑖 = 1, 2, 3, we have 𝑎𝑖 ≠ 0 for 𝑖 = 1, 2, 3.
We do another substitution 𝑛 ↦→ 𝑎1 𝑎2 𝑎3 𝑛. We then factor out 𝑎𝑖 from the linear form 𝐿𝑖 for 𝑖 = 1, 2, 3.
We see that it is sufficient to consider the case where the 𝐿𝑖 are integer multiples of forms satisfying
𝑎1 = 𝑎2 = 𝑎3 = 1 and 𝑎4 = 0, 𝑏4 ≠ 0. Making a last substitution 𝑚 ↦→ 𝑚 − 𝑏3 𝑛, we get that it suffices
to prove that

𝑑Φ
(
(ℓ (𝑚 + 𝑎𝑛) · (𝑚 + 𝑏𝑛))−1Λ ∩ (ℓ′𝑚 𝑛)−1Λ

)
> 0

whenever ℓ, ℓ′ ∈ N and 𝑎, 𝑏 ∈ Z. This case can be covered by repeating the argument used to prove
Theorem 1.6 (which covers the case 𝑎 = 1, 𝑏 = −1) without any essential change.

1.5.3. More general expressions and averages
The methods used to establish part (2) of Theorem 1.6, would also allow to cover patterns of the form

(
𝑘 (𝑚2 + 𝑛2)𝑟

𝑙∏
𝑖=1

𝐿𝑖 (𝑚, 𝑛), 𝑘
𝑙′∏
𝑖=1

𝐿 ′
𝑖 (𝑚, 𝑛)

)
,

where 𝑘 ∈ N, 𝑙, 𝑙 ′, 𝑟 ∈ Z+ are such that |𝑙 | + |𝑙 ′ | > 0,2 and at least one of the linear forms 𝐿𝑖 , 𝐿 ′
𝑖 is not a

rational multiple of the others. It should also be possible to cover variants of Theorem 2.2 below in which
the averages over squares E𝑚,𝑛∈[𝑁 ] are replaced by averages over discs (i.e., E𝑚2+𝑛2≤𝑁 ). However, we
do not pursue these directions here.

1.6. Further directions

Our approach opens the way for studying several other compelling partition regularity problems that
were previously considered intractable. We note here some promising directions.

A result of Rado [41] implies that if 𝑎, 𝑏, 𝑐 ∈ N, then the linear equation 𝑎𝑥 + 𝑏𝑦 = 𝑐𝑧 is partition
regular if and only if either 𝑎, 𝑏, or 𝑎 + 𝑏 equals c, in which case we say that the triple (𝑎, 𝑏, 𝑐) satisfies
Rado’s condition. It follows that a necessary condition for the partition regularity of the equation (1.1)
is that the triple (𝑎, 𝑏, 𝑐) satisfies Rado’s condition. Perhaps this condition is also sufficient, but very
little is known in this direction; in fact, there is no triple (𝑎, 𝑏, 𝑐) for which the partition regularity
of (1.1) is currently known. We state a related problem of intermediate difficulty along the lines of
Theorem 1.5.

2The case 𝑙 = 𝑙′ = 0 is covered in [16, Theorem 1.5].
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Problem 1. Suppose that the triple (𝑎, 𝑏, 𝑐) satisfies Rado’s condition. Then for any completely multi-
plicative function 𝑓 : N→ S1 taking finitely many values, there exist distinct 𝑥, 𝑦, 𝑧 ∈ N, such that

𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2 and 𝑓 (𝑥) = 𝑓 (𝑦) = 𝑓 (𝑧) = 1.

Theorem 1.5 solves this problem when 𝑎 = 𝑏 = 𝑐 = 1, and as we mentioned in the second remark
following the theorem, a similar argument applies to triples that satisfy Rado’s condition and consist of
squares. It would be interesting to solve Problem 1 for some other triples such as (1, 1, 2) and (1, 2, 1).
The first one corresponds to the equation

𝑥2 + 𝑦2 = 2𝑧2,

which was conjectured to be partition regular by Gyarmati and Ruzsa [29] and has parametric solutions
of the form

𝑥 = 𝑘 (𝑚2 − 𝑛2 + 2𝑚𝑛), 𝑦 = 𝑘 (𝑚2 − 𝑛2 − 2𝑚𝑛), 𝑧 = 𝑘 (𝑚2 + 𝑛2).

The second one corresponds to the equation

𝑥2 + 2𝑦2 = 𝑧2

with parametric solutions of the form

𝑥 = 𝑘 (𝑚2 − 2𝑛2), 𝑦 = 𝑘 (2𝑚𝑛), 𝑧 = 𝑘 (𝑚2 + 2𝑛2).

Both parametrizations involve at least two quadratic forms that do not factor into products of linear
forms. This is a problem for our method, since a useful variant of Proposition 2.15 is not known in this
case, not even if 𝑓1, 𝑓2, 𝑓3 are all equal to the Liouville function.

Another interesting problem is to relax the conditions on the coefficients 𝑎, 𝑏, 𝑐 in Theorem 1.1. We
mention two representative problems that seem quite challenging.

Problem 2. Show that for every finite coloring of N, there exist

1. distinct 𝑥, 𝑦 ∈ N with the same color and 𝑧 ∈ N such that 𝑥2 + 𝑦2 = 2𝑧2.
2. distinct 𝑥, 𝑦 ∈ N with the same color and 𝑧 ∈ N such that 𝑥2 + 2𝑦2 = 𝑧2.

Show also similar properties with the roles of the variables y and z or x and z reversed.

Remark. More generally, we believe that if for 𝑎, 𝑏, 𝑐 ∈ N at least one of the integers 𝑎𝑐, 𝑏𝑐, (𝑎 + 𝑏)𝑐 is
a square, then for every finite coloring of the integers, there exist distinct 𝑥, 𝑦 ∈ N with the same color
and 𝑧 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2. Theorem 1.1 verifies this if both 𝑎𝑐 and 𝑏𝑐 are squares. We also
expect that if at least one of the integers 𝑏𝑐, (𝑐 − 𝑎)𝑏 is a square, then for every finite coloring of the
integers, there exist distinct 𝑥, 𝑧 ∈ N with the same color and 𝑦 ∈ N such that 𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2. It may
also be that stronger density regularity results hold, as in Theorem 1.2 and Theorem 1.6.

The broader issue is to find conditions for the polynomials 𝑃,𝑄 ∈ Z[𝑚, 𝑛] such that the following
holds: If Λ ⊂ N satisfies 𝑑Φ(Λ) > 0 for some multiplicative Følner sequence Φ, then there exist
𝑚, 𝑛 ∈ N such that the integers 𝑃(𝑚, 𝑛) and 𝑄(𝑚, 𝑛) are positive and distinct, and

𝑑Φ
(
(𝑃(𝑚, 𝑛))−1Λ ∩ (𝑄(𝑚, 𝑛))−1Λ

)
> 0.

Equivalently, using the terminology from [16], the problem is to determine for which polynomials
𝑃,𝑄 ∈ Z[𝑚, 𝑛] we have that {𝑃(𝑚, 𝑛)/𝑄(𝑚, 𝑛) : 𝑚, 𝑛 ∈ N} is a set measurable multiplicative recur-
rence.
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1.7. Notation

We let N := {1, 2, . . .}, Z+ := {0, 1, 2, . . .}, R+ := [0, +∞), S1 be the unit circle, and U be the closed
complex unit disk. With P we denote the set of primes, and throughout, we use the letter p to denote
primes.

For 𝑡 ∈ R, we let 𝑒(𝑡) := 𝑒2𝜋𝑖𝑡 . For 𝑧 ∈ C, with 
(𝑧), �(𝑧), we denote the real and imaginary parts
of z, respectively.

For 𝑁 ∈ N, we let [𝑁] := {1, . . . , 𝑁}. We often denote sequences 𝑎 : N → U by (𝑎(𝑛)), instead of
(𝑎(𝑛))𝑛∈N.

If A is a finite nonempty subset of the integers and 𝑎 : 𝐴 → C, we let

E𝑛∈𝐴 𝑎(𝑛) :=
1
|𝐴|

∑
𝑛∈𝐴

𝑎(𝑛).

We write 𝑎(𝑛) � 𝑏(𝑛) if for some 𝐶 > 0, we have 𝑎(𝑛) ≤ 𝐶 𝑏(𝑛) for every 𝑛 ∈ N.
Throughout this article, the letter f is typically used for multiplicative functions and the letter 𝜒 for

Dirichlet characters.

2. Roadmap to the proofs

This section outlines how we prove our main results in their parametric reformulation, which is given
in Theorems 1.6 and 1.7.

For various facts and notions concerning multiplicative functions, we refer the reader to Section 3.3.

2.1. Reduction of Theorem 1.6 to a positivity property for multiplicative functions

We first use a version of the Furstenberg correspondence principle (see [4]) to reformulate the results in
an ergodic language.
Theorem 2.1. Let ℓ, ℓ′ ∈ N, let 𝑇 = (𝑇𝑛)𝑛∈N be a measure preserving action of (N,×) on a probability
space (𝑋, 𝜇),3 and let 𝐴 ⊂ 𝑋 be measurable with 𝜇(𝐴) > 0. Then there exist
1. 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛 such that ℓ (𝑚2 − 𝑛2) and ℓ′𝑚𝑛 are distinct and

𝜇(𝑇−1
ℓ (𝑚2−𝑛2) 𝐴 ∩ 𝑇−1

ℓ′𝑚𝑛𝐴) > 0. (2.1)

2. 𝑚, 𝑛 ∈ N such that ℓ (𝑚2 + 𝑛2) and ℓ′𝑚𝑛 are distinct and

𝜇(𝑇−1
ℓ (𝑚2+𝑛2) 𝐴 ∩ 𝑇−1

ℓ′𝑚𝑛𝐴) > 0. (2.2)

In fact, the set of 𝑚, 𝑛 ∈ N for which (2.1) and (2.2) hold has positive lower density.
Remarks. ◦ The reduction to the previous multiple recurrence statement is merely a convenience. It
facilitates the purpose of getting a further reduction to a positivity property for completely multiplicative
functions that we describe in Theorem 2.2. Alternatively, one could carry out this last reduction directly,
as in [21, Section 10.2].

◦ Using the terminology from [16], Theorem 2.1 can be rephrased as saying that for every ℓ, ℓ′ ∈ N,
both subsets of Q>0

{
ℓ(𝑚2 − 𝑛2)/(ℓ′𝑚𝑛) : 𝑚, 𝑛 ∈ N, 𝑚 > 𝑛

}
and

{
ℓ(𝑚2 + 𝑛2)/(ℓ′𝑚𝑛) : 𝑚, 𝑛 ∈ N

}
are sets of measurable multiplicative recurrence.

3Meaning, 𝑇𝑛 : 𝑋 → 𝑋 , 𝑛 ∈ N, are invertible measure preserving transformations such that 𝑇1 := id and 𝑇𝑚𝑛 = 𝑇𝑚 ◦ 𝑇𝑛 for
every 𝑚, 𝑛 ∈ N.
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A function 𝑓 : N→ U, where U is the complex unit disk, is called multiplicative if

𝑓 (𝑚𝑛) = 𝑓 (𝑚) · 𝑓 (𝑛) whenever (𝑚, 𝑛) = 1.

It is called completely multiplicative if the previous equation holds for all 𝑚, 𝑛 ∈ N. Let

M := { 𝑓 : N→ S1 is a completely multiplicative function}.

Wherever necessary, we extend multiplicative functions to the non-positive integers in an arbitrary
way. Throughout, we assume that M is equipped with the topology of pointwise convergence. It
easily follows that M is a metrizable compact space with this topology. We can identify M with the
Pontryagin dual of the (discrete) group of positive rational numbers under multiplication. Note that the
map 𝑟/𝑠 ↦→ 𝜇(𝑇−1

𝑟 𝐴 ∩ 𝑇−1
𝑠 𝐴), 𝑟, 𝑠, ∈ N, from (Q+,×) to [0, 1] is well defined and positive definite.

Using a theorem of Bochner-Herglotz, we get that there exists a finite Borel measure 𝜎 on M such that
𝜎({1}) > 0 (in fact, 𝜎({1}) ≥ 𝛿2, where 𝛿 = 𝜇(𝐴)) and for every 𝑟, 𝑠 ∈ N,∫

M
𝑓 (𝑟) · 𝑓 (𝑠) 𝑑𝜎( 𝑓 ) = 𝜇(𝑇−1

𝑟 𝐴 ∩ 𝑇−1
𝑠 𝐴).

In particular, we have

𝜇(𝑇−1
ℓ (𝑚2−𝑛2) 𝐴 ∩ 𝑇−1

ℓ′𝑚𝑛𝐴) =
∫
M

𝑓 (ℓ(𝑚2 − 𝑛2)) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 )

for every 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛, and

𝜇(𝑇−1
ℓ (𝑚2+𝑛2) 𝐴 ∩ 𝑇−1

ℓ′𝑚𝑛𝐴) =
∫
M

𝑓 (ℓ(𝑚2 + 𝑛2)) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 )

for every 𝑚, 𝑛 ∈ N. Therefore, Theorem 2.1 follows from the following result.

Theorem 2.2. Let 𝜎 be a positive bounded measure on M such that 𝜎({1}) > 0 and∫
M

𝑓 (𝑟) · 𝑓 (𝑠) 𝑑𝜎( 𝑓 ) ≥ 0 for every 𝑟, 𝑠 ∈ N. (2.3)

Then for every ℓ, ℓ′ ∈ N,

1. we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛

∫
M

𝑓 (ℓ(𝑚2 − 𝑛2)) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 ) > 0. (2.4)

2. we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M

𝑓 (ℓ(𝑚2 + 𝑛2)) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 ) > 0. (2.5)

Remark. The limit in (2.4) exists by [20, Theorem 1.4] and the bounded convergence theorem.4
However, the limit in (2.5) may not always exist.

The reduction up to this point is similar to that in [21]. The methods in [21] were only able to
address a variant of (1) in which the expressions under the integral were products of linear factors

4The statement of [20, Theorem 1.4] does not have the restriction 𝑚 > 𝑛 in the averaging, but the argument used there also
covers this case without essential changes.
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and were ‘pairing up’ when 𝑛 = 0 and becoming nonnegative.5 This positivity property is not shared
by the expressions in (2.4) (and (2.5)), which is the main reason why it was not possible to deal with
Pythagorean pairs in [21]. To overcome this obstacle, we do not use a decomposition result that covers
all elements of M simultaneously (as was the case in [21]), but rather work separately with aperiodic
and pretentious multiplicative functions (these notions are defined in Section 3.3). In particular, coupled
with some measurability properties, this allows us to exploit the uniform concentration estimates of
Propositions 2.5 and 2.11, which are not shared by all elements of M. We outline our approach in the
next subsections.

2.2. Proof plan for part (1) of Theorem 2.2

We prove Theorem 2.2 by taking an average over the grid

{(𝑄𝑚 + 1, 𝑄𝑛) : 𝑚, 𝑛 ∈ N},

where 𝑄 ∈ N is chosen depending only on 𝜎. In view of (2.3), it suffices to prove positivity in (2.4)
when the average is taken along this subset of pairs. With ℓ, ℓ′ ∈ N fixed, we introduce the following
notation: for 𝛿 > 0, 𝑓 ∈ M, and 𝑄, 𝑚, 𝑛 ∈ N, let

𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) := 𝑤 𝛿 (𝑚, 𝑛) · 𝑓
(
ℓ ((𝑄𝑚 + 1)2 − (𝑄𝑛)2)

)
· 𝑓

(
ℓ′ (𝑄𝑚 + 1)𝑄𝑛

)
, (2.6)

where 𝑤 𝛿 : N2 → [0, 1] is the weight defined in (3.2) of Lemma 3.3 for reasons that will become clear
in a moment (at a first reading, the reader could just take 𝑤 𝛿 = 1). We also remark that the weight 𝑤 𝛿 is
supported on the set {𝑚, 𝑛 ∈ N : 𝑚 > 𝑛}, so to compute 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛), we only have to compute f on
positive integers. Then part (1) of Theorem 2.2 follows immediately from the next result, the fact that
0 ≤ 𝑤 𝛿 (𝑚, 𝑛) ≤ 1, and the positivity property (2.3).

Theorem 2.3. Let 𝜎 be a Borel probability measure on M such that 𝜎({1}) > 0. Then there exist
𝛿0 > 0 and 𝑄0 ∈ N such that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M

𝐴𝛿0 ( 𝑓 , 𝑄0;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) > 0. (2.7)

Remark. The values of 𝛿0 > 0 and 𝑄0 ∈ N depend on 𝜎 but not on ℓ, ℓ′.

To analyze the limit in (2.7), we use the theory of completely multiplicative functions. When f is
aperiodic, the mean values of 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) vanish for every Q. This is a consequence of the following
result, which in turn follows from results in [21] (see also [38] for related work). We shall explain later
on how.

Proposition 2.4. Let 𝑓 : N → U be an aperiodic completely multiplicative function. Then for every
𝛿 > 0 and 𝑄 ∈ N, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) = 0. (2.8)

Furthermore, for every completely multiplicative function 𝑓 : N→ U, the previous limit exists.

Let

M𝑝 = { 𝑓 : N→ S1 : 𝑓 is a pretentious completely multiplicative function}; (2.9)

5For instance, to establish partition regularity of pairs 𝑥, 𝑦 that satisfy the equation 16𝑥2 + 9𝑦2 = 𝑧2, it suffices to study
averages of 𝑓 (𝑚(𝑚 + 3𝑛)) · 𝑓 ( (𝑚 + 𝑛) (𝑚 − 3𝑛)) for 𝑓 ∈ M. The key convenient property these expressions have is that they
are nonnegative when 𝑛 = 0.
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we show in Lemma 3.6 that M𝑝 is a Borel subset of M. It follows from Proposition 2.4 and the
bounded convergence theorem that in order to establish (2.7), it suffices to show that there exist 𝛿0 > 0
and 𝑄0 ∈ N such that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M𝑝

𝐴𝛿0 ( 𝑓 , 𝑄0;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) > 0. (2.10)

If f is pretentious, then it ‘pretends’ to be a twisted Dirichlet character, and thus exhibits some periodicity.
We exploit this periodicity by choosing a highly divisible Q for which the averages of 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛)
take a much simpler form. More precisely, we make use of the following concentration estimate, which
is an immediate consequence of [35, Lemma 2.5].
Proposition 2.5. Let 𝑓 : N → U be a multiplicative function such that 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some 𝑡 ∈ R and
Dirichlet character 𝜒 with period q (see Section 3.3 for definitions and notation). Let also 𝐾 ∈ N be
large enough so that q divides all elements of the set

Φ𝐾 :=
{ ∏
𝑝≤𝐾

𝑝𝑎𝑝 : 𝐾 < 𝑎𝑝 ≤ 2𝐾
}
. (2.11)

Then

lim sup
𝑁→∞

max
𝑄∈Φ𝐾

E𝑛∈[𝑁 ]
�� 𝑓 (𝑄𝑛 + 1) − (𝑄𝑛)𝑖𝑡 · exp

(
𝐹𝑁 ( 𝑓 , 𝐾)

)�� � D( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾,∞) + 𝐾−1/2,

where the implicit constant is absolute and

𝐹𝑁 ( 𝑓 , 𝐾) :=
∑

𝐾<𝑝≤𝑁

1
𝑝

(
𝑓 (𝑝) · 𝜒(𝑝) · 𝑝−𝑖𝑡 − 1

)
. (2.12)

Remarks. ◦ It is important for our argument that the implicit constant is independent of K and the
quantity 𝐹𝑁 ( 𝑓 , 𝐾) does not depend on Q as long as 𝑄 ∈ Φ𝐾 and 𝑞 | 𝑄.

◦ We will also need the following variant from [35, Lemma 2.5]: For any fixed 𝑄 ∈ N such that
𝑞
∏

𝑝≤𝐾 𝑝 | 𝑄, we have

lim sup
𝑁→∞

E𝑛∈[𝑁 ]
�� 𝑓 (𝑄𝑛 + 1) − (𝑄𝑛)𝑖𝑡 · exp

(
𝐹𝑁 ( 𝑓 , 𝐾)

)�� � D( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾,∞) + 𝐾−1/2.

◦ If 𝑓 ∼ 𝜒·𝑛𝑖𝑡 , then the sequence 𝐴(𝑁) :=
∑

1<𝑝≤𝑁
1
𝑝

��1− 𝑓 (𝑝) ·𝜒(𝑝) ·𝑝−𝑖𝑡
��, 𝑁 ∈ N, is slowly varying,

in the sense that for a fixed pretentious f, we have for every 𝑐 ∈ (0, 1) that lim𝑁→∞ sup𝑛∈[𝑁 𝑐 ,𝑁 ] |𝐴(𝑛) −
𝐴(𝑁) | = 0.6 Keeping this in mind, if we use partial summation on the interval [𝑁𝑐 , 𝑁] and then let
𝑐 → 0+, we deduce that the main estimate of Proposition 2.5 still holds if we replace E𝑛∈[𝑁 ] with
E

log
𝑛∈[𝑁 ] .

