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A NONLINEAR DIFFERENCE EQUATION
WITH TWO PARAMETERS
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Abstract

The paper is mainly concerned with the difference equation

where k and m are parameters, with k > 0. This equation arises from a method proposed
for solving a cubic equation by iteration and represents a standardised form of the general
problem. In using the above equation it is essential to know when the iteration process
converges and this is discussed by means of the usual stability criterion. Critical values are
obtained for the occurrence of solutions with period two and period three and the stability
of these solutions is also examined. This was done by considering the changes as k
increases, for a given value of m, which makes it effectively a one-parameter problem, and
it turns out that the changes with k can differ strongly from the usual behaviour for a
one-parameter difference equation. For m = 2, for example, it appears that the usual
picture of stable 2-cycle solutions giving way to stable 4-cycle solutions is valid for smaller
values of k but the situation is reversed for larger values of k where stable 4-cycle
solutions precede stable 2-cycle solutions. Similar anomalies arise for the 3-cycle solu-
tions.

1. Introduction

In some work on a stability problem in aerodynamics, Lin [8, 9] developed a
method of finding factors of a polynomial by an iterative procedure. He was
mainly concerned with quadratic factors, in order to determine complex roots of
the polynomial, but in the second paper cited above he put forward a more
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(2) A nonlinear difference equation 431

general scheme which could be used in approximating to a factor of any degree.
For a linear factor, his scheme is equivalent to using the difference equation

_ -*nG(0)
X"+1 G(xm) - (7(0) Kl-l}

to give successive approximations to a root of the polynomial equation G(x) = 0.
In this form it is discussed by Hildebrand [7], who includes an example where
Lin's method breaks down. Lin was aware that his successive approximations
might diverage rather than converge and he gives an example [8, page 239] where
a shift of origin made the process convergent when it had previously been
divergent.

Coppel [2] examined this problem for the case where the polynomial is a cubic

p(x) = x3 + ax2 + bx + c, (1.2)

with c nonzero, and the iteration rule is

v- = — (i 2)
b + axn + x*

He showed that {xn} converges monotonically to a root of p(x) = 0, provided
the coefficients of p(x) satisfy the conditions

c < 0 , b > \ a 2 , c - f + £ > 0 . (1.4)
These conditions imply that a < 0 and b < 0, so at first sight they appear
somewhat restrictive , but they can always be satisfied by shifting the origin far
enough to the left [2].

It was suggested [3] that it would be of interest to look for periodic solutions of
equation (1.3), in view of the increasing importance of nonlinear difference
equations in a variety of problems [10, 5]. As can be seen from the monograph by
Collet and Eckmann [1], most of the information available is for one-parameter
problems whereas equation (1.3) involves two parameters. The work reported in
this paper considers mainly solutions of period 2 and period 3 but it is enough to
show conspicuous differences in behaviour compared with the results for one-
parameter problems.

The paper starts by writing equation (1.3) in a standard form, which involves
parameters m and k, with k > 0. After a discussion of the equilibrium solutions,
expressions are obtained for the stability criterion, Sr, and are used to see how S1

varies for different values of m and k and for different solutions, where more than
one solution is available. Coppel's conditions are considered in this context.

In Section 3, solutions with period two are discussed and it is shown that for a
given value of m there is a minimum value of k at which C2 solutions (solutions
with a minimum period two) can occur. For m < 1 all the C2 solutions are stable,
whereas for a given value of m, with m > 1, there is a finite interval of stability
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432 A. Brown [3]

for smaller values of k and an infinite interval of stability for larger values of k.
Between these there is a range of values of k for which the C2 solutions are
unstable. Thus the usual arguments about bifurcation of C2 solutions into C4
solutions, and so on, must somehow be reversed in this case when k is large.

The C2> solutions are discussed in Sections 4 and 5 and their behaviour is also
unorthodox. For m < \/3~, no C3 solutions occur. For m fixed, with m > / J ,
there is an interval Kx < k < K2 within which there are two C3 solutions for each
value of k. Kl and K2 are found explicitly as functions of m and they are
tabulated with other critical values of A: in Table 2. One family of solutions is
always unstable but the other family provides at least some stable C3 solutions.
The general situation (for m sufficiently large) is that there are two intervals of k
within which the solutions are stable, with unstable solutions occurring for the
intervening fc-values. Thus as k increases, with m fixed, it is possible to have
stable C2 solutions preceding stable C3 solutions (for smaller values of A:) and
then to have another group of stable C3> solutions preceding stable C2 solutions
(for larger values of k). It will be recognised that this is highly unorthodox [1].

