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UNIVALENT HARMONIC RING MAPPINGS
VANISHING ON THE INTERIOR BOUNDARY

WALTER HENGARTNER AND JAN SZYNAL

ABSTRACT. We give a characterization of univalent positively oriented harmonic
mappings f defined on an exterior neighbourhood of the closed unitdisk {z: |z| < 1}
such that lim 2> 1 f(z)=0.

et

1. Introduction. Let K be a compact continuum of the complex plane C such that
C\ K is simply connected. Denote by D a domain of C containing K. We shall call
D\ K = V,(K) an exterior neighbourhood of K.

Suppose thatf = u+ivis aunivalent (one-to-one) harmonic (Af = 0) mapping defined
on V,(K). Then f is either orientation preserving or orientation reversing on V,(K). With
no loss of generality we may assume that the first case holds, since if not, replace f(z) by
f(2). This yields to the fact that the function

7@

1:(2)
where H(E) stands for the set of all analytic functions on an open neighbourhood of E.
The fact that f is univalent and orientation preserving on V,(K) implies that O ¢ f, (VE(K))
[1], and that the Jacobian determinant J = |f,|2 — |f;|> > 0 on V,(K). Moreover, f, and
f: are analytic on V,(K) [3]. Hence, f is locally quasiconformal and pseudoanalytic of
the second kind (in the sense of L. Bers [1]) on V,(K). But contrary to the case of qua-

siconformal mappings it is possible that lim ,_3x f(z) = 0. For instance, the harmonic
2€Ve(K)

(1.0 a(2) € H(V.(K)) and |a(z)| < 1 on V.(K),

function
1
(1.1 f(z)zz—g+2Aln]z|, |A] <1,

maps the complement C\ U of the unit disk U one-to-one onto C\ {0} (see [4]).

Let x be the conformal univalent mapping from C\ K onto C\ U normalized by
X(2) = az+ O(1), @ > 0 in a neighbourhood of infinity. Then f o x is univalent, har-
monic and orientation preserving on an exterior neighbourhood V,(U) of U. Therefore,
we may restrict our attention to the case K = Uand V,(U) = Vg = {z: 1 < |z] < R}
for some R > 1.

The following notion will be used often.
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DEFINITION. We say that a harmonic mapping is positively oriented on an exterior
neighbourhood Vg of dU if f is orientation-preserving and § dargf > 0 on any simply
closed curve ¥ in Vg winding in the positive sense around the origin.

REMARK. A positively oriented harmonic mapping on V is orientation-preserving.
But the converse does not hold as the example

f(z)zé, 1<zl <2

shows.

As in the case of analytic functions, we say that f is harmonic on a set E if f is harmonic
on open neighbourhood of E.

The purpose of this paper is to characterize univalent, positively oriented harmonic
mappings f defined on an exterior neighbourhood V (R is not prescribed) of U such that
(1.2) lim f(z) = 0.

[z|>1

In connection with this problem, a modified version of the following result was shown

in [4, Theorem 3.3].

THEOREM A. Let f be a harmonic mapping defined on {z : |z| > 1}. Thenf is
positively oriented and univalent on {z : |z| > 1} satisfying f(|z| > 1) = C\ {0} if
and only if f is of the form

1 B]

(1.3) f(Z)ZC[z+BZ+2Aln|z|—E_;

where C€C,B=cd, A =c+d,

d<1l]d <1

Observe that we allow that |d| = 1 but that | c| has to be strictly less than one. Put
B 51
h(Z)ZC[Z—;}, g(z)zC[Bz—z]

and

Y(2) = 3f2) = 2H(2) +AC = Clz+ g +A].