In order to establish (2.10), we divide the integral into two parts. The first is supported on mul-
tiplicative functions other than the Archimedean characters (𝑛𝑖𝑡 )𝑛∈N, 𝑡 ∈ R, in which case we show
using Proposition 2.5 that for a highly divisible 𝑄0, the contribution is essentially nonnegative. The
second is supported on Archimedean characters. We show that this part is positive using our assump-
tion 𝜎({1}) > 0 and by taking 𝛿0 small enough so that the weight 𝑤 𝛿0 neutralizes the effect of the
Archimedean characters that are different from 1. To carry out the first part, the key idea is to average
over ‘multiplicatively large’ values of Q. More precisely, for each 𝐾 ∈ N, let Φ𝐾 be the set described in
(2.11). The sequence (Φ𝐾 ) is a multiplicative Følner sequence with the property that for every 𝑞 ∈ N,

6If 𝑎𝑝 := 1 − 𝑓 (𝑝) · 𝜒 (𝑝) · 𝑝−𝑖𝑡 , 𝑝 ∈ P, we note that sup𝑛∈[𝑁𝑐,𝑁 ] |𝐴(𝑛) − 𝐴(𝑁 ) | ≤ (𝐵𝑁 · 𝐶𝑁 )1/2, where 𝐵𝑁 :=∑
𝑝∈[𝑁𝑐,𝑁 ]

|𝑎𝑝 |2
𝑝 ,𝐶𝑁 :=

∑
𝑝∈[𝑁𝑐,𝑁 ]

1
𝑝 , 𝑁 ∈ N. The sequence𝐶𝑁 is bounded and lim𝑁→∞ 𝐵𝑁 = 0 because

∑
𝑝∈P

|𝑎𝑝 |2
𝑝 <

+∞.
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as soon as K is large enough, every 𝑄 ∈ Φ𝐾 is divisible by q. It also has the property that for every
𝑄 ∈ Φ𝐾 and a prime 𝑝 ∈ P, we have 𝑝 |𝑄 if and only if 𝑝 ≤ 𝐾 . Let also

A := {(𝑛𝑖𝑡 )𝑛∈N : 𝑡 ∈ R}. (2.13)

Note that A is a Borel subset of M since it is a countable union of compact sets (we caution the reader
that A is not closed with the topology of pointwise convergence; in fact, it is dense in M). The most
important step in establishing property (2.10) is the following fact.

Lemma 2.6. Let 𝑓 ∈ M𝑝 \A, 𝛿 > 0, ℓ, ℓ′ ∈ N, and Φ𝐾 be as in (2.11). Then

lim
𝐾→∞

E𝑄∈Φ𝐾 lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) = 0.

(Note that the inner limit exists by Proposition 2.4.)

Roughly, to prove Lemma 2.6, we use the concentration estimate of Proposition 2.5 to deduce that
for 𝑄 ∈ Φ𝐾 , the average E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) is asymptotically equal to 𝐶ℓ,ℓ′ (𝐾) · 𝑓 (𝑄) · 𝑄𝑖𝑡 for
some 𝐶ℓ,ℓ′ (𝐾) ∈ U and 𝑡 ∈ R. Since 𝑓 ∉ A, by Lemma 3.2, the average of the last expression, taken
over 𝑄 ∈ Φ𝐾 , converges to 0 as 𝐾 → ∞.

Using the previous result, the fact that the limit lim𝑁→∞ E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) exists (by Propo-
sition 2.4), and applying the bounded convergence theorem twice, we deduce the following vanishing
property.

Corollary 2.7. Let (Φ𝐾 ) and A be defined by (2.11) and (2.13), respectively. Let also 𝜎 be a Borel
probability measure on M𝑝 . Then for every 𝛿 > 0, we have

lim
𝐾→∞

E𝑄∈Φ𝐾 lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M𝑝\A

𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) = 0.

We are left to study the part of the integral supported on A. For such functions, the limits
lim𝑁→∞ E𝑚,𝑛∈[𝑁 ]𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) do not depend on Q, and so the previous argument will not help.
It is the presence of the weight 𝑤 𝛿 that will allow us to prove the following positivity property.

Lemma 2.8. Let 𝜎 be a Borel probability measure on M such that 𝜎({1}) > 0 and A be as in (2.13).
Then there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎, such that

lim inf
𝑁→∞

inf
𝑄∈N



(
E𝑚,𝑛∈[𝑁 ]

∫
A
𝐴𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )

)
≥ 𝜌0. (2.14)

Remark. The weight 𝑤 𝛿 (𝑚, 𝑛) is introduced to force positivity in this case, since for some choices of
ℓ, ℓ′ and measures𝜎, the unweighted expressions have negative real parts. However, rather miraculously,
if ℓ = 1 and ℓ′ = 2 (which is the case to consider for Pythagorean pairs), we get positivity even in
the unweighted case, and a somewhat simpler argument applies. We do not pursue this approach here
though because it lacks generality.

Finally, we will see how the previous results allow us to reach our goal, which is to prove Theorem 2.3,
thus completing the proof of part (1) of Theorems 1.2 and 2.2.

Proof of Theorem 2.3 assuming Proposition 2.4, Corollary 2.7 and Lemma 2.8. By combining Corol-
lary 2.7 and Lemma 2.8, we deduce that there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎, such that

lim inf
𝐾→∞

E𝑄∈Φ𝐾 lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M𝑝

𝐴𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) ≥ 𝜌0.
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(There is no need to take the real part on this expression since it is real.) From this, we immediately
deduce that (2.10) holds for some 𝑄0 ∈ N. As we also explained before, this fact, together with
Proposition 2.4, implies (2.7) via the bounded convergence theorem, completing the proof. �

To establish Theorem 2.3, it remains to prove Proposition 2.4, Lemma 2.6 (Corollary 2.7 is an
immediate consequence) and Lemma 2.8. We do this in Section 4.

2.3. Proof plan for part (2) of Theorem 2.2

The general strategy is similar to that used to prove part (1) of Theorem 2.2, but there are two major
differences. The first is the required concentration estimate, which is given in Proposition 2.11 below.
Unlike Proposition 2.5, this result is new and of independent interest, and its proof occupies a consider-
able portion of the argument. The second difference is that the limit in (2.5) may not exist, which causes
additional technical problems.

Arguing as before, we get that part (2) of Theorem 2.2 follows from the following positivity property.

Theorem 2.9. Let 𝜎 be a Borel probability measure on M such that 𝜎({1}) > 0 and (2.3) holds. Then
there exists 𝛿 > 0 such that

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) ·
∫
M

𝑓
(
ℓ
(
𝑚2 + 𝑛2) ) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 ) > 0, (2.15)

where �̃� 𝛿 (𝑚, 𝑛) is the weight defined in (3.3) of Lemma 3.3.

Again, to analyze the limit in (2.15), we use the theory of completely multiplicative functions. We
introduce the following notation: for 𝛿 > 0, 𝑓 ∈ M, and 𝑄, 𝑚, 𝑛 ∈ N, let

𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) := �̃� 𝛿 (𝑚, 𝑛) · 𝑓
(
ℓ
(
(𝑄𝑚 + 1)2 + (𝑄𝑛)2) ) · 𝑓 (ℓ′ (𝑄𝑚 + 1).(𝑄𝑛)

)
. (2.16)

If f is aperiodic, we have the following result, which we will deduce from the results in [21].

Proposition 2.10. Let 𝑓 : N → U be an aperiodic multiplicative function. Then for every 𝛿 > 0 and
𝑄 ∈ N, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) = 0. (2.17)

Remark. It follows that (2.17) also holds even if Q depends on N, but its values are taken from a finite
subset of N.

If f is pretentious, we will crucially use the following concentration estimate (which is a direct
consequence of a more general result proved in Section 5) to analyze the average (2.15). It features a
version of the pretentious distance that only considers primes7 congruent to 1 mod 4:

D1( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾,∞)2 :=
∑
𝐾<𝑝,

𝑝≡1 (mod 4)

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑝−𝑖𝑡 )).

Proposition 2.11. Let 𝑓 : N→ U be a multiplicative function such that 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some 𝑡 ∈ R and
Dirichlet character 𝜒 with period q. Let also Φ𝐾 be as in (2.11) and suppose that K is large enough so
that, say, D1( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾,∞) ≤ 1 and q divides all elements of Φ𝐾 . Then

7The reason we only need primes ≡ 1 mod 4 is that these are the primes that split in the splitting field of 𝑚2 + 𝑛2. In a
subsequent work, we extended these techniques to obtain concentration estimates to general binary quadratic forms.
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lim sup
𝑁→∞

max
𝑄∈Φ𝐾

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) −𝑄2𝑖𝑡 · (𝑚2 + 𝑛2)𝑖𝑡 · exp

(
𝐺𝑁 ( 𝑓 , 𝐾)

)�� �
D1( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾,∞) + 𝐾−1/2,

where the implicit constant is absolute and

𝐺𝑁 ( 𝑓 , 𝐾) := 2
∑

𝐾<𝑝≤𝑁 ,
𝑝≡1 (mod 4)

1
𝑝
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑝−𝑖𝑡 − 1). (2.18)

Remarks. ◦ It is important for our argument that the implicit constant does not depend on K and
that exp

(
𝐺𝑁 ( 𝑓 , 𝐾)

)
is the same for all 𝑄 ∈ Φ𝐾 that are divisible by q. It is also important for our

applications that we get some uniformity over the 𝑄 ∈ Φ𝐾 .
◦ For the future applications in mind, we prove a somewhat more general and quantitatively more

explicit variant; see Proposition 5.1 below.

As in the proof of Theorem 2.3, in order to prove Theorem 2.9, we split the integral into two parts,
one that is supported on Archimedean characters and the other on its complement. To handle the second
part, we use the following result, which is proved using Proposition 2.11 and can be compared to
Corollary 2.7. Again, taking multiplicative averages over the variable Q is a key maneuver, but the non-
convergence of the averages E𝑚,𝑛∈[𝑁 ] 𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) causes considerable technical difficulties in our
proofs.

Proposition 2.12. Let (Φ𝐾 ), A, 𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) be defined by (2.11), (2.13), (2.16), respectively, and
𝛿>0. Let also 𝜎 be a Borel probability measure on M𝑝 . Then

lim
𝐾→∞

lim sup
𝑁→∞

���E𝑄∈Φ𝐾 E𝑚,𝑛∈[𝑁 ]

∫
M𝑝\A

𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
��� = 0.

Remark. Unlike the case of Corollary 2.7, we cannot pass the limit over N inside the average over
Q. This will cause some minor problems in our later analysis, which we will overcome by using the
positivity property (2.3) of the measure 𝜎 (this is why this positivity property is used in the statement
of Theorem 2.9 but not in Theorem 2.3).

We are left to study the contribution of the set A of Archimedean characters in which case the
presence of the weight �̃� 𝛿 allows us to establish positivity by taking 𝛿 small enough.

Lemma 2.13. Let 𝜎 be a Borel probability measure on M𝑝 such that 𝜎({1}) > 0 and A be as in
(2.13). Then there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎, such that

lim inf
𝑁→∞

inf
𝑄∈N



(
E𝑚,𝑛∈[𝑁 ]

∫
A
𝐵𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )

)
≥ 𝜌0.

We conclude this section by noting how the previous results allow us to reach our goal, which is to
prove Theorem 2.9, thus completing the proof of part (2) of Theorems 1.2 and 2.2.

Proof of Theorem 2.9 assuming Proposition 2.10, Proposition 2.12 and Lemma 2.13. We start by com-
bining Proposition 2.12 and Lemma 2.13. We deduce that there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎,
such that

lim inf
𝐾→∞

lim inf
𝑁→∞

E𝑄∈Φ𝐾

(
E𝑚,𝑛∈[𝑁 ]

∫
M𝑝

𝐵𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
)
≥ 𝜌0.

In this case, it is a little bit tricky to deduce that (2.15) holds. We do it as follows. The last estimate
implies that there exist 𝐾0 ∈ N and 𝑄𝑁 ∈ Φ𝐾0 , 𝑁 ∈ N, such that
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lim inf
𝑁→∞



(
E𝑚,𝑛∈[𝑁 ]

∫
M𝑝

𝐵𝛿0 ( 𝑓 , 𝑄𝑁 ;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
)
≥ 𝜌0/2.

Note that since 𝑄𝑁 belongs to a finite set, Proposition 2.10 implies that in the last expression we can
replace M𝑝 with M. Hence,

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

∫
M

𝐵𝛿0 ( 𝑓 , 𝑄𝑁 ;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) ≥ 𝜌0/2. (2.19)

(The real part is no longer needed since the last expression is known to be real by (2.3).) It is easy to
verify (following the line of reasoning at the beginning of Proposition 4.1 below) that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] sup
𝑄∈N

|�̃� 𝛿 (𝑄𝑚 + 1, 𝑄𝑛) − �̃� 𝛿 (𝑚, 𝑛) | = 0.

We deduce that if in the definition of 𝐵𝛿0 ( 𝑓 , 𝑄𝑁 ;𝑚, 𝑛) given in (2.16) we replace �̃� 𝛿 (𝑚, 𝑛) with
�̃� 𝛿 (𝑄𝑁𝑚 + 1, 𝑄𝑁 𝑛), the limit on the left side of (2.19) remains unchanged. Keeping this in mind, and
since 𝑄𝑁 takes values in a finite set with upper bound, say 𝑄0, and by the positivity property (2.3), we
have

�̃� 𝛿 (𝑚, 𝑛) ·
∫
M

𝑓
(
ℓ
(
𝑚2 + 𝑛2) ) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 ) ≥ 0

for every 𝑚, 𝑛 ∈ N, and we deduce that

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) ·
∫
M

𝑓
(
ℓ
(
𝑚2 + 𝑛2) ) · 𝑓 (ℓ′𝑚𝑛) 𝑑𝜎( 𝑓 ) ≥ 𝜌0/(2𝑄2

0).

This establishes (2.15) and ends the proof. �

In order to establish Theorem 2.9, it remains to prove Proposition 2.10, Proposition 2.12 and Lemma
2.13. We do this in Section 6, after having established Proposition 2.11 in Section 5, which is crucially
used in the proof of Proposition 2.12.

2.4. Proof plan of Theorem 1.7

For notational convenience, when we write E∗𝑘∈N in the following statements, we mean the limit
lim𝐾→∞ E𝑘∈Φ𝐾 , where (Φ𝐾 ) is an arbitrary multiplicative Følner sequence, chosen so that all the limits
in the following statements exist. Since our setting will always involve a countable collection of limits,
such a Følner sequence always exists and can be taken as a subsequence of any given multiplicative
Følner sequence.

Our argument is divided into two parts. In the first part, we reduce the problem to a positivity property
of pretentious multiplicative functions, and in the second part, we verify this positivity property. To
carry out the first part, we note that to prove Theorem 1.7, it is only necessary to establish the subsequent
averaged version.

Theorem 2.14. Suppose that the completely multiplicative function 𝑓 : N → S1 takes finitely many
values and 𝐹 := 1{1}. Then

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹 ( 𝑓 (𝑘 (𝑚

2 − 𝑛2))) · 𝐹 ( 𝑓 (𝑘 2𝑚𝑛)) · 𝐹 ( 𝑓 (𝑘 (𝑚2 + 𝑛2))) > 0. (2.20)

Remark. The ‘multiplicative average’ E∗𝑘∈N is needed in our analysis to ‘clear out’ some unwanted
terms.
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We write 𝑓 = 𝑔ℎ, where g has aperiodicity properties and h is pretentious (see Lemma 7.3 for the
exact statement). Since f is finite-valued, it follows that g takes values in d-roots of unity for some
𝑑 ∈ N. Hence, we have

𝐹 ◦ 𝑔 = 1𝑔=1 = E0≤ 𝑗<𝑑 𝑔
𝑗 .

We use the previous facts to analyze the average in (2.20). The aperiodic part is covered by the next
result, which is a direct consequence of [21, Theorem 9.7].

Proposition 2.15. Let 𝑓1, 𝑓2, 𝑓3 : N→ U be completely multiplicative functions and suppose that either
𝑓1 or 𝑓2 is aperiodic. Then

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 𝑓1(𝑚2 − 𝑛2) · 𝑓2(𝑚𝑛) · 𝑓3(𝑚2 + 𝑛2) = 0.

Combining the above and some technical maneuvering, we get the following reduction, which
completes the first part needed to prove Theorem 2.14.

Proposition 2.16. Suppose that for every finite-valued completely multiplicative function ℎ : N → S1,
with ℎ ∼ 1, and modified Dirichlet character �̃� : N→ S1 (see Section 3.3 for the definitions), we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐴(𝑘 (𝑚2 − 𝑛2)) · 𝐴(𝑘 2𝑚𝑛) · 𝐴(𝑘 (𝑚2 + 𝑛2)) > 0,

where

𝐴(𝑛) := 𝐹 (ℎ(𝑛)) · 𝐹 ( �̃�(𝑛)), 𝑛 ∈ N, 𝐹 := 1{1} .

Then for every finite-valued completely multiplicative function 𝑓 : N→ S1, we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹 ( 𝑓 (𝑘 (𝑚

2 − 𝑛2))) · 𝐹 ( 𝑓 (𝑘 2𝑚𝑛)) · 𝐹 ( 𝑓 (𝑘 (𝑚2 + 𝑛2))) > 0.

Therefore, it remains to verify the assumption of this result. For this purpose, we will make crucial
use of the following concentration estimates, which easily follow from Propositions 2.5 and 2.11, as we
will see later.

Corollary 2.17. Let 𝑓 : N → U be a finite-valued multiplicative function such that 𝑓 ∼ 𝜒 for some
Dirichlet character 𝜒 with period q. Then for every 𝜀 > 0, there exists 𝑄0 = 𝑄0( 𝑓 , 𝜀) ∈ N such that the
following holds:

1. For all 𝑄 ∈ N such that 𝑄0 | 𝑄, we have

lim sup
𝑁→∞

E𝑛∈[𝑁 ]
�� 𝑓 (𝑄𝑛 + 1) − 1

�� � 𝜀,

where the implicit constant is absolute.
2. For all 𝑄 ∈ N such that 𝑄0 | 𝑄, we have

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ] | 𝑓
(
(𝑄𝑚 + 1)2 + (𝑄𝑛)2) − 1

�� � 𝜀,

where the implicit constant is absolute.

Finally, using the previous concentration estimates and the key maneuver of taking multiplicative
averages over 𝑄 ∈ N, which was also a crucial element in the proof of Theorem 2.2, we verify the
assumptions of Proposition 2.16.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.27
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 01 Aug 2025 at 07:31:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.27
https://www.cambridge.org/core


18 N. Frantzikinakis, O. Klurman and J. Moreira

Proposition 2.18. Let 𝑓 : N→ S1 be a finite-valued pretentious multiplicative function and �̃� : N→ S1

be a modified Dirichlet character. Then

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐴(𝑘 (𝑚2 − 𝑛2)) · 𝐴(𝑘 2𝑚𝑛) · 𝐴(𝑘 (𝑚2 + 𝑛2)) > 0,

where

𝐴(𝑛) := 𝐹 ( 𝑓 (𝑛)) · 𝐹 ( �̃�(𝑛)), 𝑛 ∈ N, 𝐹 := 1{1} .

Thus, to prove Theorem 2.14, it remains to verify Propositions 2.16 and 2.18. We do this in Sections 7
and 8 (the other results mentioned in this subsection are needed in the proofs of these two results and
will also be verified).

3. Background and preparation

3.1. Some elementary facts

We will use the following elementary property.

Lemma 3.1. Let 𝑎 : Z → U be an even sequence and 𝑙1, 𝑙2 ∈ Z, not both of them 0. Suppose that for
some 𝜀 > 0 and for some sequence 𝐿𝑁 : N→ U, we have

lim sup
𝑁→∞

E𝑛∈[𝑁 ] |𝑎(𝑛) − 𝐿𝑁 | ≤ 𝜀.

Then

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ] |𝑎(𝑙1𝑚 + 𝑙2𝑛) − 𝐿𝑙𝑁 | ≤ 2|𝜀,

where 𝑙 := |𝑙1 | + |𝑙2 |.

Proof. We have

E𝑚,𝑛∈[𝑁 ] |𝑎(𝑙1𝑚 + 𝑙2𝑛) − 𝐿𝑙𝑁 | ≤ 1
𝑁2

∑
|𝑘 | ≤𝑙𝑁

𝑤𝑁 (𝑘) |𝑎(𝑘) − 𝐿𝑙𝑁 |, (3.1)

where for 𝑘 ∈ Z, we let

𝑤𝑁 (𝑘) := |{(𝑚, 𝑛) ∈ [𝑁]2 : 𝑙1𝑚 + 𝑙2𝑛 = 𝑘}|.

For every 𝑘 ∈ Z and 𝑚 ∈ [𝑁], there exists at most one 𝑛 ∈ [𝑁] for which 𝑙1𝑚 + 𝑙2𝑛 = 𝑘 . Hence,
|𝑤𝑁 (𝑘) | ≤ 𝑁 for every 𝑘 ∈ Z. Since a is even, we deduce that the right-hand side in (3.1) is bounded by

2 𝑙 · E𝑘∈[𝑙𝑁 ] |𝑎(𝑘) − 𝐿𝑙𝑁 |.

The asserted estimate now follows from this and our assumption. �

The next well-known property of multiplicative functions will also be used several times.

Lemma 3.2. Let (Φ𝐾 ) be a multiplicative Følner sequence. If 𝑓 : N→ U is a completely multiplicative
function and 𝑓 ≠ 1, then

lim
𝐾→∞

E𝑛∈Φ𝐾 𝑓 (𝑛) = 0.
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Proof. Since 𝑓 ≠ 1, there exists 𝑝 ∈ P such that 𝑓 (𝑝) ≠ 1. By the definition of Φ𝐾 , we have

lim
𝐾→∞

|Φ𝐾 ∩ (𝑝 · Φ𝐾 ) |
|Φ𝐾 | = 1.

From this and the fact that 𝑓 (𝑝𝑛) = 𝑓 (𝑝) · 𝑓 (𝑛), we get

E𝑛∈Φ𝐾 𝑓 (𝑛) = E𝑛∈𝑝 ·Φ𝐾 𝑓 (𝑛) + 𝑜𝐾→∞(1) = 𝑓 (𝑝) · E𝑛∈Φ𝐾 𝑓 (𝑛) + 𝑜𝐾→∞(1).