Section 6 has some brief comments on superstable solutions, where the stability
criterion is zero, and equations for locating these solutions are given in the C3
and C4 cases.

Section 7 goes back to the original problem of using equation (1.3) to obtain a
root of the cubic p(x) = 0. To some extent this arose from the work done in
Section 5, which involved solving about 100 cubic equations to obtain the
elements of the C3 solutions for different values of m and k. This could be done
by using tables, such as the tables published by Salzer, Richards and Arsham [11],
but the availabihty of high speed computers makes it less convenient to look up
tables. There was something of a challenge also in applying the information from
the work on equation (1.3) to devise an efficient routine. This involved a
discussion of the effect on S1 of a change of origin and a look at cases where the
denominator on the right-hand side of equation (1.3) is not positive definite. (The
work in Sections 2 to 6 assumes that b + ax + x2 is positive definite.)

2. Basic equation and equilibrium solutions

In using equation (1.3) there are obviously advantages in having a2 < 4b, so
that x2 + axn + b is always positive. As mentioned above, this condition can be
met by a change of origin and we can then write Q2 = b — (1/4)a2, with Q > 0.
If we put a = -2mQ, c = -2kQ3 and xn = Qyn, equation (1.3) becomes

(yn -
(2.1)
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and we can treat this as a standard form, with m and k as the parameters. Since c
is nonzero, k is also nonzero but otherwise there is no restriction on m and k.
However, if we put j>n = -un the equation becomes

The convergence properties of the solutions will not be affected. Thus the
behaviour for parameter values (-m, -k) is the same as for ( + m, + k), so we can
take k as positive in equation (2.1) and leave m unrestricted.

For any value of yQ in equation (2.1) we will have 0 < yx < 2k and subsequent
iteration will give 0 < yn < 2k for n > 1. Thus any equilibrium solution must lie
in (0,2A;] and if we start with 0 < y0 < 2k the iteration can be regarded as a
mapping of the interval on itself. The equilibrium points and the elements of any
periodic solution must be positive and they cannot be greater than 2k. If k is
small, any equilibrium solution must be close to zero and we can think of y — 0 as
the limiting value of an equilibrium solution as k tends to zero.

If G(y) = y3 — 2my2 + (1 + rn2)y, the equilibrium solutions satisfy G(y) —
2k, with y > 0. For y > 0 and m < \/3~, G(y) increases monotonically with y so
there can only be one equilibrium solution. For m > JJ, the graph of G(y) has a
maximum at (Ylt 2kx) and a minimum at (Y3,2k3), where

y1 = y { 2 w - ^ 2 - 3 } ) (2.3)

k1 = ̂ {m3 + 9m+(m2-3)\far^i}, (2.4)

and Y3, k3 are obtained from Yv kl by changing the sign of the square root.
Hence for m > i/3 and k3 < k < klt there are three equilibrium solutions which
we can label as the left-hand solution (0 < y < Yx), the intermediate solution
(Y1 < y < Y3) and the right-hand solution (y > Y3). For k = kx, y = Yr is a
double root of G(y) = 2k and the remaining root occurs for y > Y3. Similarly,
y = Y3 is a double root for k = k3 and the remaining root occurs for 0 < y < Yx.

For m = v/3~, Yx = Y3 = (2/3)\/3 and G(y) = 2k has a triple root for k = (4/9)
\/3~. In this case there is only one equilibrium value of y for k > 0.

If Y is an equilibrium solution of equation (2.1), then the stability criterion at Y
is Sj = F\Y). For local stability, l^l must be less than 1. We must have Y
positive, with

G{Y)=Y{\+{Y-mf} = 2k, (2.5)

and we can make use of this equation to write

s _ -4k(Y - m) -2Y(Y - m) _ Y2(m - Y)
1 {l+(Y-m)2}2 l+(Y-m)2 *
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If we regard m as fixed and let k vary from 0 to 00, then Y ~ 2k/(l + m2) for k
small and Y — (2k)1/3 for k large. It follows that Sx is close to zero for k small,
with Sj -» 0 as k -» 0, and that Sx -* -2 as k and Y tend to infinity. Also,

aSt 2{mY 2 - 2(1 + m2)Y+ iw(l + m2)}

{n1 '
and this gives (dSx/dY) < 0 for m < 0. In this case, Sx decreases from 0 to -2 as
k and Y go from 0 to 00 and the equilibrium is on the point of instability when
Sx = - 1 . From equation (2.6), this occurs when 2Y(Y - m) = 1 + (Y - m)2,
which leads to

Y = Y* = y/l + m2, k = k* = (1 + m2){-m + ]/l + m2}. (2.8)

Indeed, this result holds for all values of m, that is, Sl = -1 when Y = Y* and
k = k*.