Then & and g belong to H(C\ {0} ) and we have the following properties:

I
(1.4) h() = —g(2) inC\{0};

B
(1.5 ¥'(2) = C[l — z—z] does not vanish on the unit circle oU;

_ 2'(2) _ IEZ%A =1+ Y pZeH(z>1)
¥(2) I+5+7 jez\{0}

(1.6) p(2)
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satisfies Rep > k > O on |z| > 1 for some k > 0.
Indeed, we have for |z| > 1:

’ 1_@
ezw(Z)zR 2

2

Y@ o a+9a+9

1 1—<y 1 1-4 11— 11—
:—Re( Z)+—Re( Z)>— 2> = k> 0.
2 1+£/ 72 1+47 7 21+]5) T 21+[c|

R

Let f be a harmonic mapping defined on an exterior neighbourhood V¢ of U. Then
(Lemma 2.1) lim ;. f(z) = 0 if and only if f is of the form

e

1.7 f(z)=h(z)—h(%)+2Aln|z, AeC,

where h € H(% < |2| < R).

A second version of our main result, Theorem 3.2, states the following: The mapping
(1.7) is univalent and positively oriented in Vg for some R > 1 if and only if (1.4), (1.5)
and (1.6) hold in V} for some R > 1, where ¢ (z) = 7£,(z) = zh'(z) + A.

The property (1.5) can be replaced by the following condition (Remark 3.5):

(1.8) 1 has at most one zero on dU, which is of order one.

Furthermore, (Lemma 2.5), the statement (1.6) can be replaced by the condition

(1.9) f|{| dargyy =1, p € (1,R)and Rep(z) >k > Oon Vi
4=p

or by

(1.10) % is univalent on Vj satisfying Rep(z) > k> 0

where p(z) = %’%
The functions which appear in our considerations are closely related to the

Carathéodory class
P,={peH@g<|d<D:p@=1+ Y p?
Jjez\{0}
and Rep(z) > 0on{z:g< |7 < 1}} 0<g<l,

which has been studied by several authors (e.g.) [5], [6], [7]. The class S; of starlike
functions defined by the relation:

F(2)

FeS &
q F(z)

ep,
was considered in [2] and in [7].

In order to simplify a rather lengthy proof (Section 4) of Theorem 3.1 we state several
lemmas in Section 2. Finally, in Section 5 we discuss the region of values of A.
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2. Some auxiliary lemmas. We start this section with the following lemma.

LEMMA2.1.  Letf be any harmonic function on Vg (for some R > 1) satisfying (1.2).
Then f has a harmonic continuation across U = {z: |z| = 1} which is of the form

@2.1) f(z):h(z)—h(§)+2Aln]z|, Aec,

where h(z) = Yjez a7 € H(% < |z] < R). Observe thatf(;[) = —f(z)on{z: % <
|z| < R}.

Conversely, each harmonic mapping on dU satisfying (2.1) has the property (1.2).

PROOF. Since f is harmonic on Vg, f admits the representation
2.2) f(@) = h(2)+g(x) +2AIn 2],
where A € C, h(z) = Sjez a;7 € H(VR), 8(z) = Yjez bjZ € H(Vg). This implies that
= [ e ar =S la+h =0
and therefore h and g admit an analytic continuationonto { z : & < |z| < R} satisfying
23) §(3) = —@ and () = —@, .
In the next Lemma we consider again harmonic mappings having the properties stated

in Lemma 2.1. We give a necessary and sufficient condition in order that f is orientation-
preserving on an exterior neighbourhood of U.

LEMMA 2.2. Let

1
f@= h(z)—h(g)+2Aln|z , A€ecC
be harmonic on {z : |z| = 1}, f # const. There is an exterior neighbourhood Vg of U
such that f is orientation-preserving on Vg if and only if there exists a constantk > 0
such that 1 (z) = zH'(2) + A satisfies

eit,(pl(eit) S

2.4) +00 > Re wien =

k>0

whenever 1 (e'") # 0.