Since 𝑓 (𝑝) ≠ 1, we deduce that E𝑛∈Φ𝐾 𝑓 (𝑛) = 𝑜𝐾→∞(1). �

3.2. Some useful weights

In the proof of Theorems 1.1 and 1.2, we will utilize weighted averages. The weights are employed to
ensure that the averages E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄, 𝑚, 𝑛) and E𝑚,𝑛∈[𝑁 ] 𝐵𝛿 ( 𝑓 , 𝑄, 𝑚, 𝑛), where 𝐴𝛿 , 𝐵𝛿 are as in
(2.6), (2.16), respectively, have a positive real part if f is an Archimedean character and 𝛿 is sufficiently
small.

We will now define these weights. If 𝛿 ∈ (0, 1/2), we consider the circular arc with center 1 given by

𝐼𝛿 := {𝑒(𝜙) : 𝜙 ∈ (−𝛿, 𝛿)}.

Lemma 3.3. For every 𝛿 ∈ (0, 1/2), let 𝐹𝛿 : S1 → [0, 1] be the trapezoid function that is equal to 1 on
the arc 𝐼𝛿/2 and 0 outside the arc 𝐼𝛿 . Let also

𝑤 𝛿 (𝑚, 𝑛) := 𝐹𝛿
(
(ℓ(𝑚2 − 𝑛2))𝑖 · (ℓ′𝑚𝑛)−𝑖

)
· 1𝑚>𝑛, 𝑚, 𝑛 ∈ N, (3.2)

and

�̃� 𝛿 (𝑚, 𝑛) := 𝐹𝛿
(
(ℓ(𝑚2 + 𝑛2))𝑖 · (ℓ′𝑚𝑛)−𝑖

)
, 𝑚, 𝑛 ∈ N. (3.3)

Then

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛) > 0 and lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) > 0.

Remark. We opted for a continuous function for 𝐹𝛿 instead of an indicator function, to make it easier
to prove Propositions 4.1 and 6.1 later on.

Proof. We first cover the weight in (3.2). Note that the limit we want to evaluate is equal to

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐹𝛿
(
(ℓ((𝑚/𝑁)2 − (𝑛/𝑁)2))𝑖 · (ℓ′(𝑚/𝑁) · (𝑛/𝑁))−𝑖

)
· 1𝑚/𝑁>𝑛/𝑁 .

Let �̃�𝛿 : [0, 1] × [0, 1] → [0, 1] be given by

�̃�𝛿 (𝑥, 𝑦) := 𝐹𝛿
(
(ℓ(𝑥2 − 𝑦2))𝑖 · (ℓ′𝑥𝑦)−𝑖

)
· 1𝑥>𝑦 , 𝑥, 𝑦 ∈ [0, 1] .

Then �̃�𝛿 is Riemann integrable on [0, 1] × [0, 1] as it is bounded and continuous except for a set of
Lebesgue measure 0. Hence, the limit we aim to compute exists and is equal to the Riemann integral

∫ 1

0

∫ 1

0
�̃�𝛿 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

It remains to show that this integral is positive, and since �̃�𝛿 is nonnegative, it suffices to show that �̃�𝛿
does not vanish almost everywhere.
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To verify the nonvanishing property, note that if 𝑥 = 𝑎𝑦 where 𝑎 := ℓ′+
√

(ℓ′)2+4ℓ2

2ℓ > 1, then 𝑥 > 𝑦

and ℓ(𝑥2 − 𝑦2) = ℓ′𝑥𝑦, and as a consequence, (ℓ(𝑥2 − 𝑦2))𝑖 · (ℓ′𝑥𝑦)−𝑖 = 1. Hence, �̃�𝛿 (𝑥, 𝑦) = 𝐹𝛿 (1) = 1
on the line 𝑥 = 𝑎𝑦. Since �̃�𝛿 is continuous in the region 𝑥 > 𝑦, this proves that it stays bounded away
from zero in a neighborhood of the line 𝑥 = 𝑎𝑦 in that region, and hence, it does not vanish almost
everywhere. This completes the proof for the weight (3.2).

The argument for the second weight (3.3) is very similar, so we only summarize it. Let �̃�𝛿 : [0, 1] ×
[0, 1] → [0, 1] be given by

�̃�𝛿 (𝑥, 𝑦) := 𝐹𝛿
(
(ℓ(𝑥2 + 𝑦2))𝑖 · (ℓ′𝑥𝑦)−𝑖

)
· 1(0,1]×(0,1] (𝑥, 𝑦).

Then the limit we want to evaluate exists and is equal to the Riemann integral

∫ 1

0

∫ 1

0
�̃�𝛿 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

The integral is positive because �̃�𝛿 is nonnegative and does not vanish almost everywhere. To verify
the nonvanishing property, we argue as follows. Pick 𝑘 ∈ Z+ such that 𝑏 := ℓ′/ℓ · 𝑒2𝑘 𝜋 > 2 and let
𝑎 := 𝑏+

√
𝑏2−4
2 . If 𝑥, 𝑦 ∈ [0, 1] are such that 𝑥 = 𝑎𝑦, then 𝑥 > 𝑦 and ℓ(𝑥2 + 𝑦2) = 𝑒2𝑘 𝜋 ℓ′𝑥𝑦, which implies

(ℓ(𝑥2 + 𝑦2))𝑖 · (ℓ′𝑥𝑦)−𝑖 = 𝑒2𝑘 𝜋𝑖 = 1. �

3.3. Multiplicative functions

We record here some basic notions and facts about multiplicative functions that will be used throughout
the article.

3.3.1. Dirichlet characters
A Dirichlet character 𝜒 is a periodic completely multiplicative function and is often thought of as a
multiplicative function on Z𝑚 for some 𝑚 ∈ N. In this case, 𝜒 takes the value 0 on integers that are not
coprime to m and takes values on 𝜙(𝑚)-roots of unity on all other integers, where 𝜙 is the Euler totient
function. If 𝜒 is a Dirichlet character, we define the modified Dirichlet character �̃� : N→ S1 to be the
completely multiplicative function satisfying

�̃�(𝑝) :=

{
𝜒(𝑝), if 𝜒(𝑝) ≠ 0
1, if 𝜒(𝑝) = 0.

We note in passing that the level sets of modified Dirichlet characters �̃�, which can be seen as finite
colorings of N, are precisely the colorings that appear in Rado’s theorem when showing that certain
systems of linear equations are not partition regular. In particular, a system of linear equations is partition
regular if and only if it has a monochromatic solution in any coloring realized by a modified Dirichlet
character.

3.3.2. Distance between multiplicative functions
Following Granville and Soundararajan [25, 27], in this and the next subsection, we define a distance and
a related notion of pretentiousness between multiplicative functions. If 𝑓 , 𝑔 : N→ U are multiplicative
functions and 𝑥, 𝑦 ∈ R+ with 𝑥 < 𝑦, we let

D( 𝑓 , 𝑔; 𝑥, 𝑦)2 :=
∑

𝑥<𝑝≤𝑦

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝑔(𝑝))). (3.4)
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We also let

D( 𝑓 , 𝑔)2 :=
∑
𝑝∈P

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝑔(𝑝))). (3.5)

Note that if | 𝑓 | = |𝑔 | = 1, then

D( 𝑓 , 𝑔)2 =
1
2
·
∑
𝑝∈P

1
𝑝
| 𝑓 (𝑝) − 𝑔(𝑝) |2.

It can be shown (see [26] or [27, Section 2.1.1]) that D satisfies the triangle inequality

D( 𝑓 , 𝑔) ≤ D( 𝑓 , ℎ) + D(ℎ, 𝑔)

for all 𝑓 , 𝑔, ℎ : P→ U. Also, for all 𝑓1, 𝑓2, 𝑔1, 𝑔2 : P→ U, we have (see [25, Lemma 3.1])

D( 𝑓1 𝑓2, 𝑔1𝑔2) ≤ D( 𝑓1, 𝑔1) + D( 𝑓2, 𝑔2). (3.6)

3.3.3. Pretentious multiplicative functions
If 𝑓 , 𝑔 : N → U are multiplicative functions, we say that f pretends to be g, and write 𝑓 ∼ 𝑔, if
D( 𝑓 , 𝑔) < +∞. It follows from (3.6) that if 𝑓1 ∼ 𝑔1 and 𝑓2 ∼ 𝑔2, then 𝑓1 𝑓2 ∼ 𝑔1𝑔2. We say that f is
pretentious if 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some 𝑡 ∈ R and Dirichlet character 𝜒, in which case

∑
𝑝∈P

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑝−𝑖𝑡 )) < +∞.

The value of t is uniquely determined; this follows from (3.6) and the fact that 𝑛𝑖𝑡 � 𝜒 for every nonzero
𝑡 ∈ R and Dirichlet character 𝜒 (see, for example, [27, Corollary 11.4] or [26, Proposition 7]).

Although real-valued or finite-valued multiplicative functions always have a mean value, we caution
the reader that this is not the case for general multiplicative functions with values on the unit circle. For
example, we have

E𝑛∈[𝑁 ] 𝑛
𝑖𝑡 = 𝑁 𝑖𝑡/(1 + 𝑖𝑡) + 𝑜𝑁 (1),

so we have non-convergent means when 𝑡 ≠ 0. But even multiplicative functions satisfying 𝑓 ∼ 1 can
have non-convergent means. In particular, if 𝑓 ∼ 1 is a completely multiplicative function, then it is
known (see, for example, [17, Theorems 6.2]) that there exists 𝑐 ≠ 0 such that

E𝑛∈[𝑁 ] 𝑓 (𝑛) = 𝑐 · 𝑒(𝐴(𝑁)) + 𝑜𝑁 (1),

where 𝐴(𝑁) :=
∑

𝑝≤𝑁
1
𝑝 �( 𝑓 (𝑝)), 𝑁 ∈ N. Hence, we have non-convergent means when, for example,

∑
𝑝∈P

1
𝑝
�( 𝑓 (𝑝)) = +∞,

which is the case if 𝑓 (𝑝) := 𝑒(1/log log 𝑝), 𝑝 ∈ P. This oscillatory behavior of the mean values of
some complex-valued multiplicative functions has to be taken into account and will cause problems in
the proofs of some of our main results.

Finally, we record an observation that will only be used in the proof of Theorem 1.5.
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Lemma 3.4. Let 𝑓 : N→ U be a pretentious finite-valued multiplicative function. Then 𝑓 ∼ 𝜒 for some
Dirichlet character 𝜒 and

∑
𝑝∈P

1
𝑝
|1 − 𝑓 (𝑝) · 𝜒(𝑝) | < +∞. (3.7)

Remark. It can be shown using (3.7) that finite-valued pretentious multiplicative functions always have
convergent means.

Proof. Since f is pretentious, we have 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some 𝑡 ∈ R and Dirichlet character 𝜒. Then
D(𝑛𝑖𝑡 , 𝑔) < +∞, where 𝑔 := 𝑓 · 𝜒 is a finite-valued multiplicative function. In particular, there exists
𝑑 ∈ N for which 𝑔𝑑 is the constant 1, so from (3.6), it follows that D(𝑛𝑖𝑑𝑡 , 1) < +∞, which in turn
implies that 𝑡 = 0 (hence, 𝑓 ∼ 𝜒) and

∑
𝑝∈P : 𝑓 (𝑝) ·𝜒 (𝑝)≠1

1
𝑝
< +∞.

Hence,
∑
𝑝∈P

1
𝑝
|�( 𝑓 (𝑝) · 𝜒(𝑝)) | < +∞.

If we combine this with D( 𝑓 , 𝜒) < +∞, we deduce that (3.7) holds. �

3.3.4. Aperiodic multiplicative functions
We say that a multiplicative function 𝑓 : N→ U is aperiodic if for every 𝑎, 𝑏 ∈ N,

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑓 (𝑎𝑛 + 𝑏) = 0.

The following well-known result of Daboussi-Delange [13, Corollary 1] states that a multiplicative
function is aperiodic if and only if it is non-pretentious.

Lemma 3.5. Let 𝑓 ∈ M. Then either 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some Dirichlet character 𝜒 and 𝑡 ∈ R, or f is
aperiodic.

In our arguments, we typically distinguish two cases – one where a multiplicative function is
aperiodic; then we show that the expressions we are interested in vanish. The complementary one where
the multiplicative function is pretentious is treated using concentration estimates.

3.4. Some Borel measurability results

Recall that M is equipped with the topology of pointwise convergence. In the proof of Theorem 2.2, we
require certain Borel measurability properties of subsets of M and related maps. The second property
proved below will only be used in the proof of part (2) of Theorem 2.2.

Recall that if f is pretentious, then there exist a unique 𝑡 = 𝑡 𝑓 ∈ R and a Dirichlet character 𝜒 such
that 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 .

Lemma 3.6.

1. The set M𝑝 of pretentious completely multiplicative functions is Borel.
2. The map 𝑓 ↦→ 𝑡 𝑓 from M𝑝 to R is Borel measurable.
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Proof. We prove (1). For 𝑎, 𝑏 ∈ N, we let 𝑀𝑎,𝑏 be the set of 𝑓 ∈ M such that

lim sup
𝑁→∞

|E𝑛∈[𝑁 ] 𝑓 (𝑎𝑛 + 𝑏) | > 0.

Clearly, 𝑀𝑎,𝑏 is a Borel subset of M. By Lemma 3.5, we have M𝑝 =
⋃

𝑎,𝑏∈N 𝑀𝑎,𝑏 , and the result
follows.

We prove (2). By [32, Theorem 14.12], it suffices to show that the graph

Γ := {( 𝑓 , 𝑡 𝑓 ) ∈ M𝑝 × R}

is a Borel subset of M𝑝 × R. If 𝜒𝑘 , 𝑘 ∈ N, is an enumeration of all Dirichlet characters, and

Γ𝑘 := {( 𝑓 , 𝑡 𝑓 ) ∈ M𝑝 × R : 𝑓 ∼ 𝜒𝑘 · 𝑛𝑖𝑡 𝑓 },

then

Γ =
⋃
𝑘∈N

Γ𝑘 .

Hence, it suffices to show that for every 𝑘 ∈ N, the set Γ𝑘 is Borel. Note that

Γ𝑘 := {( 𝑓 , 𝑡) ∈ M𝑝 × R : D( 𝑓 , 𝜒𝑘 · 𝑛𝑖𝑡 ) < ∞}.

Since for 𝑘 ∈ N the map ( 𝑓 , 𝑡) ↦→ D( 𝑓 , 𝜒𝑘 · 𝑛𝑖𝑡 ) is clearly Borel, the set Γ𝑘 is Borel. This completes the
proof. �

4. Type I Pythagorean pairs

As explained in Section 2.2, in order to complete the proof of Theorem 2.3 (and thus of part (1) of
Theorem 2.2), it remains to prove Proposition 2.4, Lemma 2.6 and Lemma 2.8. We do this in this section.

We start with Proposition 2.4, which we state here in an equivalent form.

Proposition 4.1. Let 𝑓 : N→ U be an aperiodic completely multiplicative function, let ℓ, ℓ′, 𝑄 ∈ N and
𝛿 > 0. Then, with 𝑤 𝛿 : N2 → [0, 1] described by (3.2), we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛) · 𝑓 (ℓ(𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝑓 (ℓ′(𝑄𝑚 + 1) (𝑄𝑛)) = 0. (4.1)

Furthermore, the limit in (4.1) exists for all multiplicative functions 𝑓 : N→ U.

Proof. Recall that

𝑤 𝛿 (𝑚, 𝑛) := 𝐹𝛿
(
(ℓ(𝑚2 − 𝑛2))𝑖 · (ℓ′𝑚𝑛)−𝑖

)
· 1𝑚>𝑛, 𝑚, 𝑛 ∈ N,

where 𝐹𝛿 : S1 → [0, 1] is the continuous function defined in Lemma 3.3. Since 𝐹𝛿 can be approximated
uniformly by polynomials, using linearity, we deduce that it suffices to verify (4.1) with 𝑤 𝛿 (𝑚, 𝑛)
replaced by (𝑚2 − 𝑛2)𝑘𝑖 · (𝑚𝑛)−𝑘𝑖 · 1𝑚>𝑛 for arbitrary 𝑘 ∈ Z. Furthermore, since lim𝑛→∞(log(𝑄𝑛 +
1) − log(𝑄𝑛)) = 0, the limit in (4.1) remains unchanged if we replace (𝑚2 − 𝑛2)𝑘𝑖 · (𝑚𝑛)−𝑘𝑖 · 1𝑚>𝑛 with
((𝑄𝑚+1)2− (𝑄𝑛)2)𝑘𝑖 · ((𝑄𝑚+1) (𝑄𝑛))−𝑘𝑖 ·1𝑚>𝑛 (after we omit +1, the Q’s are going to cancel because
of the conjugate). Hence, in order to establish (4.1), it suffices to show that for every 𝑘 ∈ Z, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 1𝑄𝑚+1>𝑄𝑛 · 𝑓𝑘 ((𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝑓𝑘 ((𝑄𝑚 + 1) (𝑄𝑛)) = 0, (4.2)
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where 𝑓𝑘 (𝑛) := 𝑓 (𝑛) · 𝑛𝑘𝑖 , 𝑛 ∈ N. Note that since the indicator function of an arithmetic progression
is a linear combination of Dirichlet characters, in order to establish (4.2), it suffices to show that for all
Dirichlet characters 𝜒, 𝜒′, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 1𝑚>𝑛 · 𝜒(𝑚) · 𝜒′(𝑛) · 𝑓𝑘 (𝑚2 − 𝑛2) · 𝑓𝑘 (𝑚𝑛) = 0,

or, equivalently, that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 1𝑚>𝑛 · 𝑓𝑘 (𝑚2 − 𝑛2) · ( 𝑓𝑘 · 𝜒) (𝑚) · ( 𝑓𝑘 · 𝜒′) (𝑛) = 0. (4.3)

Since f is aperiodic, so is 𝑓𝑘 . Since f is aperiodic, so is 𝑓𝑘 · 𝜒 (and 𝑓𝑘 · 𝜒′). Combining [21, Theorem
2.5] and [21, Lemma 9.6], we deduce that (4.3) holds, completing the proof.

Finally, to prove convergence for all multiplicative functions, we argue as before, using the fact that
convergence in the case 𝑤 𝛿 = 1 follows from [20, Theorem 1.4]. We note that although [20, Theorem
1.4] only covers the case without the weight 1𝑚>𝑛, exactly the same argument can be used to cover this
weighted variant. �

Next, we restate and prove Lemma 2.6. Recall that 𝐴𝛿 , M𝑝 and A were defined in (2.6), (2.9) and
(2.13), respectively.

Lemma 2.6 . Let 𝑓 ∈ M𝑝 \A, 𝛿 > 0, ℓ, ℓ′ ∈ N, and let
(
Φ𝐾

)
𝐾 ∈N be the Følner sequence described in

(2.11). Then

lim
𝐾→∞

E𝑄∈Φ𝐾 lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) = 0. (4.4)

Proof. Let 𝛿 > 0 and 𝑓 ∈ M𝑝 \A. Then for some 𝑡 ∈ R and Dirichlet character 𝜒, we have

𝑓 (𝑛) = 𝑛𝑖𝑡 · 𝑔(𝑛), where 𝑔 ∼ 𝜒, 𝑔 ≠ 1. (4.5)

For reasons that will become clear later, for 𝛿 > 0 and 𝑄 ∈ N, let

�̃� 𝛿 ( 𝑓 , 𝑄) := 𝑓 (𝑄) · 𝑄−𝑖𝑡 · lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛). (4.6)

Note that the limit in the definition of �̃� 𝛿 ( 𝑓 , 𝑄) exists by the second part of Proposition 4.1. The idea
to prove (4.4) is to show that �̃� 𝛿 ( 𝑓 , 𝑄) does not depend strongly on Q (it depends only on the prime
factors of Q), so that, as a function of Q, it is orthogonal to any nontrivial completely multiplicative
function with respect to multiplicative averages. Since the left-hand side of (4.4) is the correlation
between �̃�( 𝑓 , 𝑄) and the completely multiplicative function 𝑄 ↦→ 𝑓 (𝑄) · 𝑄−𝑖𝑡 , which is nontrivial by
(4.5), the conclusion will follow.

Fix 𝜀 > 0 and take 𝐾0 = 𝐾0(𝜀, 𝑓 ) so that
∑
𝑝≥𝐾0

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑝−𝑖𝑡 )) + 𝐾−1/2

0 ≤ 𝜀.

Using Proposition 2.5 (and noting that the function 𝐾 ↦→ D( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾, 𝑁) is decreasing for any fixed
f and N), it follows that for every 𝑁 > 𝐾 > 𝐾0 and 𝑄 ∈ Φ𝐾 ,

E𝑛∈[𝑁 ] | 𝑓 (𝑄𝑛 + 1) − (𝑄𝑛)𝑖𝑡 · exp
(
𝐹𝑁 ( 𝑓 , 𝐾)

)
| � 𝜀. (4.7)

Using this identity and Lemma 3.1 with 𝑎(𝑛) := 𝑓 (𝑄𝑛 + 1) · (𝑄𝑛)−𝑖𝑡 and 𝑙1 = 1, 𝑙2 = −1, it follows that

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛

��� 𝑓 (𝑄(𝑚 − 𝑛) + 1) −
(
𝑄(𝑚 − 𝑛)

) 𝑖𝑡 exp
(
𝐹2𝑁 ( 𝑓 , 𝐾)

)��� � 𝜀. (4.8)
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Using (4.7) and Lemma 3.1 with 𝑎(𝑛) := 𝑓 (𝑄𝑛 + 1) · (𝑄𝑛)−𝑖𝑡 and 𝑙1 = 𝑙2 = 1, it follows that

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ]

��� 𝑓 (𝑄(𝑚 + 𝑛) + 1) −
(
𝑄(𝑚 + 𝑛)

) 𝑖𝑡 exp
(
𝐹2𝑁 ( 𝑓 , 𝐾)

)��� � 𝜀. (4.9)

Combining (4.7), (4.8), (4.9), and since all terms involved are 1-bounded, we deduce that for every
𝐾 > 𝐾0 and 𝑄 ∈ Φ𝐾 ,

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛

��� 𝑓 ((𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝑓 (𝑄𝑚 + 1)

−𝑄𝑖𝑡 · (𝑚2 − 𝑛2)𝑖𝑡 · 𝑚−𝑖𝑡 · exp(2𝐹2𝑁 ( 𝑓 , 𝐾)) · exp(𝐹𝑁 ( 𝑓 , 𝐾))
) ��� � 𝜀.