For m > 0, (BSi/BY) is positive for small values of k and Y. As 7 increases, 5X

attains a maximum when

y = y 2 = ^ { ( i + m 2 ) - v / i + ™ 2 } . (2.9)

At this maximum, Sx = -1 + vl + m2, and for 0 < m < \/3 the maximum lies
between 0 and 1. For m = 7J, the maximum is 1 and it occurs for the triple root
Y = (2/3)\/3\ For m > \fi , the maximum is greater than 1 and there must be an
intermediate value, with 0 < Y < Y2, at which Sx = 1. It turns out that this
occurs for Y = Yv For Y > Y2, dS^dY is negative until Y = Y4, where

y4 = - { ( l + m2) + i/l + w 2 } , (2.10)

and BSj/BY is positive again for Y > Y4. When Y = Y4, Sx has its minimum
value -1 — \1 + m2 and it is clear that this minimum value is less than -2 (for
any m > 0). For Y > Y4, Sj increases and tends to -2 as Y -> 00.

This means that for 0 < m < ^3 the equilibrium solution is stable for 0 < k <
k*. For m > \fi, we still have Sx = -1 when k — k* but we have an interval
where Sx > 1 and we need to know when Sx = 1. From equation (2.6), 5j = 1
when - 2 Y ( Y - m ) = 1 + ( Y - m ) 2 and this leads to the equation

3Y2-4/wY + (l + w2) = 0. (2.11)

The left-hand side is simply G'(Y), so Sx = +1 when Y is a double root of
G(y) = 2k, that is when Y = Yx and when Y = Y3. This can easily be verified.

If we go back to the graph of G(y), for m > \/3~ and y > 0, every point on this
graph corresponds to an equilibrium solution for a suitably-chosen value of k.
For points on the left-hand ascending branch, we have 0 < y < Yx and 0 < Sx < 1,
so these points correspond to stable equilibrium solutions. For the descending
branch, we have Yx < y < Y3 and Sx > 1, so these points correspond to unstable
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equilibrium solutions. For the right-hand ascending branch, we have -1 < Sx < 1
for Y3 < y < Y* and these points correspond to stable equilibrium solutions, but
for y > Y* we have Sx < -1 and the corresponding equilibrium solutions are
unstable.

Although these results have been obtained for a standardised form of the
difference equation, it is easy to see that a change of scale such as xn = Qyn does
not change the value of Sx at an equilibrium point so the results for equation (1.3)
can be discussed in the same way. With this comment, we can return to Coppel's
conditions (1.4) and see how they apply to the cubicpx(y) = y3 + axy

2 + bxy +
cx, where ax = -2m, bx = 1 + m2, and cx = -2k. For k > 0 the first two
conditions are satisfied and the third condition is also satisfied if

m - 2k > 0. (2.12)

This rules out cases where m < 0 but this is understandable since Sx < 0 for
m < 0 and convergence to the equilibrium solution would not be monotonic.
Because Coppel's conditions ensure monotonic convergence they should apply
only for 0 < Sx < 1 or possibly for the limiting cases when Sx - 0 or Sx - 1.
From equation (2.6), Sx = 0 when Y = Yc = m and this requires 2k = G(m) = m.
Thus condition (2.12) excludes the case where m = 2k and Sx = 0. For m > fe,
we have

Yc = m > \{2m + \/m2 - 3 } = 73, (2.13)
3

which means that y = Yc gives a point on the right-hand ascending branch of the
graph of G(y) and condition (2.12) is valid for the points on the graph between
y = Y3 and y = Yc. Thus we will have 0 < Sx < 1 for both the left-hand solution
and the right-hand solution when there are three distinct solutions and condition
(2.12) holds. (The intermediate solution is always unstable.)

A minor point is that condition (2.12) covers some cases where Sx = 1, for
example the "triple root" case when m = \/3~ and k = (4/9)\/3~ and the "double
root" cases when m > \/3 and k = k3. In such cases, the stability is marginal and
the convergence will be very slow.