PROOF. By Lemma 2.1.h € H(z < |z| < Ry) for some R; > 1. Therefore, the
dilatation function

_ @ _ v
[ Y@

(2.5) a(z)
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is meromorphic on { z : RL. < |z] < R1}.We may choose R, so close to one such that
the only possible zeros of ¥ in {z: Rl_l < |z| < Ry} are on QU. Furthermore, we have

Y (ei’)‘ =1
V(e

whenever 1 (¢'') # 0. Therefore, the zeros of 1) on dU are removable singularities of the
function a(z) and we conclude that

late™)| = ’

1 ,
(2.6) a€ H(R— < |z] < Ry)and |a(e")] = 1forall ¢ € [0,27].
1
Moreover, by the reflection principle, we have
1
2.7 a(z) = —.
a(d)

(a) Suppose now that f is orientation-preserving on V. Then, by (2.7), |a(z)| < 1 on
Vg and |a(z)] > lon{z: § < |z < 1}, from which follows that a'(e") # 0 for all

t € [0,27] and therefore ZZ;ZZ)) is a nonvanishing analytic function on dU. We have, for
all z € U,

! ! 2
2.8) d(z) _ o zd'(2) _ 19]q| <o,

a@ - a@ 20

which implies that there is a constant ¢ > 0 such that

W@ _ o 2@ _ 19]a]? <.

e e a0 2o S ¢ < Oforallz € dU.
Finally, we have from (2.5), whenever ¢ (z) # 0,

W@ __w'@ 1 YQ)
a(2) v@ 2oy

(2.9)

(2.10)

s

which implies that
eit,lpl(ei[) ] eila/(eif)
P 2 ateh)
for all e for which v (e*) # 0 and (2.4) holds.
(b) Now, suppose that the function ¢ satisfies (2.4). Then, by (2.11) and (2.9), we
have in the case of ¥ (e) # 0
e”a’(e”) 1 3|a| 2
a(e') ~2 d|z|
Since, by (2.6), a € H(R—'l < |z] < Ry) and |a(e™)| = 1, we conclude that (2.12) holds
forall t € [0,27]. Put R € (1,R;) such that Re Z;%—) < —kon{z: 11_e < |z| < R}. Then,
the relation

@2.11) 00 > Re >

(2.12) (e") < =2k < 0.

19]al?  |a|®>_ zd(2)
— e e

2 9|7 |2 a(z)
shows that |a(z)| < 1 on Vg, and Lemma 2.2 is proved. =

For the completeness we give a short proof of the following lemma.

(2.13)
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LEMMA 2.3.  Let ® be in H(3 < |z| < R) for some R > 1, such that ® is real on
oU and 5'; §:)=p dargz® = 1 forall p € (1,R). Then &' has exactly two zeros on OU
which are of order one.

PROOF. By the reflection principle, we have

<I>(£_) = ®(z) and — i<I>'(i_) = z0'(2).
z 7z Z

Since ®(9U) is a bounded real interval, there exists an ¢® and an €7, ¢ # ¢, such
that @'(¢?) = @'(¢") = 0. Applying the argument principle, we get for p € (1,R)

1 1 1
— d o — — d P =2. — d D =2
2 Roep CTEET T g Sy AT 27 ﬁ[z|=p e
and the result follows. [ ]

The next lemma gives the important relation of some auxiliary analytic function @ to
a given harmonic mapping f.

LEMMA 2.4. Let
1
f(@) = h(z) — h(E)+2Aln|z], AecC

be harmonicon {z: % < |z| < R} and suppose thatf is orientation-preserving on Vg.
Put _
o _ [A]IA] iEA£0
1 ifA=0,
and define
; o1
O(z) = e“h()+ e "“h(-).
z
Then f is univalent on Vi, for some R, € (1, R) if and only if ® is univalent on Vg, for
some R, € (1,R).