Multiplying by 𝑐ℓ,ℓ′ · 𝑤 𝛿 (𝑚, 𝑛) · 𝑓 (𝑄𝑛) · 𝑄−𝑖𝑡 · 𝑓 (𝑄) = 𝑐ℓ,ℓ′ · 𝑤 𝛿 (𝑚, 𝑛) · 𝑓 (𝑛) · 𝑄−𝑖𝑡 , where
𝑐ℓ,ℓ′ := 𝑓 (ℓ) · 𝑓 (ℓ′), we deduce that

lim sup
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛

���𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) · 𝑄−𝑖𝑡 · 𝑓 (𝑄)

− 𝑐ℓ,ℓ′ · 𝑤 𝛿 (𝑚, 𝑛) · (𝑚2 − 𝑛2)𝑖𝑡 · 𝑚−𝑖𝑡 · 𝑓 (𝑛) · exp(2𝐹2𝑁 ( 𝑓 , 𝐾)) · exp(𝐹𝑁 ( 𝑓 , 𝐾))
��� � 𝜀.

This implies that for every 𝐾 > 𝐾0,

lim sup
𝑁→∞

sup
𝑄∈Φ𝐾

����̃� 𝛿 ( 𝑓 , 𝑄)−

𝑐ℓ,ℓ′ · E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛) · (𝑚2 − 𝑛2)𝑖𝑡 · 𝑚−𝑖𝑡 · 𝑓 (𝑛) · exp(2𝐹2𝑁 ( 𝑓 , 𝐾)) · exp(𝐹𝑁 ( 𝑓 , 𝐾))
��� � 𝜀.

Since the second term does not depend on Q, we conclude that for every 𝐾 > 𝐾0 and 𝑄,𝑄 ′ ∈ Φ𝐾 ,���̃� 𝛿 ( 𝑓 , 𝑄) − �̃� 𝛿 ( 𝑓 , 𝑄 ′)
�� � 𝜀. We can choose 𝜀 arbitrarily small by sending 𝐾 → ∞, so it follows that

lim
𝐾→∞

max
𝑄,𝑄′ ∈Φ𝐾

���̃� 𝛿 ( 𝑓 , 𝑄) − �̃� 𝛿 ( 𝑓 , 𝑄 ′)
�� = 0.

For 𝐾 ∈ N, let 𝑄𝐾 be any element of Φ𝐾 . From the last identity and (4.6), it follows that

lim
𝐾→∞

E𝑄∈Φ𝐾 lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝐴𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) = lim
𝐾→∞

�̃� 𝛿 ( 𝑓 , 𝑄𝐾 ) · E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄𝑖𝑡 .

By (4.5), we have that 𝑄 ↦→ 𝑓 (𝑄) · 𝑄−𝑖𝑡 is a nontrivial multiplicative function; hence, the last limit is
zero by Lemma 3.2. This establishes (4.4) and completes the proof. �

Lastly, we restate and prove Lemma 2.8.

Lemma 2.8. Let 𝜎 be a Borel probability measure on M𝑝 such that 𝜎({1}) > 0 and let A be as in
(2.13). Then there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎, such that

lim inf
𝑁→∞

inf
𝑄∈N



(
E𝑚,𝑛∈[𝑁 ]

∫
A
𝐴𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )

)
≥ 𝜌0. (4.10)

Proof. Let 𝑎 := 𝜎({1}) > 0 and for 𝛿 > 0, let

𝜇𝛿 := lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛).

Note that by Lemma 3.3, we have 𝜇𝛿 > 0. For 𝑇 ∈ R+, we consider the sets

A𝑇 := {(𝑛𝑖𝑡 )𝑛∈N : 𝑡 ∈ [−𝑇,𝑇]}.
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These sets are closed and, as a consequence, Borel. Since A𝑁 increases to A as 𝑁 → ∞, and the Borel
measure 𝜎 is finite, there exists 𝑇0 = 𝑇0 (𝜎) > 0 such that

𝜎(A \A𝑇0) ≤
𝑎

2
. (4.11)

Note also that since lim𝑛→∞ sup𝑄∈N | log(𝑄𝑛 + 1) − log(𝑄𝑛)) | = 0, we have

lim
𝑁→∞

sup
𝑓 ∈A𝑇0 ,𝑄∈N

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛
�� 𝑓 (ℓ((𝑄𝑚 + 1)2 − (𝑄𝑛)2)) · 𝑓 (ℓ′(𝑄𝑚 + 1) (𝑄𝑛))−

𝑓 (ℓ(𝑚2 − 𝑛2)) · 𝑓 (ℓ′𝑚𝑛)
�� = 0,

and by the definition of 𝑤 𝛿 given in Lemma 3.3, we have

lim
𝛿→0+

lim sup
𝑁→∞

sup
𝑓 ∈A𝑇0

��E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛) · 𝑓 (ℓ(𝑚2 − 𝑛2)) · 𝑓 (ℓ′𝑚𝑛) − E𝑚,𝑛∈[𝑁 ] 𝑤 𝛿 (𝑚, 𝑛)
�� = 0.

We deduce from the last two identities that if 𝛿0 is small enough (depending only on 𝑇0 and hence only
on 𝜎), then for every 𝑄 ∈ N, we have

lim inf
𝑁→∞

inf
𝑄∈N



(
E𝑚,𝑛∈[𝑁 ]

∫
A𝑇0

𝐴𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
)
≥
𝜎(A𝑇0) · 𝜇𝛿0

2
≥
𝑎 · 𝜇𝛿0

2
,

where we used that 1 ∈ M𝑇0 ; hence, 𝜎(A𝑇0 ) ≥ 𝜎({1}) = 𝑎. However, using (4.11) and the triangle
inequality, we get

lim sup
𝑁→∞

sup
𝑄∈N

���E𝑚,𝑛∈[𝑁 ]

∫
A\A𝑇0

𝐴𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
��� ≤ 𝑎 · 𝜇𝛿0

4
.

Combining the last two estimates, we deduce that (4.10) holds with 𝜌0 := 𝑎 ·𝜇𝛿0
4 . �

5. Nonlinear concentration estimates

Our goal is to prove the concentration estimate of Proposition 2.11, which is a crucial ingredient in the
proof of part (2) of Theorem 1.2 and in the proof of Theorem 1.5. In fact, we will prove a more general
and quantitatively more explicit statement with further applications in mind.

Let 𝑓 , 𝑔 : N→ U be multiplicative functions and let 𝜒 be a Dirichlet character and 𝑡 ∈ R. For every
𝐾0 ∈ N, we let

𝐺𝑁 ( 𝑓 , 𝐾0) := 2
∑

𝐾0<𝑝≤𝑁 ,
𝑝≡1 (mod 4)

1
𝑝
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑛−𝑖𝑡 − 1) (5.1)

and

D1 ( 𝑓 , 𝑔; 𝑥, 𝑦)2 :=
∑

𝑥<𝑝≤𝑦,
𝑝≡1 (mod 4)

1
𝑝
(1 −
( 𝑓 (𝑝) · 𝑔(𝑝))). (5.2)

Proposition 5.1. Let 𝐾0, 𝑁 ∈ N and 𝑓 : N → U be a multiplicative function. Let also 𝑡 ∈ R, 𝜒 be a
Dirichlet character with period q, 𝑄 =

∏
𝑝≤𝐾0 𝑝

𝑎𝑝 for some 𝑎𝑝 ∈ N, and suppose that 𝑞 | 𝑄. If N is
large enough, depending only on Q and t, then for all 𝑎, 𝑏 ∈ Zwith −𝑄 ≤ 𝑎, 𝑏 ≤ 𝑄 and (𝑎2+𝑏2, 𝑄) = 1,
we have
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E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝜒(𝑎2 + 𝑏2) · 𝑄2𝑖𝑡 · (𝑚2 + 𝑛2)𝑖𝑡 · exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
(D1 + D2

1) ( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;𝐾0,
√
𝑁) +𝑄2 · D1( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ; 𝑁, 3𝑄2𝑁2) +𝑄 · D1 ( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ;

√
𝑁, 𝑁) + 𝐾−1/2

0 ,

(5.3)

where 𝐺𝑁 ,D1 are as in (5.1), (5.2), and the implicit constant is absolute.

Remarks. ◦Note that if 𝑓 ∼ 𝜒·𝑛𝑖𝑡 , we have lim𝑁→∞D1( 𝑓 , 𝜒·𝑛𝑖𝑡 ; 𝑁, 3𝑄2𝑁2) = 0 and lim𝑁→∞D1 ( 𝑓 , 𝜒·
𝑛𝑖𝑡 ;

√
𝑁, 𝑁) = 0. Hence, renaming 𝐾0 as K, taking the max over all 𝑄 ∈ Φ𝐾 , and then letting 𝑁 → ∞

in (5.3) gives the estimate in Proposition 2.11.
◦ The averaging over both variables 𝑚, 𝑛 ∈ N is crucial for our argument and allows to overcome

issues with large primes. In fact, by slightly modifying the example of [34, Lemma 2.1], one can
construct completely multiplicative functions (both pretentious and aperiodic) 𝑓 : N → {−1, 1}, such
that for every 𝑎 ∈ Z+, the averages

E𝑛∈[𝑁 ] 𝑓 ((𝑄𝑛 + 𝑎)2 + 1)

behave rather ‘erratically’, and a similar concentration estimate fails. However, in [48], Teräväinen
proved a version of the concentration estimates for values of 𝑓 (𝑃(𝑄𝑛+ 𝑎)), where 𝑃 ∈ Z[𝑥] is arbitrary
and the multiplicative functions f satisfies 𝑓 (𝑝) = 𝑝𝑖𝑡 𝜒(𝑝) for 𝑝 > 𝑁 (with a somewhat more particular
choice of Q). In our setting, however, we cannot afford to make such assumptions on f.

The proof is carried out in several steps, covering progressively more general settings. Throughout
the argument, we write 𝑝 | | 𝑛 if 𝑝 | 𝑛 but 𝑝2 � 𝑛.

5.1. Preparatory counting arguments

The following lemma will be used multiple times subsequently.

Lemma 5.2. For 𝑄, 𝑁 ∈ N, 𝑎, 𝑏 ∈ Z, and primes 𝑝, 𝑞 such that 𝑝, 𝑞 ≡ 1 (mod 4) and (𝑝𝑞, 𝑄) = 1, let

𝑤𝑁 ,𝑄 (𝑝, 𝑞) :=
1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑝,𝑞 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1. (5.4)

Then

𝑤𝑁 ,𝑄 (𝑝, 𝑝) =
2
𝑝

(
1 − 1

𝑝

)2
+𝑂

( 1
𝑁

)
, (5.5)

and if 𝑝 ≠ 𝑞, we have

𝑤𝑁 ,𝑄 (𝑝, 𝑞) =
4
𝑝𝑞

(
1 − 1

𝑝

)2 (
1 − 1

𝑞

)2
+𝑂

( 1
𝑁

)
, (5.6)

where the implicit constants are absolute.

Remark. We deduce the approximate identity

𝑤𝑁 ,𝑄 (𝑝, 𝑞) = 𝑤𝑁 ,𝑄 (𝑝, 𝑝) · 𝑤𝑁 ,𝑄 (𝑞, 𝑞) +𝑂
( 1
𝑁

)
,

which is crucial for the proof of the concentration estimates. However, because of the 𝑂
( 1
𝑁

)
errors,

these approximate identities will only be useful to us for sums that contain 𝑜(𝑁) terms.

Proof. Throught the discussion, we use 𝜖 to designate a number in {0, 1, 2, 3, 4}.
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We first establish (5.5). Let p satisfy the assumptions. Note first that if 𝑝 | 𝑄𝑛 + 𝑏 and 𝑝 | (𝑄𝑚 +
𝑎)2 + (𝑄𝑛 + 𝑏)2, then also 𝑝2 | (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2; hence, we get no contribution to the sum (5.4) in
this case. So we can assume that 𝑝 � 𝑄𝑛 + 𝑏. Since 𝑝 ≡ 1 (mod 4), the number −1 is a quadratic residue
mod 𝑝, and we have exactly two solutions 𝑚 (mod 𝑝) to the congruence

(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 ≡ 0 (mod 𝑝). (5.7)

Hence, for those 𝑛 ∈ [𝑁], we have 2[𝑁/𝑝] + 𝜖 solutions in the variable 𝑚 ∈ [𝑁] to (5.7). Since there
are 𝑁 − [𝑁/𝑝] + 𝜖 integers 𝑛 ∈ [𝑁] with 𝑝 � 𝑄𝑛 + 𝑏 (we used that (𝑝, 𝑄) = 1 here), we get a total of

2[𝑁/𝑝] (𝑁 − [𝑁/𝑝]) +𝑂 (𝑁) = 2𝑁2/𝑝 − 2𝑁2/𝑝2 +𝑂 (𝑁)

solutions of 𝑚, 𝑛 ∈ [𝑁] to the congruence (5.7). Similarly, we get that if 𝑝 � 𝑄𝑛 + 𝑏, then the number
of solutions 𝑚, 𝑛 ∈ [𝑁] to the congruence (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 ≡ 0 (mod 𝑝2) is

2[𝑁/𝑝2] (𝑁 − [𝑁/𝑝]) +𝑂 (𝑁) = 2𝑁2/𝑝2 − 2𝑁2/𝑝3 +𝑂 (𝑁).

(We used that −1 is also a quadratic residuemod 𝑝2.) These solutions should be subtracted from
the previous solutions of (5.7) in order to count the number of solutions of 𝑚, 𝑛 ∈ [𝑁] for which
𝑝 | | (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2. We deduce that

1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1 =
2
𝑝
− 4
𝑝2 + 2

𝑝3 +𝑂
( 1
𝑁

)
=

2
𝑝

(
1 − 1

𝑝

)2
+𝑂

( 1
𝑁

)
, (5.8)

which proves (5.5).
Next, we establish (5.6). Let 𝑝, 𝑞 satisfy the assumptions. As explained in the previous case, those

𝑛 ∈ [𝑁] for which 𝑝 | 𝑄𝑛 + 𝑏 or 𝑞 | 𝑄𝑛 + 𝑏 do not contribute to the sum (5.4) defining 𝑤𝑁 ,𝑄 (𝑝, 𝑞);
hence, we can assume that (𝑝𝑞, 𝑄𝑛 + 𝑏) = 1. Let

𝐴𝑟 ,𝑠 :=
1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑟 ,𝑠 | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2 , (𝑟𝑠,𝑄𝑛+𝑏)=1

1

and note that

𝑤𝑁 ,𝑄 (𝑝, 𝑞) = 𝐴𝑝,𝑞 − 𝐴𝑝2 ,𝑞 − 𝐴𝑝,𝑞2 + 𝐴𝑝2 ,𝑞2 . (5.9)

We first compute 𝐴𝑝,𝑞 . Since 𝑝 ≡ 𝑞 ≡ 1 (mod 4), the number −1 is a quadratic residuemod 𝑝 and
mod 𝑞, and we get by the Chinese remainder theorem, that for each 𝑛 ∈ [𝑁] with 𝑝, 𝑞 � 𝑄𝑛 + 𝑏, we
have 4 solutions 𝑚 (mod 𝑝𝑞) to the congruence

(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 ≡ 0 (mod 𝑝𝑞).8 (5.10)

We deduce that for each 𝑛 ∈ [𝑁] with (𝑝𝑞, 𝑄𝑛 + 𝑏) = 1, we have 4[𝑁/(𝑝𝑞)] + 𝜖 solutions in the
variable 𝑚 ∈ [𝑁] to the congruence (5.10). Since the number of 𝑛 ∈ [𝑁] for which (𝑝𝑞, 𝑄𝑛 + 𝑏) = 1 is
𝑁 − [𝑁/𝑝] − [𝑁/𝑞] + [𝑁/𝑝𝑞], we get that the total number of solutions to the congruence (5.10) with
𝑚, 𝑛 ∈ [𝑁] and (𝑝𝑞, 𝑛) = 1 is

4[𝑁/(𝑝𝑞)] (𝑁 − [𝑁/𝑝] − [𝑁/𝑞] + [𝑁/(𝑝𝑞)]) +𝑂 (𝑁) =
𝑁2 · (4/(𝑝𝑞)) · (1 − 1/𝑝 − 1/𝑞 + 1/(𝑝𝑞)) +𝑂 (𝑁). (5.11)

8If 𝑝𝑞 > 𝑁 , these may translate to no solutions in 𝑚 ∈ [𝑁 ], but this is also going to be reflected in our computation below
since in this case, 4[𝑁 /(𝑝𝑞) ] + 𝜖 = 𝜖 could very well be 0.
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Hence,

𝐴𝑝,𝑞 :=
4
𝑝𝑞

(
1 − 1

𝑝

) (
1 − 1

𝑞

)
+𝑂

( 1
𝑁

)
.

Similarly, using that −1 is also a quadratic residue mod 𝑝𝑘 and mod 𝑞𝑘 for 𝑘 = 1, 2, we find that

𝐴𝑝2 ,𝑞 =
4
𝑝2𝑞

(
1 − 1

𝑝

) (
1 − 1

𝑞

)
+𝑂

( 1
𝑁

)
,

and

𝐴𝑝,𝑞2 =
4
𝑝𝑞2

(
1 − 1

𝑝

) (
1 − 1

𝑞

)
+𝑂

( 1
𝑁

)
.

Also,

𝐴𝑝2 ,𝑞2 =
4

𝑝2𝑞2

(
1 − 1

𝑝

) (
1 − 1

𝑞

)
+𝑂

( 1
𝑁

)
.

Using the last four identities and (5.9), we deduce that (5.6) holds. This completes the proof. �

We will also need to give upper bounds for 𝑤𝑁 ,𝑄 (𝑝, 𝑞) when 𝑝, 𝑞 are not necessarily primes, and
also give upper bounds that do not involve the error terms𝑂 (1/𝑁) that cause us problems in some cases
(this is only relevant when 𝑝𝑞 ≥ 𝑁). The next lemma is crucial for us and gives an upper bound that is
good enough for our purposes.

Lemma 5.3. For 𝑙, 𝑄, 𝑁 ∈ N and 𝑎, 𝑏 ∈ Z with −𝑄 ≤ 𝑎, 𝑏 ≤ 𝑄, let

𝑤𝑁 ,𝑄 (𝑙) :=
1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑙 | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1.

If l is a sum of two squares, then

𝑤𝑁 ,𝑄 (𝑙) �
𝑄2

𝑙
, (5.12)

where the implicit constant is absolute. In particular, if 𝑤𝑁 ,𝑄 (𝑝, 𝑞) is as in (5.4), taking 𝑙 = 𝑝 and
𝑙 = 𝑝𝑞 where 𝑝, 𝑞 are distinct primes of the form 1 (mod 4), we get

𝑤𝑁 ,𝑄 (𝑝, 𝑝) �
𝑄2

𝑝
, 𝑤𝑁 ,𝑄 (𝑝, 𝑞) �

𝑄2

𝑝𝑞
. (5.13)

Remark. These estimates will allow us to show later that the contribution of the 𝑚, 𝑛 ∈ [𝑁] for which
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 have large prime divisors (say ≥

√
𝑁) is negligible for our purposes. In contrast,

we could not have done the same for the 𝑛 ∈ [𝑁] for which 𝑛2 + 1 have large prime divisors.

Proof. Recall that an integer is a sum of two squares if and only if in its factorization as a product of
primes, all prime factors congruent to 3 (mod 4) occur with even multiplicity. It follows that if l is a sum
of two squares and 𝑙 | (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2, then the ratio

(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)/𝑙 is also a sum of

two squares. We deduce from this and our assumption |𝑎 |, |𝑏 | ≤ 𝑄 that if l is a sum of two squares, then

𝑤𝑁 ,𝑄 (𝑙) ≤
1
𝑁2

∑
𝑘≤3𝑄2𝑁 2/𝑙

𝑟2(𝑘) �
𝑄2

𝑙
,
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where 𝑟2 (𝑘) denotes the number of representations of k as a sum of two squares, and to get the second
estimate, we used the well-known fact

∑
𝑘≤𝑛 𝑟2(𝑘) � 𝑛. This completes the proof. �

5.2. Concentration estimate for additive functions

We start with a concentration estimate for additive functions that will eventually get lifted to a concen-
tration estimate for multiplicative functions.

Definition 5.1. We say that ℎ : N → C is additive if it satisfies ℎ(𝑚𝑛) = ℎ(𝑚) + ℎ(𝑛) whenever
(𝑚, 𝑛) = 1.

Lemma 5.4 (Turán-Kubilius inequality for sums of squares). Let 𝐾0, 𝑁 ∈ N, 𝑎, 𝑏 ∈ Zwith −𝑄 ≤ 𝑎, 𝑏, ≤
𝑄, and ℎ : N→ C be an additive function that is bounded by 1 on primes and such that

1. ℎ(𝑝) = 0 for all primes 𝑝 ≤ 𝐾0 and 𝑝 > 𝑁;
2. ℎ(𝑝) = 0 for all primes 𝑝 ≡ 3 (mod 4);
3. ℎ(𝑝𝑘 ) = 0 for all primes p and 𝑘 ≥ 2.