3. Solutions of period two

If we look for solutions of equation (2.1) with minimum period 2 (C2
solutions), then we want positive numbers bx and b2 such that bx ¥= b2 and

2k = b2{l+(bx-m)2}, (3.1)

2k = bx{l+(b2-m)2}. (3.2)

These equations give

P = bxb2 = 1 + m2, a = bx + b2 = 2m + {2k/(l + m2)}, (3.3)
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and the condition for real solutions for bx and b2 can be written as k > k*, with
k* as defined in equation (2.8). It can be shown that

{m + y/\ + m2}

so C2 solutions are only possible when 2k > 2k* > m, that is, outside the range
covered by equation (2.12).

The stability criterion for a C2 solution is 52 = F'^b^F'^) and this leads to
the expression

S = (\ 2) (l + m2 ~ 2km)
2 k

and it can be checked that this gives S2 -* 1 as k -* k* from above. Also,

(3-4)

(3.5)

The sign of this derivative depends on the factor km - (1 + m2). For m < 0
this factor is negative, so S2 decreases as k increases (for m fixed). Also, S2 is
positive for m < 0 and tends to zero as k -» oo, which means that all C2
solutions are stable, with 0 < S2 < 1 for k > k*. This is in marked contrast to the
usual behaviour for one-parameter mappings [1, pages 23-26].

For m > 0, we note that

k*m - ( 1 + m2) = -(1 + m2)V2{-m + \/l + m2 } < 0,

so S2 decreases at first as k increases above the critical value k*. As before, we
can keep m fixed and consider the changes in S2 as k increases. S2 becomes zero
when k = (1 + m2)/(2m), reaches a minimum value when k = (1 + m2)/m and
then increases again for larger values of k. At the minimum, S2 = -m2, and S2

increases toward zero as k -» oo. For 0 < m < 1, 52 lies between -1 and +1 for
all admissible values of k and again all the C2 solutions are stable. For m = 1, the
C2 solutions are almost all stable but with a solution on the margin for stability
when k = 2. For m > 1, the limiting values of k for stability will occur when
S2 = -1 and from equation (3.4) the corresponding values of k are k5 and k6,
where

m ){m± ]/m2 - 1 }. (3.6)

If we take k5 < k6, then the C2 solutions are stable in the interval (k*, ks),
unstable in (k5i k6) and stable again for k > k6. Once again, this is unusual
behaviour compared with what happens for one-parameter mappings.

Another unorthodox feature is that it is possible to have a stable equilibrium
solution and a stable C2 solution for the same parameter values m and k. As a
numerical example we can take m = 3, k = 5/3. Then px(y) = y* — 6y2 + lOy
- (10/3) and the equationpx(y) = 0 has solutions 0.44184, 2.35587, and 3.20229.
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The corresponding values for Sx are 0.29965, 2.14501, and -1.24465, so the
solution at y = 0.44184 is stable. At the same time, there is a C2 solution with
b1 = 10/3, b2 = 3 and S2 = 0. One would expect the two stable solutions to have
different catchment areas, so to speak, with the intermediate solution as the
watershed.

In the example above, the sum of the Sx values is 1.20001 and this agrees with a
general result, that the sum of the Sl values is (4m — 6k)/k when pY(y) = 0 has
three distinct real roots. This follows fairly simply from equation (2.6).

4. Equations for solutions of period three

For a C3 solution (a solution with minimum period three) we need distinct
positive numbers bv b2, b2 such that b2 = F(bx), b3 = F(b2), bl = F(b3). This
gives a set of three equations of which

2k = (1 + m2)b2 - 2mbxb2 + b\b2 (4.1)

is typical. Since the choice of bx is arbitrary, it is convenient to use symmetrical
functions

a = bx + b2 + b2, /} = bxb2 + b2b3 + b3bx, y = blb2bJ,

and to look for equations which allow a, /}, y to be determined. Once they are
known, br, b2, b3 are the roots of h(x) = 0, where h(x) = x3 - ax2 + fix - y.

Since the three equations represented by (4.1) have cyclic symmetry it is
convenient to use E for cyclic summation over the three suffixes. For example,

Zb\b2 = Y,b\bx = b\b2 + b2b, + b\bx.