PROOF. Observe that ® € H(3 < |z| < R) and that @ is real on 9U. Furthermore
we have

. ; 1.1
W@ = 2 ] = W) 5| +1A] [

i / _ i l 7 l 1
o1 = K () +A] — e [Zh(z)m]

. . 1
=@ — e Y(3)
= Y ()1 — a(z)e ],

where 1 (z) = zf.(z) = i (z)+Aand a(z) = ¢ (%) / ¥ (2). Since f is orientation-preserving
on Vg, |a(z)| < 1 on V. Therefore @ and f; vanishes simultaneously. In other words,
@ is locally univalent on Vk if and only if f is locally univalent on V.

https://doi.org/10.4153/CJM-1992-021-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1992-021-x

314 W. HENGARTNER AND J. SZYNAL

(a) Suppose first that @ is univalent in Vg, for some R, € (1,R). Putw = u+iv = f(z)
and( = £ +in = ®(z). Define

w=F()=€efod ()

=( - 2Re{eiah(1_)} +2|A| In|z|
2.15) ¢

—¢- 2Re{e"’h( e )} +2|A| In®~' ()|

=¢ —4q(G),

where ¢ is real on ®(Vg,). Put J = ®(dU) and let ¥ be a convex closed Jordan around
J, Y € O(Vyg,).

Denote by G the doubly connected domain bounded by ¥ and J. Then, F is locally
univalent on G satisfying

2.16) W¢) = ImF() = Im¢ =,

and

-1
ou Re{ 1+a(®7'())

2.17 — = _ 7
@17 o [~ a@ 1))

}>oonG.
It follows that F is univalenton G\ {¢ : Im¢{ = 0}. Let £; and &; belong to GN {( :
Im¢ = 0} such that, £; < &,. Note that F(€;) and F(&;) are real. We will show that
F(&)) < F(&,), from which it followsthat Fis univalentin G. We can find closed intervals
I, = [&1 +iny, &2 + in,] in G with i, — 0 as n — 00. Since, by (2.17), Re F is strictly
increasing on I',;, we conclude that F(§;) < F(&). On the other hand, a—%({;) > 0,
i = 1,2, implies that F(£;) < F(&2).

Choose now R; € (1,R) such that Vg, C ®~!(G). Then f is univalent on Vg, and in
one direction Lemma 2.4 is proved.

(b) Suppose now that f is univalent on Vg, . Then, by the same reasoning, we get that
@ is univalent on an exterior neighbourhood Vg, of U.

Indeed,

C=F'wy=dof (e ™w)=w+qi(w),

where g; = 2Re{e“"h(1/f"(e‘”’w) )} —2|A] In|f (e~ w)| is real on f(Vk,). Define
G = {w:0< |w| <7} Cf(Vg,). Then, from the equality

n=ImF'w)=Imw=v

and the condition gg > 0, it follows that %% > 0. The rest of the proof goes as in (a) by
reversing the role of w = u +ivand { = ¢ +in and by replacing F by F'. u
The next lemma is known [7]. For completeness we give a short proof of it.
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LEMMA 2.5. Let F be analyticonA = {z:r < |z| < r}, 0< ry < ry, such that

F(2)
F(2)
Then the following statements are equivalent:
(i) Fis univalent on A;
(ii) 5= §=p dargF = 1, for some p € (r1,r2);
(iii) p(z) = £E = 1+ Tiez\ (0} P& € H(A).

(2.18) 0 < Re < ooonA.

PROOF. (a) The fact (ii)<>(iii) follows from the relation

1 1 F(2) dz 1 p(2)
—§ dagF= — 2 dz.
2n }l{d:p ag 2mi }[{d:p Flzy z 2mi -7|{z|:p z

(b) The implication (i)=>(ii) is trivial since (2.18) excludes the case 5‘; §=p dargF =
—1.

(¢) Going to prove (ii)=>(i), observe first that F and F' do not vanish on A. Indeed, if
F has a zero of order m at zg € A, then, by (2.18), F also has to have a zero of order m at
Zo which is impossible. We conclude therefore that F is locally univalent on A and that

1 1
2 }I{zt=p AL = on ?fz!:p dargF =1

for all p € (ry, ).