Let also𝑄 =
∏

𝑝≤𝐾0 𝑝
𝑎𝑝 for some 𝑎𝑝 ∈ N. Then for all large enough N, depending only on 𝐾0, we have

E𝑚,𝑛∈[𝑁 ]
��ℎ ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻𝑁 (ℎ, 𝐾0)

��2 � D2 (ℎ;𝐾0,
√
𝑁) +𝑄2 · D2 (ℎ;

√
𝑁, 𝑁) + 𝐾−1

0 ,
(5.14)

where the implicit constant is absolute,

𝐻𝑁 (ℎ, 𝐾0) := 2
∑

𝐾0<𝑝≤𝑁

ℎ(𝑝)
𝑝

(5.15)

and

D2(ℎ;𝐾0, 𝑁) :=
∑

𝐾0<𝑝≤𝑁

|ℎ(𝑝) |2
𝑝

.

Proof. We consider the additive functions ℎ1, ℎ2, which are the restrictions of h to the primes
𝐾0 < 𝑝 ≤

√
𝑁 and

√
𝑁 < 𝑝 ≤ 𝑁 .9 More precisely,

ℎ1 (𝑝𝑘 ) :=

{
ℎ(𝑝), if 𝑘 = 1 and 𝐾0 < 𝑝 ≤

√
𝑁

0, otherwise

and

ℎ2 (𝑝𝑘 ) :=

{
ℎ(𝑝), if 𝑘 = 1 and

√
𝑁 < 𝑝 ≤ 𝑁

0, otherwise
.

We also define

𝐻𝑖,𝑁 (ℎ𝑖 , 𝐾0) := 2
∑

𝐾0<𝑝≤𝑁

ℎ𝑖 (𝑝)
𝑝

, 𝑖 = 1, 2, (5.16)

9If we worked with h only, we would run into trouble establsihing (5.25) below, since a non-acceptable term of the form
𝑂 (

∑
𝑝,𝑞≤𝑁 𝑁 −1) would appear in our estimates. For ℎ1, this term becomes 𝑂 (

∑
𝑝,𝑞≤

√
𝑁 𝑁 −1) = 𝑂 ( (log 𝑁 )−2) , which

is acceptable. We could have also worked with the restriction to the interval [𝐾0, 𝑁
𝑎 ] for any 𝑎 ≤ 1/2. In the case of

linear concentration estimates, this splitting is not needed since the error that appears in this case is 𝑂 (
∑
𝑝𝑞≤𝑁 𝑁 −1) =

𝑂 (log log 𝑁 /log 𝑁 ) .
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and the technical variant

𝐻 ′
1,𝑁 (ℎ𝑖 , 𝑄, 𝐾0) :=

∑
𝐾0<𝑝≤𝑁

𝑤𝑁 ,𝑄 (𝑝) · ℎ1 (𝑝), (5.17)

where

𝑤𝑁 ,𝑄 (𝑝) :=
1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1. (5.18)

(Note that 𝑤𝑁 ,𝑄 (𝑝) = 𝑤𝑁 ,𝑄 (𝑝, 𝑝), where 𝑤𝑁 ,𝑄 (𝑝, 𝑞) is as in (5.4).) The reason for introducing this
variant is because it gives the mean value of ℎ1 along sums of squares. Indeed, using properties (1)–(3),
we have

E𝑚,𝑛∈[𝑁 ] ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) = E𝑚,𝑛∈[𝑁 ]
∑

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

ℎ1 (𝑝)

=
1
𝑁2

∑
𝐾0<𝑝≤𝑁

ℎ1 (𝑝)
∑

𝑚,𝑛∈[𝑁 ],
𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1 = 𝐻 ′
1,𝑁 (ℎ1, 𝑄, 𝐾0). (5.19)

Using (5.5) of Lemma 5.2 and that ℎ1 (𝑝) = 0 for 𝑝 >
√
𝑁 and ℎ1 (𝑝) is bounded by 1, we get

|𝐻1,𝑁 (ℎ1, 𝐾0) − 𝐻 ′
1,𝑁 (ℎ1, 𝑄, 𝐾0) | �

∑
𝐾0<𝑝≤

√
𝑁

1
𝑝2 + 1

√
𝑁

≤ 1
𝐾0

+ 1
√
𝑁
. (5.20)

Hence, in order to prove (5.14), it suffices to estimate

E𝑚,𝑛∈[𝑁 ]
��ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻 ′

1,𝑁 (ℎ1, 𝑄, 𝐾0)
��2 (5.21)

and

E𝑚,𝑛∈[𝑁 ]
��ℎ2 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

��2 + |𝐻2,𝑁 (ℎ1, 𝐾0) |2. (5.22)

We first deal with the expression (5.21). Using (5.19) and expanding the square below, we get

E𝑚,𝑛∈[𝑁 ]
��ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻 ′

1,𝑁 (ℎ1, 𝑄, 𝐾0)
��2 =

E𝑚,𝑛∈[𝑁 ]
��ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

��2 − |𝐻 ′
1,𝑁 (ℎ1, 𝑄, 𝐾0) |2. (5.23)

To estimate this expression, first note that since ℎ1 is additive and ℎ1 (𝑝𝑘 ) = 0 for 𝑘 ≥ 2, we have

E𝑚,𝑛∈[𝑁 ]
��ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

��2 = E𝑚,𝑛∈[𝑁 ]

��� ∑
𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

ℎ1 (𝑝)
���2. (5.24)

Expanding the square, using the fact that ℎ1 (𝑝) = 0 unless 𝐾0 < 𝑝 ≤
√
𝑁 , and the definition of

𝑤𝑁 ,𝑄 (𝑝, 𝑞) given in (5.4), we get that the right-hand side is equal to
∑

𝐾0<𝑝≤
√
𝑁

|ℎ1 (𝑝) |2 · 𝑤𝑁 ,𝑄 (𝑝, 𝑝) +
∑

𝐾0<𝑝,𝑞≤
√
𝑁 , 𝑝≠𝑞

ℎ1 (𝑝) · ℎ1 (𝑞) · 𝑤𝑁 ,𝑄 (𝑝, 𝑞).
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Using equation (5.5) of Lemma 5.2, we get that the first term is at most

2 ·
∑

𝐾0<𝑝≤
√
𝑁

|ℎ1 (𝑝) |2
𝑝

+𝑂 (𝑁−1/2).

Using equations (5.5) and (5.6) of Lemma 5.2, we get that the second term is equal to (we crucially use
the bound 𝑝, 𝑞 ≤

√
𝑁 here and the prime number theorem)

∑
𝐾0<𝑝,𝑞≤

√
𝑁 , 𝑝≠𝑞

ℎ1 (𝑝) · ℎ1 (𝑞) · 𝑤𝑁 ,𝑄 (𝑝, 𝑝) · 𝑤𝑁 ,𝑄 (𝑞, 𝑞) +𝑂 ((log 𝑁)−2) ≤

(𝐻 ′
1,𝑁 (ℎ1, 𝑄, 𝐾0))2 +𝑂 ((log 𝑁)−2),

where to get the last estimate, we added to the sum the contribution of the diagonal terms 𝑝 = 𝑞 (which
is nonnegative), and used (5.17) and the fact that ℎ1 (𝑝) = 0 for 𝑝 >

√
𝑁 . Combining (5.23) with the

previous estimates, we are led to the bound

E𝑚,𝑛∈[𝑁 ]
��ℎ1 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻 ′

1,𝑁 (ℎ1, 𝑄, 𝐾0)
��2 �

D2(ℎ1;𝐾0,
√
𝑁) +𝑂 ((log 𝑁)−2). (5.25)

Next, we estimate the expression (5.22). Since ℎ2 is additive and satisfies properties (1)–(3), we get
using (5.24) (with ℎ2 in place of ℎ1) and expanding the square

E𝑚,𝑛∈[𝑁 ]
��ℎ2 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

��2 =
∑

√
𝑁<𝑝,𝑞≤𝑁

ℎ2 (𝑝) ℎ2 (𝑞) 𝑤𝑁 ,𝑄 (𝑝, 𝑞).

Since ℎ2 (𝑝) ≠ 0 only when 𝑝 ≡ 1 (mod 4), using (5.13) of Lemma 5.3, we get that the right-hand side
is bounded by

� 𝑄2 ·
( ∑
√
𝑁<𝑝,𝑞≤𝑁

|ℎ2 (𝑝) | |ℎ2 (𝑞) |
𝑝𝑞

+
∑

√
𝑁<𝑝≤𝑁

|ℎ2 (𝑝) |2
𝑝

)
=

𝑄2 ·
(( ∑

√
𝑁<𝑝≤𝑁

|ℎ2 (𝑝) |
𝑝

)2
+ D2(ℎ2;

√
𝑁, 𝑁)

)
≤

𝑄2 ·
( ∑
√
𝑁<𝑝≤𝑁

|ℎ2 (𝑝) |2
𝑝

·
∑

√
𝑁<𝑝≤𝑁

1
𝑝
+ D2 (ℎ2;

√
𝑁, 𝑁)

)
� 𝑄2 · D2(ℎ2;

√
𝑁, 𝑁),

where we crucially used the estimate

∑
√
𝑁<𝑝≤𝑁

1
𝑝
� 1.

Similarly, we find

(𝐻2,𝑁 (ℎ2, 𝐾0))2 = 4
( ∑
√
𝑁<𝑝≤𝑁

|ℎ2 (𝑝) |
𝑝

)2
� D2 (ℎ2;

√
𝑁, 𝑁).
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Combining the previous estimates, we get the following bound for the expression in (5.22):

E𝑚,𝑛∈[𝑁 ]
(
ℎ2 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

)2 + (𝐻2,𝑁 (ℎ1, 𝐾0))2 � 𝑄2 · D2 (ℎ2;
√
𝑁, 𝑁). (5.26)

Combining the bounds (5.20), (5.25), (5.26), we get the asserted bound (5.14), completing the
proof. �

5.3. Concentration estimates for multiplicative functions

Next we use Lemma 5.4 to get a variant that deals with multiplicative functions.

Lemma 5.5. Let 𝐾0, 𝑁 ∈ N, 𝑎, 𝑏 ∈ Z with −𝑄 ≤ 𝑎, 𝑏 ≤ 𝑄, and 𝑓 : N→ U be a multiplicative function
that satisfies

1. 𝑓 (𝑝) = 1 for all primes 𝑝 ≤ 𝐾0 and 𝑝 > 𝑁;
2. 𝑓 (𝑝) = 1 for all primes 𝑝 ≡ 3 (mod 4);
3. 𝑓 (𝑝𝑘 ) = 1 for all primes p and 𝑘 ≥ 2.

Let also 𝑄 =
∏

𝑝≤𝐾0 𝑝
𝑎𝑝 with 𝑎𝑝 ∈ N. If N is large enough, depending only on 𝐾0, then

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)− exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
(D + D2) ( 𝑓 , 1;𝐾0,

√
𝑁) +𝑄 · D( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 , (5.27)

where the implicit constant is absolute and

𝐺𝑁 ( 𝑓 , 𝐾0) := 2
∑

𝐾0<𝑝≤𝑁

1
𝑝
( 𝑓 (𝑝) − 1). (5.28)

Proof. Let ℎ : N→ C be the additive function given on prime powers by

ℎ(𝑝𝑘 ) := 𝑓 (𝑝𝑘 ) − 1.

We note that due to our assumptions on 𝑓 , properties (1)–(3) of Lemma 5.4 are satisfied for ℎ/2, which
is bounded by 1 on primes.

Using that 𝑧 = 𝑒𝑧−1 +𝑂 (|𝑧 − 1|2) for |𝑧 | ≤ 1 and property (3), we have

𝑓 (𝑚2 + 𝑛2) =
∏

𝑝𝑘 | |𝑚2+𝑛2

𝑓 (𝑝𝑘 ) =
∏

𝑝 | |𝑚2+𝑛2

(
exp(ℎ(𝑝)) +𝑂 (|ℎ(𝑝) |2)

)
.

Applying the estimate |
∏

𝑖≤𝑘 𝑧𝑖 −
∏

𝑖≤𝑘 𝑤𝑖 | ≤
∑
𝑖≤𝑘 |𝑧𝑖 − 𝑤𝑖 |, we deduce that for all 𝑚, 𝑛 ∈ N, we have

𝑓 (𝑚2 + 𝑛2) = exp(ℎ(𝑚2 + 𝑛2)) +𝑂
( ∑
𝑝 | |𝑚2+𝑛2

|ℎ(𝑝) |2
)
.

Using this and since 𝐺𝑁 ( 𝑓 , 𝐾0) = 𝐻𝑁 (ℎ, 𝐾0), where 𝐻𝑁 (ℎ, 𝐾0) is given by (5.15), we get

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
E𝑚,𝑛∈[𝑁 ] | exp

(
ℎ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)

)
− exp(𝐻𝑁 (ℎ, 𝐾0)) |+

E𝑚,𝑛∈[𝑁 ]
∑

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

|ℎ(𝑝) |2. (5.29)
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Next we use the inequality |𝑒𝑧1 − 𝑒𝑧2 | ≤ |𝑧1 − 𝑧2 |, which is valid for 
𝑧1,
𝑧2 ≤ 0, to bound the last
expression by

E𝑚,𝑛∈[𝑁 ] |ℎ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻𝑁 (ℎ, 𝐾0) | + E𝑚,𝑛∈[𝑁 ]
∑

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

|ℎ(𝑝) |2. (5.30)

To bound the first term, we use Lemma 5.4. It gives that for all large enough N, depending on 𝐾0 only,
we have

E𝑚,𝑛∈[𝑁 ]
��ℎ ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 𝐻𝑁 (ℎ, 𝐾0)

�� �
D(ℎ;𝐾0,

√
𝑁) +𝑄 · D(ℎ;

√
𝑁, 𝑁) + 𝐾− 1

2
0 � D( 𝑓 , 1;𝐾0,

√
𝑁) +𝑄 · D( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 , (5.31)

where to get the last bound, we used that |ℎ(𝑝) |2 ≤ 2 − 2
( 𝑓 (𝑝)), which holds since | 𝑓 (𝑝) | ≤ 1. To
bound the second term in (5.30), we note that using properties (1)–(3) of Lemma 5.4, we have

E𝑚,𝑛∈[𝑁 ]
∑

𝑝 | | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

|ℎ(𝑝) |2 =
∑

𝐾0<𝑝≤𝑁
|ℎ(𝑝) |2 𝑤𝑁 ,𝑄 (𝑝) �

∑
𝐾0<𝑝≤𝑁

|ℎ(𝑝) |2
𝑝

+𝑂 ((log 𝑁)−1) � D2( 𝑓 , 1;𝐾0, 𝑁) +𝑂 ((log 𝑁)−1), (5.32)

where 𝑤𝑁 ,𝑃 (𝑝) is as in (5.18) and we used equation (5.5) of Lemma 5.2 and the prime number theorem
to get the first bound. Combining (5.29)–(5.32), we get the asserted bound. �

We use the previous result to deduce the following improved version.
Lemma 5.6. Let 𝐾0, 𝑁 ∈ N and 𝑓 : N → U be a multiplicative function such that 𝑓 (𝑝) = 1 for all
primes 𝑝 > 𝑁 with 𝑝 ≡ 1 (mod 4). Let also 𝑄 =

∏
𝑝≤𝐾0 𝑝

𝑎𝑝 with 𝑎𝑝 ∈ N. If N is large enough,
depending only on 𝐾0, then for all 𝑎, 𝑏 ∈ Z with −𝑄 ≤ 𝑎, 𝑏 ≤ 𝑄 and (𝑎2 + 𝑏2, 𝑄) = 1, we have

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
(D1 + D2

1) ( 𝑓 , 1;𝐾0,
√
𝑁) +𝑄 · D1( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 , (5.33)

where the implicit constant is absolute and

𝐺𝑁 ( 𝑓 , 𝐾0) := 2
∑

𝐾0<𝑝≤𝑁 ;
𝑝≡1 (mod 4)

1
𝑝
( 𝑓 (𝑝) − 1), (5.34)

D1 ( 𝑓 , 1; 𝑥, 𝑦)2 :=
∑

𝑥<𝑝≤𝑦;
𝑝≡1 (mod 4)

1
𝑝
(1 −
( 𝑓 (𝑝)))

for 𝑥 < 𝑦.
Proof. We first define the multiplicative function 𝑓 : N→ U on prime powers as follows

𝑓 (𝑝𝑘 ) :=

{
𝑓 (𝑝𝑘 ), if 𝑝 > 𝐾0

1, otherwise
.

Since 𝑝 ≤ 𝐾0 implies 𝑝 | 𝑄 and (𝑎2 + 𝑏2, 𝑄) = 1, we get that 𝑝 � (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 for every
𝑝 ≤ 𝐾0; hence,

𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) = 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) for every 𝑚, 𝑛 ∈ N.
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Note also that 𝐺𝑁 ( 𝑓 , 𝑄) = 𝐺𝑁 ( 𝑓 , 𝑄) and D1( 𝑓 , 1;𝐾0, 𝑁) = D1 ( 𝑓 , 1;𝐾0, 𝑁). It follows that in order
to establish (5.33), it is enough to show that for all large enough N, depending only on 𝐾0, we have

E𝑚,𝑛∈[𝑁 ] | 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp(𝐺𝑁 ( 𝑓 , 𝑄)) | �

(D1 + D2
1) ( 𝑓 , 1;𝐾0,

√
𝑁) +𝑄 · D1 ( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 . (5.35)

In order to establish (5.35), we make a series of further reductions that will eventually allow us to
apply Lemma 5.5. For every 𝑝 ≡ 3 (mod 4), we have that 𝑝 | 𝑚2 + 𝑛2 implies that 𝑝 | 𝑚 and 𝑝 | 𝑛.
Consequently, the contribution to the average of those 𝑚, 𝑛 ∈ [𝑁] for which (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 is
divisible by some prime 𝑝 ≡ 3 (mod 4) is (note that (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 is only divisible by primes
𝑝 > 𝐾0)

� 1
𝑁2

∑
𝐾0<𝑝≤𝑁

[
𝑁

𝑝

]2
� 1

𝐾0
,

which is acceptable.
Next, we show that the contribution to the average in (5.35) of those 𝑚, 𝑛 ∈ [𝑁] for which (𝑄𝑚 +

𝑎)2 + (𝑄𝑛 + 𝑏)2 is divisible by 𝑝2 for some prime 𝑝 ≡ 1 (mod 4) with 𝑝 > 𝑃0 (hence 𝑝 � 𝑄) is also
acceptable. Indeed, for fixed 𝑛 ∈ [𝑁] such that 𝑝 � 𝑄𝑛 + 𝑏, there exist at most 2[𝑁/𝑝2] + 2 values of
𝑚 ∈ [𝑁] such that 𝑝2 | (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2. However, if 𝑝 | 𝑄𝑛 + 𝑏 and 𝑝 | (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2,
then also 𝑝 | 𝑄𝑚 + 𝑎. Hence, the contribution to the average in (5.35) of those 𝑚, 𝑛 ∈ [𝑁] for which
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 is divisible by 𝑝2 for some prime 𝑝 ≡ 1 (mod 4) is bounded by (note again that
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 is only divisible by primes 𝑝 > 𝐾0)

� 1
𝑁2

( ∑
𝐾0<𝑝≤𝑁

( [ 𝑁
𝑝2

]
+ 1

)
𝑁 +

∑
𝐾0<𝑝≤𝑁

[
𝑁

𝑝

]2 )
� 1

𝐾0
+ 1

log 𝑁
,

where we used the prime number theorem to bound 1
𝑁

∑
𝐾0<𝑝≤𝑁 1.

Combining the above reductions, we deduce that in order to establish the estimate (5.35), we may
further assume that

𝑓 (𝑝𝑘 ) = 1 for all 𝑝 ∈ P, 𝑘 ≥ 2, and 𝑓 (𝑝𝑘 ) = 1 for all 𝑝 ≡ 3 (mod 4), 𝑘 ∈ N. (5.36)

We are now in a situation where Lemma 5.5 is applicable and gives that for all large enough N,
depending only on 𝐾0, if D1 ( 𝑓 , 1;𝐾0, 𝑁) ≤ 1, we have (note that (5.36) implies that D1 ( 𝑓 , 1;𝐾0, 𝑁) =
D( 𝑓 , 1;𝐾0, 𝑁))

E𝑚,𝑛∈[𝑁 ] | 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp(𝐺𝑁 ( 𝑓 , 𝐾0)) | �

(D1 + D2
1) ( 𝑓 , 1;𝐾0,

√
𝑁) +𝑄 · D1 ( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 .

Combining this bound with the bounds we got in order to arrive to this reduction, we get that (5.35) is
satisfied. This completes the proof. �

5.4. Proof of Proposition 5.1

We start with some reductions. Suppose that the statement holds when 𝜒 = 1 and 𝑡 = 0. We will show
that it holds for arbitrary 𝜒 and t. Let 𝑓 := 𝑓 · 𝜒 · 𝑛−𝑖𝑡 , and apply the conclusion for 𝜒 = 1, 𝑡 = 0. We get
the following bound for 𝑓 :

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
(D1 + D2

1) ( 𝑓 , 1;𝐾0,
√
𝑁) +𝑄2 · D1( 𝑓 , 1; 𝑁, 3𝑄2𝑁2) +𝑄 · D1 ( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾−1/2

0 . (5.37)
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Note that since 𝜒 is periodic with period q and 𝑞 | 𝑄, we have 𝜒((𝑄𝑚+𝑎)2+ (𝑄𝑛+𝑏)2) = 𝜒(𝑎2+𝑏2) for
every 𝑚, 𝑛 ∈ N. Furthermore, since by assumption (𝑎2 + 𝑏2, 𝑄) = 1 and 𝑞 | 𝑄, we have (𝑎2 + 𝑏2, 𝑞) = 1;
hence, |𝜒(𝑎2 + 𝑏2) | = 1. Also, lim𝑚,𝑛→∞((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2)𝑖𝑡 − 𝑄2𝑖𝑡 · (𝑚2 + 𝑛2)𝑖𝑡 = 0 and
D1 ( 𝑓 , 1; 𝑥, 𝑦) = D1 ( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ; 𝑥, 𝑦). Lastly, note that

𝐺𝑁 ( 𝑓 , 𝐾0) = 2
∑

𝐾0<𝑝≤𝑁 ,
𝑝≡1 (mod 4)

1
𝑝
( 𝑓 (𝑝) − 1) = 2

∑
𝐾0<𝑝≤𝑁 ,

𝑝≡1 (mod 4)

1
𝑝
( 𝑓 (𝑝) · 𝜒(𝑝) · 𝑛−𝑖𝑡 − 1) = 𝐺𝑁 ( 𝑓 , 𝐾0).