Cyclic summation of equation (4.1) gives

6k= (1 + m2)a-2mP + 'Eb2b2, (4.2)

and in the same way if we multiply equation (4.1) in turn by b3, b
2, b3bv b2 and

in each case use cyclic summation we get

2ka = (1 + m2)fi - 6my + ay, (4.3)

2k(a2 - 2)8) = (1 + m 2 ) £ v ! ~ 2wY« + Py, (4.4)

2kp = 3(1 + m2)y - 2may + y(a2 - 2/8), (4.5)

2ka = (1 + m2)(a2 - 2p) - 2m'£b1bl + 02 - lay. (4.6)

In writing out these equations we have used identities such as Y.b\ — a2 — 2/? and
Hb\b\ = fi2 — 2ay, and we can note also that

op = 3y + Y,b\b2 + 2>,6f. (4.7)
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If we use equations (4.2), (4.4), (4.5) and (4.7) to eliminate Hb\b2, Hbxb\ and /?y,
we obtain

P{6lc+(2a - 4m)(l + m2)} + y(a2 - 6ma - 3 - 3m2)

= 4ka2 + 12*(1 + m2) - 2o(l + m2f.

Equations (4.3) and (4.8) are linear in /? and y and we can solve them to obtain

pD = 2a(6m — a)(i + m2) + lSk(a — 4m)(l + m2)

+ 2ka2(a-6m), (4.9)

yD = 2a(l + m2f - \2k(\ + m2f - Skma(l + m2) + \2k2a, (4.10)
where

D = 3(1 + m2f + 6k(a - 6m) + (a - 4m)(a - 6m)(l + w2). (4.11)
For D ¥= 0, these equations express /? and y as functions of a, k, m and we need

an equation for a to complete the solution. If we substitute for f$ and y in
equation (4.5), the outcome is an equation of the form

5

0 = Mx{a, m,k)= £ aJfj{m, k), (4.12)
y-o

where the coefficients fj(m, k) are polynomials in m and k. From other consider-
ations, the equation for a should be of degree 2, so a factor of degree 3 has to be
identified, explained and eliminated.

The clue to this process came from the case m = 0 where most of the terms
disappear, leaving

M^a.O, k) = (1 + 4A:2)o5 - 2kaA +(10 + 36k2)a3

-(12k + 216k3)a2+(9 + 108/t2)a - 54A:

= (a3 + 9a - 54A;){(1 + 4A:2)a2 - 2ka + l } .
Now although 61, b2 and b3 should be distinct for a C3 solution we have not used
this in forming the equations for a, /? and y. As a result, we can expect to have
included the degenerate case where bl = b2- b3 = b, with G(b) = 2k. For
m = 0, G(b) = b3 + b and, since a = 3b in the degenerate case, the equilibrium
equation is

(a/3)3 + (a/3) = 2*
that is, a3 + 9a — 54A: = 0. This explains the cubic factor in Mx(a, 0, k) and
equating the other factor to zero gives the appropriate values of a for a C3
solution. In fact, the second factor gives complex values for a so there are no real
C3 solutions for m = 0. This is not surprising, since all C2 solutions are stable for
m < 1.

For general values of m, the equilibrium solution bl = b2 = 63 = b again gives
a = 3b and in this case G(b) = 2k leads to

E(a, m, k) = a3 - 6ma2 + 9(1 + m2)a - 54k = 0.
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It can be verified that E(a, m, k) is a factor of M^a, m, k) and the remaining
factor gives

M2{a, m, k) = Aa2 - 2Ba + C = 0, (4.13)

where

A = (l + m2f - 4km{\ + m2) + 4k2, (4.14)

B = 3w(l + m2f + A:(l + m2)2 - \2km2{\ + m2) + \2k2m, (4.15)

C = (1 + w2)4 + 8m2(l + m2f - 2>2km*{\ + m2) + 4Sk2m2. (4.16)

For most values of k and m, the equations above suffice to determine a, B, and y.
A, B, and C can be calculated from equations (4.14), (4.15) and (4.16) and
equation (4.13) then gives the appropriate values for a. If they are real, we can use
equations (4.11), (4.9) and (4.10) to determine the corresponding values of B and
Y-

Break-down sometimes occurred because D was zero (or close to zero). To deal
with this case, B was eliminated between equations (4.3) and (4.5) and this gave a
quadratic equation

2y2{a - 6m) + y{3(l + m2)2 + a(a - 2m)(l + m2) - 2k(a + 6m)}

-4k2a = 0, (4.17)

which could be solved for y. Equation (4.3) then gave B. In most cases, only one
solution of the quadratic was required and the other gave a spurious solution
which violated one or more of the check equations. (With a little bit of practice it
was possible to pick out the appropriate value for y and to incorporate this choice
in the computing programme.)