Furthermore, using (2.18) and (ii), we conclude that foreach p € (ry, r;) Fis univalent
on{z:|z] = p} andthatT, = {F(p") : 0 <t < 2r} isa simple closed analytic and
strictly starlike curve which winds once around the origin. Moreover, for each r; <
p1 < pp < rp wehave T'),, N T,, = . In fact, F is analytic and hence bounded on
{z:p1 <|z] < p2} and the image of it has to be a domain. Therefore, F is univalent on
{z:p1 <|z| € pa}. This holds for all r; < p; < p, < r; and hence F is univalent on

A. ]

We will close this section with the following lemma.

LEMMA 2.6. Let F be in H(|z| = 1) such that
(i) |F(e")| = 1and F'(¢") # 0 forall t € [0,27];
(ii) 5= §=1 dargF = 1.
Then there exists an Ry > 1 such that F is univalent on

1
T — R;}.
{Z Rl <|ZI< 1}

PROOE. The fact that %52 € R\ {0} on 0U and that

1 1
F _ — =
o }ﬂ!:l dargz o }I{zlzl dagF =1,
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implies that there is a k¥ > 0 such that Zﬁ(i)) = Re ;(i) > k > 0 and is finite on

dU. Hence, there is an R; > 1 such that F is analytic and 0 < Re 2((? < ooon

{z: I?T < |z] < Ri}. Applying Lemma 2.5, we conclude that F is univalent on {z :
 <ld <R} .

3. A characterization theorem.
THEOREM 3.1. Let
f(2) = h(z)+g(z)+2AIn|z], A€C,
be a harmonic mapping defined on the unit circle 0U = {z : |z| = 1}. Put
Y (@) = 2H (@) + A = #£(2).
Then there exists an exterior neighbourhood Vg of U such that f is univalént and posi-

tively oriented on Vg and lim -, f(z) = 0, if and only if the following conditions are

e

satisfied:
(a) h and g admit an analytic continuation across oU such that h(%) = —g(2) forall
7z x< |zl < R;

(b) ¥ has at most one zero on U which is of order one;
(c) there exists an exterior neighbourhood V of U and a constant k > 0 such that

3.1 00 > R Z:f((;) > k> 0onVp,
and

(3.2) i}( darg ) = 1 forall p € (1,R)
. el A argy = 1 forallp ,R).

Let us give some remarks about this Theorem.

REMARK 3.1. The statement (c) says that ¢¥(z) = zf;(z) maps {z : |z| = r}, 1 <
r < R, univalently onto an analytic strictly starlike Jordan curve with respect to the
origin.

For r = 1, (V) is still an analytic curve, but it may pass through the origin as the
following example shows: the mapping

f@=2— 2 +2d

is univalent, harmonic and orientation-preserving on C\ U and ¢ (z) = 1 + z vanishes at
z = —1. Observe that this zero is of order one.
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REMARK 3.2. The next example shows that (3.2) is essential. Let 1/ (z) = z + z°.
Then ¢ satisfies (b) and (3.1) with k = % but not (3.2). The function h(z) = z + zz/ 2is
analytic in C, but

F) =17+ 2 1 1
9Ty T Tz
is not univalent on any circle {z: |z| = r}, r > 1. Indeed, we have

f(re”) — r r_ 1[6”+ r+ le2ir

1.

Puttingd = 1 > | we see that the equation 1y + dni = 1 + dn? has a solution for
Im| = Iml=1m #n.

REMARK 3.3. The condition (3.1) cannot be replaced by

it )1y ( it
e"piel)
Y (e)
Indeed, consider the function ¥ (z) = z+ %zz. Then we have
1 z+3
a(@) = 5 - —+,
Z 1+ 72

and, for € positive close to zero,
a(—(1+€)) = 1+2e° +0(e*) > 1.

Therefore f is not orientation-preserving on V.

REMARK 3.4. Putp(z) = % By Lemma 2.5 the statement (c) is equivalent to:

(c') There exists an exterior neighbourhood V;; of U and a constant k > 0 such that

pEH(V,), p)=1+ > p;7 and Rep(z) >k on V.
jez\{o}

REMARK 3.5. The statements (b) can be replaced by

(b') ¥'(e") # 0 forall t € [0,27].
In fact we have:

(@) (a), (b) and (c) imply (a), (b') and (c).