After inserting this information in (5.37), we get that (5.3) is satisfied.
So it suffices to show that if 𝑄 =

∏
𝑝≤𝐾0 𝑝

𝑎𝑝 for some 𝑎𝑝 ∈ N, then if N is large enough, depending
only on Q, and D1 ( 𝑓 , 1;𝐾0, 𝑁) ≤ 1, we have

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp

(
𝐺𝑁 ( 𝑓 , 𝐾0)

) �� �
(D1 + D2

1) ( 𝑓 , 1;𝐾0,
√
𝑁) +𝑄2 · D1 ( 𝑓 , 1; 𝑁, 3𝑄2𝑁2) +𝑄 · D1( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾−1/2

0 . (5.38)

For every 𝑁 ∈ N, we decompose f as 𝑓 = 𝑓𝑁 ,1 · 𝑓𝑁 ,2, where the multiplicative functions
𝑓𝑁 ,1, 𝑓𝑁 ,2 : N→ U are defined on prime powers as follows:

𝑓𝑁 ,1(𝑝𝑘 ) :=

{
𝑓 (𝑝), if 𝑘 = 1 and 𝑝 > 𝑁, 𝑝 ≡ 1 (mod 4)
1, otherwise

,

𝑓𝑁 ,2(𝑝𝑘 ) :=

{
1, if 𝑘 = 1 and 𝑝 > 𝑁, 𝑝 ≡ 1 (mod 4)
𝑓 (𝑝𝑘 ), otherwise

.

We first study the function 𝑓𝑁 ,1. Following the notation of Lemma 5.3 for 𝑙, 𝑄, 𝑁 ∈ N, we let

𝑤𝑁 ,𝑄 (𝑙) :=
1
𝑁2

∑
𝑚,𝑛∈[𝑁 ],

𝑙 | (𝑄𝑚+𝑎)2+(𝑄𝑛+𝑏)2

1.

Lemma 5.3 implies that if l is a sum of two squares, then

𝑤𝑁 ,𝑄 (𝑙) �
𝑄2

𝑙
. (5.39)

Since for 𝑁 � 𝑄 we have 𝑓𝑁 ,1((𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 1 ≠ 0 only if (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 is
divisible by one or two primes 𝑝 > 𝑁 ,10 we get

E𝑚,𝑛∈[𝑁 ] | 𝑓𝑁 ,1
(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 1| ≤∑
𝑁<𝑝≤3𝑄2𝑁 2 ,
𝑝≡1 (mod 4)

| 𝑓 (𝑝) − 1| 𝑤𝑁 ,𝑄 (𝑝) +
∑

𝑁<𝑝,𝑞≤3𝑄2𝑁 2 , 𝑝≠𝑞
𝑝,𝑞≡1 (mod 4)

| 𝑓 (𝑝𝑞) − 1| 𝑤𝑁 ,𝑄 (𝑝𝑞), (5.40)

where we used that 𝑓𝑁 ,1(𝑝) = 𝑓 (𝑝) for all 𝑝 > 𝑁 , and in the second sum, we have ignored the
contribution of the diagonal terms 𝑝 = 𝑞 since, by construction, 𝑓𝑁 ,1(𝑝2) = 1 for all primes p. Using
(5.39) for 𝑙 := 𝑝, which is a sum of two squares since 𝑝 ≡ 1 (mod 4), we estimate the first term as
follows:11

10For 𝑚, 𝑛 ∈ [𝑁 ] and −𝑄 ≤ 𝑎, 𝑏 ≤ 𝑄, we have (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 � 𝑄2𝑁 2, so if (𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2 was
divisible by three or more primes greater than N, we would have 𝑁 3 � 𝑄2𝑁 2, which fails if 𝑄 � 𝑁 .

11Bounding 𝑤𝑁,𝑄 (𝑝) using (5.5) would lead to non-acceptable errors here, because the range of summation is much larger
than N.
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∑
𝑁<𝑝≤3𝑄2𝑁 2 ,
𝑝≡1 (mod 4)

| 𝑓 (𝑝) − 1| 𝑤𝑁 ,𝑄 (𝑝) � 𝑄2
∑

𝑁<𝑝≤3𝑄2𝑁 2 ,
𝑝≡1 (mod 4)

| 𝑓 (𝑝) − 1|
𝑝

≤

𝑄2 ·
( ∑
𝑁<𝑝≤3𝑄2𝑁 2 ,
𝑝≡1 (mod 4)

| 𝑓 (𝑝) − 1|2
𝑝

) 1
2 ·

( ∑
𝑁<𝑝≤3𝑄2𝑁 2 ,
𝑝≡1 (mod 4)

1
𝑝

) 1
2 � 𝑄2 · D1 ( 𝑓 , 1; 𝑁, 3𝑄2𝑁2),

where we used that
∑

𝑁 ≤𝑝≤3𝑄2𝑁 2
1
𝑝 � 1 for 𝑁 ≥ 𝑄. Similarly, using (5.39) for 𝑙 := 𝑝𝑞, which is a sum

of two squares since 𝑝𝑞 ≡ 1 (mod 4), we estimate the second term in (5.40) as follows (note that since
𝑝 ≠ 𝑞, we have 𝑓 (𝑝𝑞) = 𝑓 (𝑝) 𝑓 (𝑞)):

∑
𝑁<𝑝,𝑞≤3𝑄2𝑁 2 , 𝑝≠𝑞,

𝑝,𝑞≡1 (mod 4)

| 𝑓 (𝑝𝑞) − 1| 𝑤𝑁 ,𝑄 (𝑝𝑞) � 𝑄2
∑

𝑁<𝑝,𝑞≤3𝑄2𝑁 2 ,
𝑝,𝑞≡1 (mod 4)

| 𝑓 (𝑝) − 1| + | 𝑓 (𝑞) − 1|
𝑝𝑞

≤

2𝑄2 ·
( ∑
𝑁<𝑝,𝑞≤3𝑄2𝑁 2 ,
𝑝,𝑞≡1 (mod 4)

| 𝑓 (𝑝) − 1|2
𝑝𝑞

) 1
2 ·

( ∑
𝑁<𝑝,𝑞≤3𝑄2𝑁 2 ,
𝑝,𝑞≡1 (mod 4)

1
𝑝𝑞

) 1
2 � 𝑄2 · D1 ( 𝑓 , 1; 𝑁, 3𝑄2𝑁2),

where we used that
∑

𝑁 ≤𝑝≤3𝑄2𝑁 2
1
𝑝 � 1 for 𝑁 ≥ 𝑄. Combining the above estimates and (5.40), we

deduce that for 𝑁 � 𝑄, we have

E𝑚,𝑛∈[𝑁 ]
�� 𝑓𝑁 ,1

(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 1| � 𝑄2 · D1 ( 𝑓 , 1; 𝑁, 3𝑄2𝑁2). (5.41)

Next, we move to the function 𝑓2. Since 𝑓2(𝑝) = 1 for all primes 𝑝 ≥ 𝑁 , Lemma 5.6 is applicable.
We get that if N is large enough, depending on 𝐾0, we have

E𝑚,𝑛∈[𝑁 ] | 𝑓𝑁 ,2
(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp(𝐺𝑁 ( 𝑓 , 𝐾0)) | �

(D1 + D2
1) ( 𝑓 , 1;𝐾0,

√
𝑁) +𝑄 · D1 ( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾− 1

2
0 , (5.42)

where we used that 𝑓𝑁 ,2(𝑝) = 𝑓 (𝑝) for all primes 𝑝 ≡ 1 (mod 4) with 𝑝 ≤ 𝑁; hence, 𝐺𝑁 ( 𝑓𝑁 ,2, 𝐾0) =
𝐺𝑁 ( 𝑓 , 𝐾0) and D1 ( 𝑓𝑁 ,2, 1;𝐾0, 𝑁) = D1 ( 𝑓 , 1;𝐾0, 𝑁).

Finally, we use the triangle inequality and combine (5.41) and (5.42) to obtain that the left-hand side
in (5.38) is bounded by

E𝑚,𝑛∈[𝑁 ]
(
| 𝑓𝑁 ,1

(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − 1| + | 𝑓𝑁 ,2

(
(𝑄𝑚 + 𝑎)2 + (𝑄𝑛 + 𝑏)2) − exp(𝐺𝑁 ( 𝑓 , 𝐾0)) |

)
� (D1 + D2

1) ( 𝑓 , 1;𝐾0,
√
𝑁) +𝑄2 · D1( 𝑓 , 1; 𝑁, 3𝑄2𝑁2) +𝑄 · D1 ( 𝑓 , 1;

√
𝑁, 𝑁) + 𝐾−1/2

0 .

Thus, (5.38) holds, completing the proof.

6. Type II Pythagorean pairs and more

6.1. Proof of Theorem 2.9

As explained in Section 2.3, in order to complete the proof of Theorem 2.9 (and hence of part (2) of
Theorem 2.2), it remains to prove Proposition 2.10, Proposition 2.12 and Lemma 2.13. We do this in
this section.

We repeat the statement of Proposition 2.10 and explain how it can be derived from results in [21].
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Proposition 6.1. Let 𝑓 : N → U be an aperiodic completely multiplicative function. Then for every
𝛿 > 0 and ℓ, ℓ′, 𝑄 ∈ N, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) · 𝑓 (ℓ((𝑄𝑚 + 1)2 + (𝑄𝑛)2)) · 𝑓 (ℓ′(𝑄𝑚 + 1) (𝑄𝑛)) = 0, (6.1)

where �̃� 𝛿 (𝑚, 𝑛) is as in (3.3).
Proof. Recall that

�̃� 𝛿 (𝑚, 𝑛) := 𝐹𝛿
(
(ℓ(𝑚2 + 𝑛2))𝑖 · (ℓ′𝑚𝑛)−𝑖

)
, 𝑚, 𝑛 ∈ N,

where 𝐹𝛿 : S1 → [0, 1] is the continuous function defined in Lemma 3.3. Using uniform approximation
of 𝐹𝛿 by trigonometric polynomials and linearity, we get that it suffices to verify (6.1) when �̃� 𝛿 (𝑚, 𝑛)
is replaced by (𝑚2 + 𝑛2)𝑘𝑖 · (𝑚𝑛)−𝑘𝑖 for arbitrary 𝑘 ∈ Z. Furthermore, the limit remains unchanged if
we replace (𝑚2 + 𝑛2)𝑘𝑖 · (𝑚𝑛)−𝑘𝑖 with ((𝑄𝑚 + 1)2 + (𝑄𝑛)2)𝑘𝑖 · ((𝑄𝑚 + 1) (𝑄𝑛))−𝑘𝑖 (the +1 makes no
difference asymptotically, so we can omit it, and then 𝑄2 is going to cancel because of the conjugate).
Hence, it suffices to establish that for every 𝑘 ∈ Z, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝑓𝑘 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) · 𝑓𝑘 ((𝑄𝑚 + 1) (𝑄𝑛)) = 0, (6.2)

where 𝑓𝑘 (𝑛) := 𝑓 (𝑛) · 𝑛𝑘𝑖 , 𝑛 ∈ N. Note that since the indicator function of an arithmetic progression
is a linear combination of Dirichlet characters, in order to establish (6.2), it suffices to show that for all
Dirichlet characters 𝜒, 𝜒′, we have

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝜒(𝑚) · 𝜒′(𝑛) · 𝑓𝑘 (𝑚2 + 𝑛2) · 𝑓𝑘 (𝑚𝑛) = 0,

or, equivalently, that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ] 𝑓𝑘 (𝑚2 + 𝑛2) · ( 𝑓𝑘 · 𝜒) (𝑚) · ( 𝑓𝑘 · 𝜒′) (𝑛) = 0. (6.3)

Since f is aperiodic, so is 𝑓𝑘 · 𝜒 (and 𝑓𝑘 · 𝜒′). By [21, Theorem 9.7] (applied to 𝑄(𝑚, 𝑛) := 𝑚2 + 𝑛2),
we deduce that (6.3) holds, completing the proof. �

Recall that in (2.11), we defined the multiplicative Følner sequence (Φ𝐾 ) by

Φ𝐾 :=
{ ∏
𝑝≤𝐾

𝑝𝑎𝑝 : 𝐾 < 𝑎𝑝 ≤ 2𝐾
}
, 𝐾 ∈ N.

Note that every 𝑞 ∈ N divides all elements of Φ𝐾 when 𝐾 ∈ N is large enough depending on q.
The next result is a key ingredient in the proof of Proposition 2.12 below.

Lemma 6.2. Let 𝑓 : N → S1 be a completely multiplicative function such that 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 for some
𝑡 ∈ R and Dirichlet character 𝜒. Let also 𝛿 > 0 be fixed, �̃� 𝛿 be as in (3.3), and (Φ𝐾 ) be as in (2.11).
For 𝑄, 𝑁 ∈ N, we let

𝐿 𝛿,𝑁 ( 𝑓 , 𝑄) := E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) · 𝑓 (ℓ((𝑄𝑚 + 1)2 + (𝑄𝑛)2)) · 𝑓 (ℓ′(𝑄𝑚 + 1) 𝑛) (6.4)

and

�̃� 𝛿,𝑁 ( 𝑓 , 𝑄) := 𝑄−𝑖𝑡 · 𝐿 𝛿,𝑁 ( 𝑓 , 𝑄). (6.5)

Then

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄,𝑄′ ∈Φ𝐾

| �̃� 𝛿,𝑁 ( 𝑓 , 𝑄) − �̃� 𝛿,𝑁 ( 𝑓 , 𝑄 ′) | = 0. (6.6)
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Proof. For 𝐾 ∈ N, let 𝐹𝑁 ( 𝑓 , 𝐾) and 𝐺𝑁 ( 𝑓 , 𝐾) be defined as in (2.12) and (2.18), respectively.
We apply the concentration inequalities of Proposition 2.5 and Proposition 2.11. Since 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡

for some 𝑡 ∈ R and Dirichlet character 𝜒, we get that

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄∈Φ𝐾

E𝑚∈[𝑁 ] | 𝑓 (𝑄𝑚 + 1) − (𝑄𝑚)𝑖𝑡 exp
(
𝐹𝑁 ( 𝑓 , 𝐾)

)
| = 0

and

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄∈Φ𝐾

E𝑚,𝑛∈[𝑁 ]
�� 𝑓 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) −𝑄2𝑖𝑡 · (𝑚2 + 𝑛2)𝑖𝑡 · exp

(
𝐺𝑁 ( 𝑓 , 𝐾)

)�� = 0.

We deduce that if

𝑀𝛿,𝑁 ( 𝑓 ) := 𝑓 (ℓ) · 𝑓 (ℓ′) · E𝑚,𝑛∈[𝑁 ] �̃� 𝛿 (𝑚, 𝑛) · (𝑚2 + 𝑛2)𝑖𝑡 · 𝑚−𝑖𝑡 · 𝑓 (𝑛),

then

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄∈Φ𝐾

| �̃� 𝛿,𝑁 ( 𝑓 , 𝑄) − 𝑀𝛿,𝑁 ( 𝑓 ) · exp(𝐺𝑁 ( 𝑓 , 𝐾)) · exp(𝐹𝑁 ( 𝑓 , 𝐾)) | = 0.

Using this identity and the triangle inequality, we deduce that (6.6) holds. �

Recall that M𝑝 and A were defined in (2.9) and (2.13), respectively. The next result follows easily
from Lemma 3.2 and the continuity of finite Borel measures.

Lemma 6.3. Let 𝜎 be a Borel probability measure on M𝑝 . Then for every 𝜀 > 0, there exist a Borel
subset M𝜀 of M𝑝 \A and 𝐾0 ∈ N, such that

𝜎((M𝑝 \A) \M𝜀) ≤ 𝜀 (6.7)

and

sup
𝑓 ∈M𝜀

|E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 | ≤ 𝜀 for all 𝐾 ≥ 𝐾0, (6.8)

where 𝑡 𝑓 is the unique real for which 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 𝑓 for some Dirichlet character 𝜒.

Remark. The important point is that 𝐾0 does not depend on f as long as 𝑓 ∈ M𝜀 .

Proof. Let 𝜀 > 0. For 𝑚 ∈ N, we let

M𝜀,𝑚 := { 𝑓 ∈ M𝑝 \A : |E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 | ≤ 𝜀 for all 𝐾 ≥ 𝑚}.

Note that by Lemma 3.6, the map 𝑓 ↦→ 𝑡 𝑓 from M𝑝 toR is Borel; hence, for every 𝜀 > 0, the sets M𝜀,𝑚

form an increasing family of Borel sets. Since for 𝑓 ∉ A we have 𝑓 · 𝑛−𝑖𝑡 𝑓 ≠ 1, we get by Lemma 3.2
that for every 𝑓 ∈ M𝑝 \A, we have

lim
𝐾→∞

E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 = 0.

Hence,

(M𝑝 \A) :=
⋃
𝑚∈N

M𝜀,𝑚.
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It follows that there exists 𝑚0 ∈ N such that

𝜎((M𝑝 \A) \M𝜀,𝑚0 ) ≤ 𝜀.

Renaming M𝜀,𝑚0 as M𝜀 and letting 𝐾0 := 𝑚0 gives the asserted statement. �

Using the previous two results, we are going to prove Proposition 2.12, which we formulate again
for convenience.
Proposition 2.12 . Let (Φ𝐾 ), A, 𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) be defined by (2.11), (2.13), (2.16), respectively, and
𝛿>0. Let also 𝜎 be a Borel probability measure on M𝑝 . Then

lim
𝐾→∞

lim sup
𝑁→∞

���E𝑄∈Φ𝐾 E𝑚,𝑛∈[𝑁 ]

∫
M𝑝\A

𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
��� = 0.

Proof. Let 𝛿, 𝜀 > 0. By Lemma 6.3, there exists 𝐾0 = 𝐾0(𝜎) ∈ N and a Borel subset M𝜀 of M \A,
such that

𝜎((M𝑝 \A) \M𝜀) ≤ 𝜀/4 (6.9)

and

sup
𝑓 ∈M𝜀

|E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 | ≤ 𝜀/2 for all 𝐾 ≥ 𝐾0. (6.10)

Because of (6.9), and since |𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) | ≤ 1, it suffices to show that

lim sup
𝐾→∞

lim sup
𝑁→∞

���E𝑄∈Φ𝐾 E𝑚,𝑛∈[𝑁 ]

∫
M𝜀

𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
��� ≤ 𝜀. (6.11)

As in Lemma 6.2, for 𝑄, 𝑁 ∈ N, we let

�̃� 𝛿,𝑁 ( 𝑓 , 𝑄) := 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 · E𝑚,𝑛∈[𝑁 ] 𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛).

We also let for 𝑄, 𝑁 ∈ N

𝐼 (𝑄, 𝑁) := E𝑚,𝑛∈[𝑁 ]

∫
M𝜀

𝐵𝛿 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 ) =
∫
M𝜀

𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 · �̃� 𝛿,𝑁 ( 𝑓 , 𝑄) 𝑑𝜎( 𝑓 ). (6.12)

Finally, for 𝐾 ∈ N, we let 𝑄𝐾 be an arbitrary element of Φ𝐾 , and define

𝐼1(𝑄, 𝑁) :=
∫
M𝜀

𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 · �̃� 𝛿,𝑁 ( 𝑓 , 𝑄𝐾 ) 𝑑𝜎( 𝑓 ), 𝑄 ∈ Φ𝐾 , 𝑁 ∈ N. (6.13)

Recall that by part (2) of Lemma 3.6, the map 𝑓 ↦→ 𝑡 𝑓 from M𝑝 to R is Borel, so the integral defining
𝐼1(𝑄, 𝑁) is well-defined. Using (6.12) and (6.13), we get that

max
𝑄∈Φ𝐾

|𝐼 (𝑄, 𝑁) − 𝐼1(𝑄, 𝑁) | ≤ max
𝑄∈Φ𝐾

| �̃� 𝛿,𝑁 ( 𝑓 , 𝑄) − �̃� 𝛿,𝑁 ( 𝑓 , 𝑄𝐾 ) |, 𝐾 ∈ N.

We deduce from this and equation (6.6) of Lemma 6.2 that

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄∈Φ𝐾

|𝐼 (𝑄, 𝑁) − 𝐼1(𝑄, 𝑁) | = 0.

It follows from the above facts that in order to show that (6.11) holds, it suffices to show that

lim sup
𝐾→∞

lim sup
𝑁→∞

|E𝑄∈Φ𝐾 𝐼1(𝑄, 𝑁) | ≤ 𝜀. (6.14)
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Using the definition of 𝐼1(𝑄, 𝑁) in (6.13) and the estimate (6.10), we get that for every 𝐾 ≥ 𝐾0, we have

sup
𝑁 ∈N

|E𝑄∈Φ𝐾 𝐼1(𝑄, 𝑁) | ≤ sup
𝑓 ∈M𝜀

|E𝑄∈Φ𝐾 𝑓 (𝑄) · 𝑄−𝑖𝑡 𝑓 | ≤ 𝜀.