One of the check equations came from eliminating !Lb\b2 and Yb^b\ between
equations (4.2), (4.6)and (4.7). This gave

B2 + 2B{m2 - 1 - ma) - 2y(a - 3m) = 2k(a - 6m) + a(2m - a)(l + m2)

(4.18)

Another came from multiplying equation (4.1) by b3 and subtracting the corre-
sponding equation (with the suffixes moved on by 1). This gave

2k(b3 - b,) = (bx - b2){y-(l + m2)b3) (4.19)

and there are two corresponding equations, with 2k(b1 — b2) and 2k(b2 — b3)on
the left-hand side. If we multiply the three equations together and cancel a
common factor (bl — b2)(b2 — b3)(b3 — bx), assuming that blt b2 and b3 are
distinct, we get

{y - (1 + m2)^}^ - (1 + m2)b2}{y - (1 + m2)b3)

Y3 - a(l + m2)y2 + B(l + m2fy - ( l + m2fy. (4.20)
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The stability criterion for a C2> solution with elements (bx, b2, b3) is S3 =
F'(b1)F'(b2)F'(bJ) and we can write

= -4k(bx-m) = -4k(bx - m) = -b2(bx - m)
1 { f } 2 {2k/b2f

 k

From this,

S3 = (bxb2b3)
2(m - bx)(m - b2)(m - b3)/k

3 = y2h{m)/k3. (4.21)

Since h(m) = m3 — am2 + fim — y, S3 can be evaluated from k, m,a, /? and y
without finding bx, b2, and b3 explicitly.

5. Critical values for solutions of period three

It was shown in Section 2 that all C2 solutions are stable for m < 1, so we shall
assume that no C3 solutions occur unless m > 1. From equation (4.13) the values
for a will not be real unless B2 > AC and this suggests that we examine
T(m, k) = B2 — AC, to find when it changes sign. In detail,

T(m, k) = -(1 + m2)6 + 2km(l + m2f +(ikm - 19k2)(l + m2)4

+ (16A:2 + 56k3m)(l + m2)2 -(32k3m + 4U4)(1 + m2) + 48A:4.

(5.1)

If we put/? = 4mk and/»0 = (1 4- m2)2, we can write

16m2T(m,k) = -(/> - po)
2{lp2 - 8w2(l + m2)p + 16w2(l + m2)2},

(5.2)

and the quadratic factor is zero when

p = (4/3)(l + m2)m{m + v'w2 - 3 }. (5.3)

This implies that the quadratic factor is positive definite for 0 < m < vT and in
this case T(m, k) is negative except when p = p0. We shall look at this special
case more carefully later.

For m > \[3 , T(m, k) = 0 when/? ='po,px orp2, wherepx and p2 are given by
equation (5.3). We can take px < p2 and it is easy to check that px < p0 < p2. If
we pntp0 = 4mK0,px = 4mKx and/?2 = 4mK2, then

T(m, k) = 48m2(K2 - k)(k - Kx)(k - Kof. (5.4)

which means that T(m, k) is positive for Kx < k < Ko and Ko < k < K2, zero
for k = Ko, Kv K2 and negative for k < Kx or k > K2. Thus for a given value of
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m, with m > ^3, C3 solutions cannot occur outside the interval K1 < k < K2.
We note that Kx = (l/3)(m2 + l){m - \/w2 - 3 }, K2 = (l/3)(m2 + l){w
+ y/m2 - 3 }, #„ = (1 + m2)2/(4m).

For m = j}, Ko = K1 = K2 = (4/3)v/3 and r(y/3, A:) = -144(A; - tf0)
4, so

there cannot be a C3 solution when A: # ^To.
When 2?2 = AC, equation (4.13) has a double root and there is only one value

of a. If we take m > i/3~ and examine the solution corresponding to k = K2, then
D is nonzero in general and we get a single solution for (a, B, y). If we write L for
/ — 3 , then

« = (3m2 - 1 ) ^ ± 4 , (5.5)
1 + w

. (7w4-6m2 +3)+4w(w 2 -
P = — j1 + mz

y = \{\ + m2){2m-L), (5.7)

and it turns out that A = y2, B = y2a, C = y2"2- A more important result is that
S3 = 1 for k — K2. When k = A^, L has to be replaced by -L in equations (5.5),
(5.6) and (5.7) but the solution follows the same lines, with a single solution for
(a, p\ y) and with S3 = 1.