If & is a zero of order 1 of ¢ then evidently v'(¢") # 0. Let (") # 0. By (a),
1 is analytic and hence bounded on dU and by (c) we have 0 < k < Re % < 00,
which implies that 1)’(e”) # 0 for all ¢ € [0,27].

(8) (a), (b)), (c) imply (a), (b), (¢).

Note that ¢y € H(JU) and that all zeros of ¢ on dU are of order one. On the other
hand, if 1 (¢") # 0, then we conclude by (c) that

eitw l(eit)
P (e

(3.3) 0< k<Re
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Furthermore, for p € (1, R), we have

1 1
2 fi.:}:p g Zw o fi;lzp g Y
and, from (b'), we conclude that .= §,_, darg ¢’ = 1. Suppose that g = e, 1 < k <
N, are the zeros of ¢ on dU. Then, by (3.3),
| , 1 1
P d / it - dar !/ > -, — )
27 /(‘fk,fm) arg(zw (e Xis /(nk'nm) gml) 2 1IN+ n

and therefore

1
l = — d !
2w fi-zl:l argzz/z
1 N

L :
3 2 oy AR 5 3 Alare(ay 0]

Il

Since the zeros of 1 are of order one, we get Aarg(zy')(n;) = 0. Therefore N = O or 1.
Together with Remarks 4 and 5, Theorem 3.1 can be restated as follows.

THEOREM 3.2. Let
fx) = h(z)+g(x)+2AIn|z|, A€C,

be a harmonic mapping defined on the unit circle U = {z : |z| = 1}. Put ¥ (2) =
#:(2) = 20 () + A and p(z) = % Then there exists an exterior neighbourhood Vg of
U such that f is univalent, positively oriented on Vg and lim ;5 f(2) =0, if and only if
the following conditions are satisfied: o
(a) h and g admit an analytic continuation across 0U such that h(%) = jg?z*) z €
{z:% <2 <R};
(') ¢¥'(e") # Oforallt € [0,2];
(c') there is an exterior neighbourhood Vi and a constantk > 0 such thatp € H(Vp),
is of the form p(z) = 1+ ez {0} p;2 and satisfies the conditionRe p(z) > k > 0
on V.

4. Proof of Theorem 3.1. Necessity: suppose that f is a univalent, positively
oriented and harmonic mapping defined on an exterior neighbourhood Vi of U such that
lim|2|>, f(Z) =0.

el

The statement (a) has been already proved in Lemma 2.1.
Let us prove (3.2) of the statement (c). Since f is univalent and positively oriented we

have for p € (1,R):
1 . .
=3 fid:p arglizf; — izfz].

Recall that f; # 0 on Vk and, since f is orientation-preserving, we have

_f®
f(2)

1

a(z) € H(Vg)and |a(z)] < 1, 7z € Vg.
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Therefore, we get for p € (1,R)

1 . e L B _g[_z-
= ﬁf{z‘:p darglief. — izf:] = 5 ]fz{:p darg 7f,[1 — a==]

T
1 1
— 4 dargif=—4  dagy,
27 }|421:p arg f: 2n fl{Zi:p arg v

and (3.2) is shown.
Next we show (b). We apply Lemma 2.2. By (2.6), we have |a(e")| = 1 forall ¢t €
[0,27], and (2.9) implies that

1 1 2d'(z2) dz
4.2 f— d = — - —<0.
@.2) 27 f]zlzl aga 27ri}|{z|=l a(z) z <

_
|

@1

I

Now, by Lemma 2.4, we know that @ is univalent on Vi, for some R| € (1, R) and, from
the formula

) ) . 1
(2.14) W@ = Y1 —a@e ) = Y@ —e Y2,

we obtain

1 1
— dargz@' = — dargy = 1forall p € (1,Ry).
o b, duee® =5 dargy p € (1R
Lemma 2.3 implies that the function @’ has exactly two zeros on dU which are of order
one. This information together with (4.2) leads to the conclusion that either

1
ﬁffd:l darga = —2 and 0 & ¥ (V)
or

1
i—;}fd:l darga = —1

and then v has exactly one zero of order one on dU. Therefore (b) has been established.
It remains to show the statement (3.1). If 1y does not vanish on dU then, by Lemma 2.2,

there is a k; > 0 such that
' (2)

Re >k, ondU.
v
Choose R such that Re Z—:/}%) >k =k /2on Vgand (3.1) is shown.