Hence,

lim sup
𝐾→∞

lim sup
𝑁→∞

|E𝑄∈Φ𝐾 𝐼1(𝑄, 𝑁) | ≤ 𝜀,

establishing (6.14) and completing the proof. �

Finally, we restate and prove Lemma 2.13.

Lemma 2.13. Let 𝜎 be a Borel probability measure on M𝑝 such that 𝜎({1}) > 0 and A as in (2.13).
Then there exist 𝛿0, 𝜌0 > 0, depending only on 𝜎, such that

lim inf
𝑁→∞

inf
𝑄∈N



(
E𝑚,𝑛∈[𝑁 ]

∫
A
𝐵𝛿0 ( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )

)
≥ 𝜌0. (6.15)

Proof. Using the positiveness property of the weight �̃� 𝛿 (𝑚, 𝑛) in Lemma 3.3, the proof is identical to
the one used to establish Lemma 2.8, and so we omit it. �

6.2. Proof of Theorem 1.8

We sketch the proof of Theorem 1.8. Following the reduction in Section 2.1, we need to show that under
the assumptions of Theorem 2.2, we have

lim inf
𝑁→∞

E
log
𝑚,𝑛∈[𝑁 ]

∫
M

𝑓 (𝑛(𝑛 + 1)) · 𝑓 (𝑚2) 𝑑𝜎( 𝑓 ) > 0. (6.16)

To prove this, we follow the argument used in the proof of part (2) of Theorem 2.2.12 We will restrict
our average to the grid {(𝑄𝑛, 𝑚) : 𝑚, 𝑛 ∈ N}. This is why for 𝑓 ∈ M and 𝑄, 𝑚, 𝑛 ∈ N, we let

𝐵( 𝑓 , 𝑄;𝑚, 𝑛) := 𝑓 ((𝑄𝑛) (𝑄𝑛 + 1)) · 𝑓 (𝑚2).

(For reasons that will become clear shortly, in this case, we do not have to introduce any kind of
weight 𝑤 𝛿 .)

We first claim that if 𝑓 ∈ M is aperiodic, then for every 𝑄 ∈ N, we have

lim
𝑁→∞

E
log
𝑚,𝑛∈[𝑁 ] 𝐵( 𝑓 , 𝑄;𝑚, 𝑛) = 0.

(This corresponds to Proposition 2.10.) Since f is completely multiplicative, it suffices to show that

lim
𝑁→∞

E
log
𝑛∈[𝑁 ] 𝑓 (𝑛) · 𝑓 (𝑄𝑛 + 1) = 0 or lim

𝑁→∞
E

log
𝑚∈[𝑁 ] 𝑓

2(𝑚) = 0. (6.17)

Suppose that 𝑓 2 does not have logarithmic mean value 0. Then by a consequence of a result of Halász
[30], we have 𝑓 2 ∼ 1.13 Combining this with the following consequence of a result of Tao in [47], we
deduce that (6.17) holds.

12We follow part (2) of Theorem 2.2 and not part (1) because we do not know that the limit of the averages Elog
𝑚,𝑛∈[𝑁 ] 𝑓 (𝑛(𝑛+

1)) · 𝑓 (𝑚2) exists for every 𝑓 ∈ M.
13Halász’s theorem gives that 𝑓 2 ∼ 𝑛𝑖𝑡 for some 𝑡 ∈ R, but for logarithmic averages, we have that if 𝑔 ∼ 𝑛𝑖𝑡 for some 𝑡 ≠ 0,

then g has mean 0.
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Lemma 6.4. Suppose that 𝑓 ∈ M is aperiodic and satisfies 𝑓 2 ∼ 1. Then for every 𝑄 ∈ N, we have

lim
𝑁→∞

E
log
𝑛∈[𝑁 ] 𝑓 (𝑛) · 𝑓 (𝑄𝑛 + 1) = 0. (6.18)

Proof. We say that 𝑓 ∈ M is strongly aperiodic if for every Dirichlet character 𝜒 and 𝐴 ≥ 1, we have
lim𝑁→∞ min |𝑡 | ≤𝐴𝑁 D( 𝑓 , 𝜒 · 𝑛𝑖𝑡 ; 1, 𝑁) = +∞. It was shown in [47, Corollary 1.5] that if f is strongly
aperiodic, then (6.18) holds for every 𝑄 ∈ N. Thus, it remains to show that if f is aperiodic and 𝑓 2 ∼ 1,
then f is strongly aperiodic. This can be shown exactly as in the proof of [19, Proposition 6.1]; the
assumption 𝑓 2 ∼ 1 in our setting replaces the assumption 𝑓 𝑘 = 1 for some 𝑘 ∈ N that was used
in [19]. �

Using the previous claim and the bounded convergence theorem, we get that it suffices to establish
(6.16) when the range of integration M is replaced by the subset M𝑝 of pretentious multiplicative
functions.

Next, we claim that if (Φ𝐾 ) is as in (2.11) and 𝜎 is a Borel probability measure on M𝑝 , then

lim
𝐾→∞

lim sup
𝑁→∞

���E𝑄∈Φ𝐾 E
log
𝑚,𝑛∈[𝑁 ]

∫
M𝑝\{1}

𝐵( 𝑓 , 𝑄;𝑚, 𝑛) 𝑑𝜎( 𝑓 )
��� = 0. (6.19)

(This corresponds to Proposition 2.12. Note that A can be replaced by {1} in this case, which is the
reason why the weight �̃� 𝛿 is not needed for this argument.) To prove this, we argue as in the proof of
Proposition 2.12. If 𝑓 ∼ 𝜒 · 𝑛𝑖𝑡 𝑓 for some 𝑡 𝑓 ∈ R and Dirichlet character 𝜒, for 𝑄, 𝑁 ∈ N, we let

�̃�𝑁 ( 𝑓 , 𝑄) := 𝑄−𝑖𝑡 𝑓 · Elog
𝑚,𝑛∈[𝑁 ] 𝑓 (𝑛(𝑄𝑛 + 1)) · 𝑓 (𝑚2)

and show that

lim
𝐾→∞

lim sup
𝑁→∞

max
𝑄,𝑄′ ∈Φ𝐾

| �̃� 𝛿,𝑁 ( 𝑓 , 𝑄) − �̃� 𝛿,𝑁 ( 𝑓 , 𝑄 ′) | = 0.

We do this exactly as in the proof of Lemma 6.2, using in this case the concentration estimate of
Proposition 2.5 for logarithmic averages (see the third remark following Proposition 2.5). Then (6.19)
follows exactly as in the proof of Proposition 2.12. The reason why we only have to exclude the
multiplicative function {1} in the integral in (6.19) (versus the set A of all Archimedean characters) is
because in our current setting, we have

E𝑚,𝑛∈[𝑁 ] 𝐵( 𝑓 , 𝑄;𝑚, 𝑛) = 𝑓 (𝑄) · 𝑄𝑖𝑡 𝑓 · �̃�𝑁 ( 𝑓 , 𝑄),

and 𝑄 ↦→ 𝑓 (𝑄) · 𝑄𝑖𝑡 𝑓 is the trivial multiplicative function only when 𝑓 = 1. Note also that the variant
of Lemma 2.13 is trivial in our case, since A is replaced by {1}. With the above information, we can
complete the proof of (6.16) exactly as we did at the end of Section 2.3.

7. Pythagorean triples on level sets - Reduction to the pretentious case

First, let us recall a convention made in Section 2.4, which we will continue to follow in this and the
next section. When we write E∗𝑘∈N, we mean the limit lim𝐾→∞ E𝑘∈Φ𝐾 , where (Φ𝐾 ) is a multiplicative
Følner sequence chosen so that all the limits in the following statements exist. Since it will always be the
case in our arguments that only a countable collection of limits needs to be considered, such a Følner
sequence can be taken as a subsequence of any given multiplicative Følner sequence.

As explained in Section 2.4, the proof of Theorem 2.14 splits in two parts, Propositions 2.16 and 2.18.
Our goal in this section is to establish the first part, which we now state in a more general form (we do
not assume that f takes finitely many values).
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Proposition 7.1. Suppose that for every completely multiplicative function ℎ : N→ S1, with ℎ ∼ 𝑛𝑖𝑡 for
some 𝑡 ∈ R, modified Dirichlet character �̃� : N→ S1, and open arc I on S1 around 1, we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐴(𝑘 (𝑚2 − 𝑛2)) · 𝐴(𝑘 · 2𝑚𝑛) · 𝐴(𝑘 (𝑚2 + 𝑛2)) > 0,

where

𝐴(𝑛) := 𝐹 (ℎ(𝑛)) · 𝐹 ( �̃�(𝑛)), 𝑛 ∈ N, 𝐹 := 1𝐼 .

Then for every completely multiplicative function 𝑓 : N→ S1 and open arc I around 1, we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹 ( 𝑓 (𝑘 (𝑚

2 − 𝑛2))) · 𝐹 ( 𝑓 (𝑘 2𝑚𝑛)) · 𝐹 ( 𝑓 (𝑘 (𝑚2 + 𝑛2))) > 0,

where F is as before. Furthermore, if our assumptions hold for all finite-valued completely multiplicative
functions h, then the conclusion holds for all finite-valued completely multiplicative functions f.

7.1. Preparation

Recall that we write 𝑓 ∼ 𝑔 if D( 𝑓 , 𝑔) < +∞, where D( 𝑓 , 𝑔) is as in (3.5).

Lemma 7.2. Let 𝑓 : N→ S1 be a completely multiplicative function such that 𝑓 ∼ 𝑛𝑖𝑡 for some 𝑡 ∈ R.
Then for every 𝑑 ∈ N, there exists a completely multiplicative function 𝑔 : N→ S1, such that 𝑔 ∼ 𝑛𝑖𝑡/𝑑

and 𝑔𝑑 = 𝑓 . Furthermore, if f takes finitely many values, then so does g.

Proof. Suppose first that 𝑓 ∼ 1. Then 𝑓 (𝑝) = 𝑒(𝜃𝑝), 𝑝 ∈ P, for some 𝜃𝑝 ∈ [−1/2, 1/2) with∑
𝑝∈P

1−cos(𝜃𝑝)
𝑝 < +∞. Hence,

∑
𝑝∈P

𝜃2
𝑝

𝑝 < +∞. We define the completely multiplicative function
𝑔 : N→ S1 by

𝑔(𝑝) := 𝑒(𝜃𝑝), where 𝜃𝑝 := 𝜃𝑝/𝑑, 𝑝 ∈ P.

We have 𝑔𝑑 = 𝑓 . Also,
∑

𝑝∈P
𝜃2
𝑝

𝑝 < +∞; hence, 𝑔 ∼ 1.
Now suppose that 𝑓 ∼ 𝑛𝑖𝑡 , and let 𝑑 ∈ N. Then 𝑓 ·𝑛−𝑖𝑡 ∼ 1, and the previous argument gives that there

exists ℎ : N→ S1 with ℎ ∼ 1 such that ℎ𝑑 = 𝑓 · 𝑛−𝑖𝑡 . Let 𝑔 := ℎ · 𝑛𝑖𝑡/𝑑 . Then 𝑔𝑑 = 𝑓 and 𝑔 ∼ 𝑛𝑖𝑡/𝑑 . �

A similar statement is not always true when 𝑓 ∼ 𝜒 where 𝜒 is a Dirichlet character (not even when
𝑓 = 𝜒).

We remind the reader that modified Dirichlet characters �̃� were defined in Section 3.3. If a completely
multiplicative function 𝑓 : N→ S1 is such that 𝑓 𝑙 is aperiodic for every 𝑙 ∈ N, then things are easier for
us. If this is not the case (for example, it is never the case when f is finite-valued), then the next lemma
gives a useful decomposition to work with.

Lemma 7.3. Let 𝑓 : N → S1 be an aperiodic completely multiplicative function such that 𝑓 𝑑 is
pretentious for some 𝑑 ∈ N, and suppose that 𝑑 ≥ 2 is the smallest such d. Then there exist completely
multiplicative functions 𝑔, ℎ : N→ S1 and a Dirichlet character 𝜒, such that

1. 𝑓 = 𝑔 · ℎ
2. 𝑔, . . . , 𝑔𝑑−1 are aperiodic and 𝑔𝑑 = �̃�.
3. ℎ ∼ 𝑛𝑖𝑡 for some 𝑡 ∈ R.

Furthermore, if f takes finitely many values, then so does h and ℎ ∼ 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.27
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 01 Aug 2025 at 07:31:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.27
https://www.cambridge.org/core


44 N. Frantzikinakis, O. Klurman and J. Moreira

Proof. By our assumption, we have that 𝑓 , . . . , 𝑓 𝑑−1 are aperiodic and 𝑓 𝑑 ∼ 𝜒 · 𝑛𝑖𝑡 for some 𝑡 ∈ R
and Dirichlet character 𝜒. Then 𝑓 𝑑 · �̃� ∼ 𝑛𝑖𝑡 , and Lemma 7.2 gives that there exists a completely
multiplicative function ℎ : N→ S1 such that

ℎ ∼ 𝑛𝑖𝑡/𝑑 and ℎ𝑑 = 𝑓 𝑑 · �̃�.

Let 𝑔 := 𝑓 · ℎ. Then obviously 𝑓 = 𝑔 · ℎ. Also, for 𝑗 = 1, . . . , 𝑑 − 1, we have 𝑔 𝑗 = 𝑓 𝑗 · ℎ 𝑗 is aperiodic,
since by assumption, 𝑓 𝑗 is aperiodic and ℎ 𝑗 is pretentious. Moreover,

𝑔𝑑 = 𝑓 𝑑 · ℎ𝑑 = �̃�.

Lastly, suppose that f takes finitely many values. Since g also takes finitely many values, and ℎ := 𝑓 ·𝑔,
we have that h takes finitely many values. Also, since h takes finitely many values and ℎ ∼ 𝑛𝑖𝑡 for some
𝑡 ∈ R, we have that 𝑡 = 0. This completes the proof. �

Since 𝜒 is a Dirichlet character, there exists 𝑟 ∈ N such that �̃�𝑟 = 1. We gather some facts about g
that we shall use in the proof of Proposition 7.1:
• 𝑔𝑟𝑑 = �̃�𝑟 = 1; hence, g takes values in (𝑟𝑑)-roots of unity and the sequence (𝑔 𝑗 ) 𝑗∈N is periodic with

period 𝑟𝑑.
• 𝑔𝑑 = �̃�, 𝑔2𝑑 = �̃�2, . . ., 𝑔 (𝑟−1)𝑑 = �̃�𝑟−1, 𝑔𝑟𝑑 = 1.
• 𝑔 𝑗 is aperiodic if 𝑗 � 0 (mod 𝑑).

7.2. Proof of Proposition 7.1

In this subsection, we prove Proposition 7.1. For convenience, we use the following notation.
Definition 7.1. If I is a circular arc around 1 and 𝑑 ∈ N, we let

𝐼/𝑑 := {𝑒(𝑡/𝑑) : 𝑒(𝑡) ∈ 𝐼, 𝑡 ∈ [−1/2, 1/2)}.

Let 𝑓 : N → S1 be a completely multiplicative function and I be an open arc around 1. Let also
𝐹 : S1 → [0, 1] be a continuous function such that

1𝐼/4 ≤ 𝐹 ≤ 1𝐼/2.

It suffices to show that under the assumption of Proposition 7.1, we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹 ( 𝑓 (𝑘 (𝑚

2 − 𝑛2))) · 𝐹 ( 𝑓 (𝑘 2𝑚𝑛)) · 𝐹 ( 𝑓 (𝑘 (𝑚2 + 𝑛2))) > 0. (7.1)

We consider three cases.
Case 1. If f is pretentious, then 𝑓 = ℎ · �̃�, where ℎ ∼ 𝑛𝑖𝑡 for some 𝑡 ∈ R, and �̃� is a modified Dirichlet

character, and the conclusion follows from our assumption.
Case 2. Suppose that f is aperiodic and 𝑓 𝑑 is pretentious for some 𝑑 ≥ 2. We use Lemma 7.3 to get

a decomposition 𝑓 = 𝑔ℎ, where g takes values on 𝑟𝑑 roots of unity for some 𝑟 ∈ N, 𝑔, . . . , 𝑔𝑑−1 are
aperiodic and 𝑔𝑑 = �̃� for some modified Dirichlet character �̃�, and ℎ ∼ 𝑛𝑖𝑡 for some 𝑡 ∈ R. Note first
that in order to establish (7.1), it suffices to show that

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝑐𝑘,𝑚,𝑛 · 𝐹 (𝑔(𝑘 (𝑚

2 − 𝑛2))) · 𝐹 (𝑔(𝑘 2𝑚𝑛)) · 𝐹 (𝑔(𝑘 (𝑚2 + 𝑛2))) > 0, (7.2)

where

𝑐𝑘,𝑚,𝑛 := 𝐹 (ℎ(𝑘 (𝑚2 − 𝑛2))) · 𝐹 (ℎ(𝑘 2𝑚𝑛)) · 𝐹 (ℎ(𝑘 (𝑚2 + 𝑛2))), 𝑘, 𝑚, 𝑛 ∈ N. (7.3)

This is so, since if 𝑔(𝑛), ℎ(𝑛) ∈ 𝐼/2, then 𝑓 (𝑛) = 𝑔(𝑛) · ℎ(𝑛) ∈ 𝐼.
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Main Claim. If for 𝐺 := 1{1} and 𝑐𝑘,𝑚,𝑛 as in (7.3) we have

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝑐𝑘,𝑚,𝑛 · 𝐺 ( �̃�(𝑘 (𝑚2 − 𝑛2))) · 𝐺 ( �̃�(𝑘 2𝑚𝑛)) · 𝐺 ( �̃�(𝑘 (𝑚2 + 𝑛2))) > 0,

(7.4)

then (7.2) holds.

Note that (7.4) is satisfied from the hypothesis of Proposition 7.1. So to finish the proof of Proposition
7.1 in Case 2, it remains to verify the above claim.

We start with a simple identity. Since g takes values in 𝑟𝑑 roots of unity, we have

1𝑔=1 = E0≤ 𝑗<𝑟𝑑 𝑔
𝑗 .

Since 𝐹 ≥ 1{1}, it suffices to verify (7.2) with
∑𝑟𝑑−1

𝑗=0 𝑔 𝑗 in place of 𝐹 ◦ 𝑔. Let

𝐽 := {0 ≤ 𝑗 < 𝑟𝑑 : 𝑗 � 0 (mod 𝑑)}.

Recall that 𝑔 𝑗 is aperiodic for 𝑗 ∈ 𝐽. Also, 𝑔𝑑 = �̃� and �̃� takes values on r-th roots of unity; hence,

𝑟𝑑−1∑
𝑗=0

𝑔 𝑗 =
𝑟−1∑
𝑗=0

�̃� 𝑗 +
∑
𝑗∈𝐽

𝑔 𝑗 = 𝑟 · 1�̃�=1 +
∑
𝑗∈𝐽

𝑔 𝑗 .

Hence, in order to verify (7.2), it suffices to show that

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝑐𝑘,𝑚,𝑛 · 𝐻 (𝑘 (𝑚2 − 𝑛2)) · 𝐻 (𝑘 𝑚𝑛) · 𝐻 (𝑘 (𝑚2 + 𝑛2)) > 0, (7.5)

where

𝐻 := 𝑟 · 1�̃�=1 +
∑
𝑗∈𝐽

𝑔 𝑗 .

After expanding the product, we get a finite sum of expressions of the form

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝑐𝑘,𝑚,𝑛 · 𝐻1(𝑘 (𝑚2 − 𝑛2)) · 𝐻2(𝑘 𝑚𝑛) · 𝐻3(𝑘 (𝑚2 + 𝑛2)), (7.6)

where each 𝐻1, 𝐻2, 𝐻3 is either of the form 𝑟 · 1�̃�=1, or of the form 𝑔 𝑗 for some 𝑗 ∈ 𝐽.
With this in mind, we see that the positiveness property (7.5) would follow once we establish the

following three claims:

1. If 𝐻1 = 𝐻2 = 𝐻3 = 𝑟 · 1�̃�=1, then the limit in (7.6) is positive.
2. If 𝐻1 = 𝐻2 = 𝑟 · 1�̃�=1 and 𝐻3 = 𝑔 𝑗 for some 𝑗 ∈ 𝐽, then the limit in (7.6) is 0.
3. If 𝐻1 = 𝑔 𝑗 or 𝐻2 = 𝑔 𝑗 for some 𝑗 ∈ 𝐽, then the limit in (7.6) is 0.

(We do not combine the last two cases because the argument we use is different.)
We prove (1). This follows immediately from the assumption (7.4) of the Main Claim.
We prove (2). We will show that for every 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛, we have

E∗𝑘∈N 𝑐𝑘,𝑚,𝑛 · 𝐻1(𝑘 (𝑚2 − 𝑛2)) · 𝐻2 (𝑘 𝑚𝑛) · 𝐻3(𝑘 (𝑚2 + 𝑛2)) = 0.

Using the definition of 𝑐𝑘,𝑚,𝑛 in (7.3) and uniform approximation of F, it suffices to show that for every
𝑚, 𝑛 ∈ N with 𝑚 > 𝑛, we have
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E∗𝑘∈N 𝐻
′
1(𝑘 (𝑚

2 − 𝑛2)) · 𝐻 ′
2(𝑘 𝑚𝑛) · 𝐻

′
3(𝑘 (𝑚

2 + 𝑛2)) = 0,

where 𝐻 ′
1 := �̃� 𝑗1 · ℎ 𝑗2 , 𝐻 ′

2 := �̃� 𝑗3 · ℎ 𝑗4 , and 𝐻 ′
3 := 𝑔 𝑗5 · ℎ 𝑗6 , for some 𝑗1, 𝑗2, 𝑗3, 𝑗4, 𝑗6 ∈ Z and 𝑗5 := 𝑗 ∈ 𝐽.