Suppose now that ¥ (¢ ) = 0, ¢'(¢?®) # 0 and ¢ (") # 0 on U\ { ¥ }.
By Lemma 2.2 we have

wW'(2)

0< k<Re e < ocoonadU\ {e?}

and therefore 1/(e') # 0 for all t € [0,27] (by the same reasoning as in the first part of
Remark 3.5).
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Consider now the function

m(z) = Y (2)
w'(2)
Then m € H(JU) and satisfies the condition
; 1 1
ay < .
ey = 2l = 3

LetK = {z:|z—€®| <k}, where x > 0is sosmall that m(z) is analytic and univalent
on K and such that either m(K N {z: |z] < 1})orm(KN {z:|z] > 1})isin the disk
{w:|w— %| < %} (thisis possible since m'(e®® ) # 0). The condition &’ m'(e” ) = 1
implies that the second case holds.

Therefore, we have 0o > Re Z—:f%z)) > kon[oU\ {e?}JUIKN{z: |z > 1}]. Hence
there exists an exterior neighbourhood of U/ U K and hence an exterior neighbourhood
Vk,, Ry € (1,R), such that Re 2 > k/2.

Therefore (3.1) holds, and the proof of the necessity of the statements (a), (b), (c) is
finished.

Sufficiency: we now show the sufficiency of the statements (a), (b) and (c). Let & €
H(JU) and suppose that ¥ (z) = zh'(z) + A, A € C, satisfies the statements (b) and (c) of
Theorem 3.1, i.e. there is an R > lsuchthath e H(% < |Z| < IA?), oo > Re % >
k> 0on Vg, %ftlw dargt) = 1forp € (1,R) and 1 has at most one zero on oU
which is of order 1.

Put

o — A/|A] ifA#£0
1 ifA=0
and define:

D(z) = €“h(2) + e_“’h(g), z€Vy
f@ = Q)= h3) +24Tn[dl, 2 €V

Evidently, f is harmonic on {z: < |z| < R} and f(z) = 0 on 0U.

First, we observe that f is orientation preserving on an exterior neighbourhood of U.
This follows from the fact that Re % > k > 0 for all ¢ for which v (e) # 0 and
from Lemma 2.2. Call this exterior neighbourhood Vg, , R| € (1,R).

Next, we will show that f is univalent on Vg for some R € (1, R;). Indeed, since by

2.14) @' (z) = ei"‘¢(z)(l—a(z)e_2i"), the condition (3.2) implies that forall p € (1,R))

1

1
— darg 70 = — d = 1.
2n ]I{ZIZ/J ez 2m Jld=p arg Y

By Lemma 2.3, we conclude that @' has exactly two zeros of order one on dU; call
them e, ¢, € # €.
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Denote by J the bounded real interval
DQU) = [B(e”), ()],
Next, define the function

D(e) — D) 5+ 1 " D(e") + D(e ),
4 s 2

and let s = g(¢) be the univalent inverse function of ¢ (s) which maps the exterior of
(C\J) onto the exterior of the unit disk. Put Q = g o ®@. Then Q satisfies the conditions
of Lemma 2.6 and we conclude that there is an R, € (1,R;), such that Q is univalent.
Hence @ is univalent on Vg,. Finally, Lemma 2.4 shows that f is univalent on some
Vg, R € (1,Ry).

It remains to show that f is positively oriented. We already have seen that f is
oreintation-preserving. By (3.2), we have for p € (1, R):

¢(s) =

Zfz)

zf;

1
2w

1
= E}i{z,:ﬂ dargy = 1.

Since f is univalent, f(Jz] = p), 1 < p < R, are disjoint positively oriented Jordan
curves. It remains to show, that they wind around the origin.

Since f is harmonic on dU and f(dU) = 0, f,(t) = f(p") converges uniformly to
fi=0on[0,27] as p | 1. Using the fact that f is univalent on V¢ we conclude that

1

2 }l{z|=p darg(izf; — izf:) = }I{ZI=p dargy (1 —a(2)

1
— d = 1forall I,R
5y ., daref =1forallp € (LR)
and Theorem 3.1 is proved. n

5. On the region of values of A. Let h € H(0U) and consider the harmonic map-
ping
1
f(@) = h(z) - h(g)+2Aln|z|, AecC.

Denote by Ej, the set of all A € C for which f is univalent and positively oriented on Vg
for some R > 1 (which may depend on A). Evidently E}, can be empty as the example
h(z) =z + %zz or h(z) = z* shows. We have the following result.

THEOREM 5.1. Let h € H(QU). If E;, is nonempty, then we have the following prop-
erties:
(a) Ej is a convex set.
(b) If, in addition, zh'(U) is a convex set, then the bounded component G of
C\ [zK'(QU)] belongs to —Ej.

PROOF. (a) Let A; and A; be in Ej. Since Ej, is non-empty, we conclude from The-
orem 3.1 and Remark 3.5 that (a), (b’) and (c) are satisfied. Observe that (a) and (b’) are
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independent of A. Therefore we have only to consider the relation (c). There isa k > 0
and an R > 1 such that fori = 1,2

1
— d W +A) =1, €(1,R
5§, dae@ +4) =1, pE(.R)

and
(zh’ (z))l

Repi(z) = Re ~ )
epil) =Re 5 A,

> k> Oon Vg.

PutA = AA; + (1 — M)A, for some A € (0, 1). Then we have for all z € Vi.

1

1 _ Zh/(z)+A[ . IW—— L S _}
2k 2k

P ()

ED:{w

Since D is convex
1 () +A

p) (@)

’

and therefore, Rep(z) > k. Furthermore, since I', = z/'(|z] = p), p € (1,R),is a
positively oriented Jordan curve which is strictly starlike with respect to —A; and —A;,
it is also strictly starlike with respect to —A. Hence,

1
— d W+A) =1,
o }|£z|=p arg(zh' +A)

which shows that Ej, is a convex set.

(b) Put 1)9(z) = zH'(2). Since E;, # §, 1o(0U) is an analytic closed Jordan curve. (This
follows from (b), (c), (b') and () applied to yp + A for an A € E}). Suppose, in addition,
that yo(0U) is also a convex curve, i.e. that the bounded component G of C\ 1o(dU) is a
convex domain. Let —A be in G and put ¢ = 1y +A. Since 0 & ¥ (U), 0 & ¢'(dU) and
Re %’é—;) > 0ondU, we conclude that (c) holds on Vg, , for some Ry > 1. The statements
(a) and (b) hold already, since E; # ). Therefore —G C Ej,. ]

We finish this section with the following remarks.

REMARKS 5.2. (i) Define vy(z) = z/#'(z) and suppose that E;, # {. Let, as before, G
be the bounded component of C \ [1)o(dU)]. Then —E;, C G. Therefore, E;, is a bounded
set.

(i) We cannot conclude that E}, is closed (and hence compact) as the following exam-
ple shows: Consider h(z) = ﬁ'z‘ Then vo(z) = zH'(z) = % . (];W and % = :i—z//zz
It follows then that O € Ej,. There is even a disk { A : |A| < r}, r > 0, which belongs
to Ey. On the other hand A = § ¢ Ej,. Let A = limsup{A : A > 0,A € E,}. Then, A
violates (3.1) and is therefore not in Ej,.
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