Factoring out the multiplicative average E∗𝑘∈N, we get that it suffices to show that

E∗𝑘∈N �̃� (𝑘) = 0 where �̃� := �̃� 𝑗1+ 𝑗3 · ℎ 𝑗2+ 𝑗4+ 𝑗6 · 𝑔 𝑗5 .

Since 𝑔 𝑗5 is aperiodic and �̃� 𝑗1+ 𝑗3 · ℎ 𝑗2+ 𝑗4+ 𝑗6 is pretentious, we get that 𝐻 ≠ 1; hence, E∗𝑘∈N 𝐻 (𝑘) = 0.
We prove (3). Suppose that 𝐻1 = 𝑔 𝑗1 for some 𝑗1 ∈ 𝐽; the argument is similar for 𝑗2. Using the

definition of 𝑐𝑘,𝑚,𝑛 from (7.3) and uniform approximation of F, it suffices to show that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐻

′
1(𝑘 (𝑚

2 − 𝑛2)) · 𝐻 ′
2(𝑘 𝑚𝑛) · 𝐻

′
3(𝑘 (𝑚

2 + 𝑛2)) = 0,

where 𝐻 ′
1 := 𝑔 𝑗1 · ℎ 𝑗2 , 𝐻 ′

2 := �̃� 𝑗3 · ℎ 𝑗4 or 𝑔 𝑗5 · ℎ 𝑗6 , 𝐻 ′
3 := �̃� · ℎ 𝑗7 or 𝑔 𝑗8 · ℎ 𝑗9 , for some 𝑗2, . . . , 𝑗9 ∈ Z.

Factoring out the multiplicative average E∗𝑘∈N (𝐻 ′
1 · 𝐻

′
2 · 𝐻

′
3) (𝑘), we get that it suffices to show that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 𝐻
′
1 ((𝑚

2 − 𝑛2)) · 𝐻 ′
2 (𝑚𝑛) · 𝐻

′
3(𝑚

2 + 𝑛2) = 0, (7.7)

where𝐻 ′
1 is an aperiodic completely multiplicative function (since 𝑔 𝑗1 is aperiodic and ℎ 𝑗2 is pretentious),

and 𝐻 ′
2, 𝐻 ′

3 are completely multiplicative functions. The hypothesis of Proposition 2.15 is satisfied, and
we deduce that (7.7) holds.

This finishes the proof of the Main Claim and the proof of Case 2.
Case 3. Suppose that 𝑓 𝑙 is aperiodic for every 𝑙 ∈ N. In this case, we claim that the following identity

holds:

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹 ( 𝑓 (𝑘 (𝑚

2 − 𝑛2))) · 𝐹 ( 𝑓 (𝑘 𝑚𝑛)) · 𝐹 ( 𝑓 (𝑘 (𝑚2 + 𝑛2))) =
( ∫

𝐹 𝑑𝑚S1

)3
.

If we prove this, then (7.1) holds, since
∫
𝐹 𝑑𝑚S1 ≥ 𝑚S1 (𝐼/4) > 0.

Using uniform approximation of F, it suffices to show that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐹1 (𝑘 (𝑚2 − 𝑛2)) · 𝐹2 (𝑘 𝑚𝑛) · 𝐹3 (𝑘 (𝑚2 + 𝑛2)) = 0

when for 𝑖 = 1, 2, 3, we have 𝐹𝑖 = 𝑓 𝑗𝑖 , 𝑗𝑖 ∈ Z, and at least one of the 𝑗1, 𝑗2, 𝑗3 is nonzero.
We consider two cases. Suppose first that 𝑗1 = 𝑗2 = 0. Then 𝑗3 ≠ 0. After factoring out the

multiplicative average E∗𝑘∈N, it suffices to show that

E∗𝑘∈N 𝑓 𝑗3 (𝑘) = 0.

This is the case since 𝑓 𝑗3 is a nontrivial completely multiplicative function.
Suppose now that 𝑗1 ≠ 0; the argument is similar if 𝑗2 ≠ 0. After factoring out the multiplicative

average E∗𝑘∈N, it suffices to show that

lim
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 𝐹1 ((𝑚2 − 𝑛2)) · 𝐹2 (2𝑚𝑛) · 𝐹3 (𝑚2 + 𝑛2) = 0. (7.8)

By our assumption, 𝐹1 = 𝑓 𝑗1 is aperiodic. Note also that all 𝐹1, 𝐹2, 𝐹3 are completely multiplicative
function. The asserted identity then follows again from Proposition 2.15.14

14It is crucial for this part of the argument that we avoided working with an aperiodicity assumption on 𝐹3, since such an
assumption does not imply that (7.8) holds (but it does hold if 𝐹1 or 𝐹2 are aperiodic completely multiplicative functions).
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8. Pythagorean triples on level sets - The pretentious case

Our goal in this section is to prove Proposition 2.18, which combined with Proposition 7.1 (Proposi-
tion 2.16 is a direct consequence) implies Theorem 1.5. We first restate Proposition 2.18 in a slightly
more convenient form. Let 𝑓 : N → S1 be a pretentious completely multiplicative function taking
finitely many values. Then for some 𝑑 ∈ N, it takes values on d-th roots of unity. We can assume that d
is minimal with this property, in which case, we have 𝑓 𝑗 ≠ 1 for 𝑗 = 1, . . . , 𝑑 − 1. In this case, we will
show the following.

Proposition 8.1. Let 𝑑 ∈ N and 𝑓 : N→ S1 be pretentious multiplicative function taking values on d-th
roots of unity and �̃� : N→ S1 be a modified Dirichlet character. Then

lim inf
𝑁→∞

E𝑚,𝑛∈[𝑁 ],𝑚>𝑛 E
∗
𝑘∈N 𝐴(𝑘 (𝑚2 − 𝑛2)) · 𝐴(𝑘 · 2𝑚𝑛) · 𝐴(𝑘 (𝑚2 + 𝑛2)) > 0,

where

𝐴(𝑛) := 𝐹 ( 𝑓 (𝑛)) · 𝐹 ( �̃�(𝑛)), 𝑛 ∈ N, 𝐹 := 1{1} . (8.1)

Remark. Note that in the argument that follows, we only deal with countably many choices of multi-
plicative functions and other choices of parameters, so we can choose a subsequence of positive integers
(𝑁𝑙) along which all the limits (as 𝑙 → ∞) that appear below exist. We make this implicit assumption
throughout.

Before giving the proof of Proposition 8.1, we show how the concentration estimates of Corollary 2.17
follow from Propositions 2.5 and 2.11.

8.1. Proof of Corollary 2.17

We will deduce part (1) from Proposition 2.5. In a similar fashion, we can deduce part (2) from
Proposition 2.11.

Let 𝜀 > 0 and 𝜀 < 1. Since f is a finite-valued pretentious multiplicative function, we have by
Lemma 3.4 that 𝑓 ∼ 𝜒 for some Dirichlet character 𝜒 with period q and

∑
𝑝∈P

1
𝑝
|1 − 𝑓 (𝑝) · 𝜒(𝑝) | < ∞.

Hence, there exists 𝐾0 ∈ N such that
∑
𝑝≥𝐾0

1
𝑝
|1 − 𝑓 (𝑝) · 𝜒(𝑝) | + 𝐾−1/2

0 ≤ 𝜀.

This implies that

D( 𝑓 , 𝜒;𝐾0,∞) ≤ 𝜀 and
�� exp

(
𝐹𝑁 ( 𝑓 , 𝐾0)

)
− 1

�� � 𝜀,

where 𝐹𝑁 ( 𝑓 , 𝐾0) =
∑
𝐾0<𝑝≤𝑁

1
𝑝

(
𝑓 (𝑝) · 𝜒(𝑝) − 1

)
.

We let 𝑄0 := 𝑞 ·
∏

𝑝≤𝐾0 𝑝. If 𝑄 ∈ N is such that 𝑄0 | 𝑄, then using the second remark following
Proposition 2.5 with 𝑡 = 0, we get that

lim sup
𝑁→∞

E𝑛∈[𝑁 ] | 𝑓 (𝑄𝑛 + 1) − exp
(
𝐹𝑁 ( 𝑓 , 𝐾0)

)
| � 𝜀.

Since | exp
(
𝐹𝑁 ( 𝑓 , 𝐾0)

)
− 1| � 𝜀, this completes the proof.
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8.2. Proof of Proposition 8.1

Recall that 𝐴(𝑛) is given by (8.1). Since 𝐴(𝑛) ≥ 0 for every 𝑛 ∈ N, it suffices to show that there exist
𝑄 ∈ N and 𝑁𝑙 → ∞ (which can be taken to be a subsequence of any given 𝑀𝑙 → ∞) such that all limits
appearing below as 𝑙 → ∞ exist and

lim
𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 E

∗
𝑘∈N 𝐴(𝑘 ((𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝐴(𝑘 2(𝑄𝑚 + 1) (𝑄𝑛))·

𝐴(𝑘 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2)) > 0.

Since f takes values on d-th roots of unity and �̃� takes values on 𝑑 ′-th roots of unity for some
𝑑, 𝑑 ′ ∈ N, we have

𝐹 ( 𝑓 ) = 1 𝑓 =1 = E0≤ 𝑗<𝑑 𝑓 𝑗 , 𝐹 ( �̃�) = 1�̃�=1 = E0≤ 𝑗<𝑑′ �̃�
𝑗 . (8.2)

Let 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛 be fixed. In order to compute

E∗𝑘∈N 𝐴(𝑘 (𝑚
2 − 𝑛2)) · 𝐴(𝑘 2𝑚𝑛) · 𝐴(𝑘 (𝑚2 + 𝑛2)),

we use (8.2), expand, and use that by Lemma 3.2, we haveE∗𝑘∈N 𝑔(𝑘) = 0 for all completely multiplicative
functions 𝑔 : N→ U with 𝑔 ≠ 1 (in particular, this holds if 𝑔 := 𝑓 𝑘 · �̃�𝑘′ ≠ 1). We see that the previous
expression is equal to 1/(𝑑𝑑 ′)3 times∑

𝑘𝑖 ,𝑘
′
𝑖 ∈K

( 𝑓 𝑘1 · �̃�𝑘′1) (𝑚2 − 𝑛2) · ( 𝑓 𝑘2 · �̃�𝑘′2) (2𝑚𝑛) · ( 𝑓 𝑘3 · �̃�𝑘′3) (𝑚2 + 𝑛2),

where

K := {0 ≤ 𝑘1, 𝑘2, 𝑘3 < 𝑑, 0 ≤ 𝑘 ′1, 𝑘
′
2, 𝑘

′
3 < 𝑑 ′ : 𝑓 𝑘1+𝑘2+𝑘3 · �̃�𝑘′1+𝑘′2+𝑘′3 = 1}.

In what follows, we implicitly assume that all 𝑘𝑖 , 𝑘 ′𝑖 belong to K.
Let q be the period of 𝜒, then �̃�(𝑞𝑛 + 1) = 1 for every 𝑛 ∈ N. Taking the previous facts in mind, we

see that in order to establish the needed positiveness, it suffices to show that there exists 𝑄 ∈ N such
that 𝑞 | 𝑄 and

𝐿(𝑄) :=
∑

𝑘𝑖 ,𝑘
′
𝑖 ∈K


(𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄)) > 0, (8.3)

where

𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) := lim

𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 𝑓 𝑘1 ((𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝑓 𝑘2 (2(𝑄𝑚 + 1) (𝑄𝑛))·

𝑓 𝑘3 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) · �̃�𝑘′2 (2(𝑄𝑛)). (8.4)

(We used that �̃�( 𝑗) = 1 for 𝑗 ∈ 𝑄Z + 1.)

Claim 1 ( 𝑓 𝑘2 · �̃�𝑘′2 = 1). For every 𝜀 > 0, there exists 𝑄0 = 𝑄0( 𝑓 , �̃�, 𝜀) ∈ N with 𝑞 | 𝑄0, such that the
following holds: If 𝑄 ∈ N satisfies 𝑄0 | 𝑄, then for all 𝑘1, 𝑘2, 𝑘3, 𝑘

′
2 ∈ K with 𝑓 𝑘2 · �̃�𝑘′2 = 1, we have


(𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄)) ≥ 1 − 𝜀. (8.5)

As a consequence, there exists 𝑄0 := 𝑄0( 𝑓 , �̃�), such that if 𝑄 ∈ N satisfies 𝑄0 | 𝑄, then∑
𝑘1 ,𝑘2 ,𝑘3 ,𝑘

′
2 : 𝑓 𝑘2 ·�̃�𝑘

′
2=1


(𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄)) ≥ 1. (8.6)
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We prove the claim. Let 𝜀 > 0. Note first that since 𝑓 𝑘2 · �̃�𝑘′2 = 1, we get using (8.4) that

𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) := lim

𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 𝑓 𝑘1 (𝑄(𝑚 − 𝑛) + 1) · 𝑓 𝑘1 (𝑄(𝑚 + 𝑛) + 1)

𝑓 𝑘2 (𝑄𝑚 + 1) · 𝑓 𝑘3 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2). (8.7)

Using this identity, Corollary 2.17 and Lemma 3.1, we deduce that there exists 𝑄0 = 𝑄0 ( 𝑓 , 𝜀), with
𝑞 | 𝑄0, such that if𝑄 ∈ N satisfies𝑄0 | 𝑄, then for all 𝑘1, 𝑘2, 𝑘3, 𝑘

′
2 ∈ K such that 𝑓 𝑘2 · �̃�𝑘′2 = 1, we have

|𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) − 1| �𝑑 𝜀.

This proves (8.5). Since 𝐿0,0,0,0 = 1, using (8.5) for 𝜀 = 1/2, we deduce (8.6). This completes the proof
of Claim 1.
Claim 2 (p 𝑓 𝑘2 · �̃�𝑘′2 ≠ 1). Let𝑄0 ∈ N be such that (8.6) holds for every𝑄 ∈ N such that𝑄0 | 𝑄. Then for
every 𝜀 > 0, there exists 𝑄1 = 𝑄1 ( 𝑓 , �̃�, 𝜀) ∈ N such that 𝑄0 | 𝑄1 (hence, (8.5) holds for 𝑄 = 𝑄1) and∑

𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2 : 𝑓 𝑘2 ·�̃�𝑘

′
2≠1


(𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄1)) ≥ −𝜀. (8.8)

We prove the claim. Let 𝜀 > 0. It suffices to show that

lim
𝐾→∞

E𝑄∈Φ𝐾 𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) = 0, as long as 𝑓 𝑘2 · �̃�𝑘′2 ≠ 1. (8.9)

Note that

𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) := ( 𝑓 𝑘2 · �̃�𝑘′2) (2𝑄) · 𝐿 ′

𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄),

where

𝐿 ′
𝑘1 ,𝑘2 ,𝑘3 ,𝑘

′
2
(𝑄) := lim

𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 𝑓 𝑘1 (𝑄(𝑚 − 𝑛) + 1) · 𝑓 𝑘1 (𝑄(𝑚 + 𝑛) + 1)

𝑓 𝑘2 (𝑄𝑚 + 1) · 𝑓 𝑘3 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) · 𝑓 𝑘2 (𝑛) · �̃�𝑘2 (𝑛). (8.10)

We prove (8.9). Let 𝜀′ > 0. Using (8.10), Corollary 2.17 and Lemma 3.1, we get that there exists
𝑄2 = 𝑄2 ( 𝑓 , 𝜀′) such that the following holds: If 𝑄 ∈ N satisfies 𝑄2 | 𝑄, then, for all 𝑘1, 𝑘2, 𝑘3, 𝑘

′
2 ∈ K,

we have

|𝐿 ′
𝑘1 ,𝑘2 ,𝑘3 ,𝑘

′
2
(𝑄) − 𝑐𝑘2 | � 𝜀′, (8.11)

where

𝑐𝑘2 := lim
𝑙→∞
E𝑛∈[𝑁𝑙 ] 𝑓

𝑘2 (𝑛) · �̃�𝑘2 (𝑛).15

Hence, by (8.4), (8.10), and (8.11), we have

|𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) − 𝑐𝑘2 · ( 𝑓 𝑘2 · �̃�𝑘′2 ) (2𝑄) | � 𝜀′ for all 𝑄 with 𝑄2 | 𝑄. (8.12)

Since by assumption, 𝑓 𝑘2 · �̃�𝑘′2 ≠ 1, we have

lim
𝐾→∞

E𝑄∈Φ𝐾 ( 𝑓 𝑘2 · �̃�𝑘′2) (𝑄) = 0.

Combining this with (8.12), we get that (8.9) holds. This proves Claim 2.

15The limit exists since 𝑓 𝑘2 · �̃�𝑘2 is finite-valued, but we do not have to use this.
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Putting together the two claims, in particular the estimates (8.6) and (8.8), we deduce that for every
𝜀 > 0, there exists 𝑄1 = 𝑄1 ( 𝑓 , �̃�, 𝜀) ∈ N with 𝑞 | 𝑄1, such that 𝐿(𝑄1) ≥ 1 − 𝜀; hence, (8.3) holds for
𝑄 = 𝑄1. This completes the proof.

8.3. More general equations

Our methods allow us to extend Theorem 1.5 and cover more general equations of the form

𝑎𝑥2 + 𝑏𝑦2 = 𝑐𝑧2, (8.13)

where 𝑎, 𝑏, 𝑐 ∈ N are squares satisfying Rado’s condition (i.e., we have either 𝑎 = 𝑐, or 𝑏 = 𝑐, or
𝑎 + 𝑏 = 𝑐). We summarize the key differences in the argument.

Suppose first that 𝑎 = 𝑐 (the case 𝑏 = 𝑐 is similar). Then, as in Section 1.4, we get parametrizations
of (8.13) of the form

𝑥 = ℓ1 (𝑚2 − 𝑛2), 𝑦 = ℓ2 𝑚𝑛, 𝑧 = ℓ3 (𝑚2 + 𝑛2),

for some ℓ1, ℓ2, ℓ3 ∈ N, and our hypothesis 𝑎 = 𝑐 implies that we can take ℓ1 = ℓ3. This fact is then used
to handle Claim 1 in the proof of Proposition 8.1, and the rest of the argument remains unchanged. To see
how Claim 1 is handled, note that in our setting, the expressions 𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘

′
2
(𝑄) in (8.4) take the form

𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) := 𝑐𝑘1 ,𝑘2 ,𝑘3 · lim

𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 𝑓 𝑘1 ((𝑄𝑚 + 1)2 − (𝑄𝑛)2) · 𝑓 𝑘2 (2(𝑄𝑚 + 1) (𝑄𝑛))·

𝑓 𝑘3 ((𝑄𝑚 + 1)2 + (𝑄𝑛)2) · �̃�𝑘′2 (2(𝑄𝑛)), (8.14)

where

𝑐𝑘1 ,𝑘2 ,𝑘3 := ( 𝑓 𝑘1 · �̃�𝑘′1 ) (ℓ1) · ( 𝑓 𝑘2 · �̃�𝑘′2) (ℓ2) · ( 𝑓 𝑘3 · �̃�𝑘′3) (ℓ3).

Using additionally that ℓ1 = ℓ3 and that 𝑓 𝑘2 · �̃�𝑘′2 = 1, 𝑓 𝑘1+𝑘2+𝑘3 · �̃�𝑘′1+𝑘′2+𝑘′3 = 1, which are standing
assumptions in Claim 1, we deduce that 𝑐𝑘1 ,𝑘2 ,𝑘3 = 1. With this information at hand, the proof of
Claim 1 in our setting is exactly the same as in the case of Pythagorean triples.

Now suppose that 𝑎 + 𝑏 = 𝑐, in which case, the argument is a bit different and somewhat simpler. As
shown in Step 2 of [21, Appendix C], we can obtain parametrizations of (8.13) of the form

𝑥 = 𝑘 (𝑚 + ℓ1𝑛) · (𝑚 + ℓ2𝑛), 𝑦 = 𝑘 (𝑚 + ℓ3𝑛) · (𝑚 + ℓ4𝑛), 𝑧 = 𝑘 (𝑚2 + (ℓ5𝑛)2),

for suitable ℓ1, ℓ2, ℓ3, ℓ4, ℓ5 ∈ N that satisfy ℓ1 ≠ ℓ2, ℓ3 ≠ ℓ4 and {ℓ1, ℓ2} ≠ {ℓ3, ℓ4}. Note that our
assumption 𝑎 + 𝑏 = 𝑐 was used to ensure that the coefficient of m is 1 in all linear forms. We average
on the grid {(𝑄𝑚 + 1, 𝑄𝑛) : 𝑚, 𝑛 ∈ N}. We will demonstrate how Claims 1 and 2 in the proof of
Proposition 8.1 can be established within our framework. The remainder of the argument remains
unaltered. In our context, the expressions 𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘

′
2
(𝑄) in (8.4) take the form

𝐿𝑘1 ,𝑘2 ,𝑘3 ,𝑘
′
2
(𝑄) := lim

𝑙→∞
E𝑚,𝑛∈[𝑁𝑙 ],𝑚>𝑛 𝑓 𝑘1

(
(𝑄(𝑚 + ℓ1𝑛) + 1) (𝑄(𝑚 + ℓ2𝑛) + 1)

)
·

𝑓 𝑘2
(
(𝑄(𝑚 + ℓ3𝑛) + 1) (𝑄(𝑚 + ℓ4𝑛) + 1)

)
· 𝑓 𝑘3 ((𝑄𝑚 + 1)2 + (𝑄ℓ5𝑛)2). (8.15)

Using the concentration estimates of Corollary 2.17, we can see that Claim 1 holds without assuming
that 𝑓 𝑘2 · �̃�𝑘′2 = 1. Therefore, in our setting, Claim 2 in the proof of Proposition 8.1 is already addressed
by this case and requires no further explanation.
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