When k = Ko, A = 4/i:0
2, 5 = ternX^ C = 64w2AT0

2 and a = 4m. However,
D = 0 and equations (4.9) and (4.10) for ft and y become indeterminate. If we
turn to equation (4.17) and put yl = my/(l + m2), we get

4Yl
2 - 2Vl(3m2 - 1) + (1 + m2f = 0, (5.8)

an equation which has real, distinct roots only for m2 > 3. This means that there
are no C3 solutions for m < \/3~. For m = ^3, equation (5.8) has a double root
yx = 2 and this leads to a unique solution for (a, /}, y). The actual values are

a = 4 / 3 , fi = 12, y = (8/3)/3" and they give a C3 solution &! = 4.48, b2 = 0.54,
fe3 = 1.91, with S3 = 1. For m > \/3~, there are two solutions, with the same value
for a but with different values for /? and y. For each solution the stability
criterion can be expressed as a function of m. As m -* 00, the stability criterion
approaches 16 + i\f5 in one case and 16 - 8v^ in the other.

For B1 > AC, equation (4.13) gives two real values for a and this leads to two
distinct solutions for a, B and y. The values for S3 and for the solution elements
(bx, b2, b3) are also distinct. To illustrate what happens, Table 1 shows the
solution details for m = 2, for a number of values of k. The entries have been
rounded off to four decimal places to make the table more compact. It is clear
that the solutions can be classed into two families from the values for S3.

For one family, labelled the unstable family in Table 1, S3 > 1 for Kx < k < K2

and thus all of the solutions in this family are unstable. For the other family,
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labelled as the stable family in Table 1, S3 decreases at first as k increases and
there is a small interval in which the solutions are stable (until S3 = -1). Beyond
that, S3 decreases to about -2 and then increases again until S3 = 1 at k = K2.
From the table, the solutions in this family become stable again around k = 3
and remain stable until k = 5 = K2. Thus the "stable" family has stable solutions
in two intervals (along the A:-axis) although outside these intervals the solutions
are unstable. The boundaries for these stability intervals were determined more
precisely by interpolation once the general character of the behaviour became
clear.

A minor point about Table 1 is that although there is only one solution for
k = Kx and k — K2, the solution has been entered under both families since it is
a limiting case for both. Another point of detail is that for Kx < k < Ko the
larger a-value occurs for the unstable family but there is a change-over at k = Ko

and the larger a-value occurs for the stable family for Ko < k < K2. Thus we
cannot simply pick out the larger a-value as our criterion in classifying the
solutions.

Similar surveys were made for m = 1.75, 1.8, 1.9, 2.5, 3.0 and 4.0 and in each
case the values of S3 for the unstable family of solutions were greater than 1 for
Kl < k < K2. For the other family, S3 decreased to a minimum and then
increased again, although for m = 1.75 and m = 1.8 the minimum was greater
than - 1 . Thus for these values of m the stability interval is (Kr, K2). This
suggested that there ought to be a value of m, say mQ, for which the minimum
value of S3 is -1 and closer checking gave m0 = 1.8843457, with the minimum
occurring for k = 2.1195885. For JJ < m < m0, we can say that the stable
family of solutions has \S3\ < 1 for Kl < k < K2, whereas for m > m0 the stable
family of solutions has \S3\ < 1 for Kx < k < Kf and for K\ < k < K2, where
Kf < Kl and Kf, K\* are the values of k at which S3 = - 1 . Table 2 shows the
critical values k*, k5 and k6 for C2 solutions and also Kx, K^, Ko, K%, and K2 for
different values of m.

Even for the limited range of values of m in Table 2 it is clear that the
behaviour of the solutions is very different from that described by Collet and
Eckmann [1] for one-parameter difference equations. The stability intervals
(k*, k5) and (A\, Kf) appear to be decreasing as m increases, and for larger
values of k we have the reappearance of stable C2 and C3 solutions after an
interval of instability.

To some extent, the appearance of the table can be explained by looking at the
behaviour of k*, ks, k6, Kx, Ko and K2 for large values of m. From the
expressions for k*, k5 and Kx, all three behave like m/2 for m large and

ks-k*~Kx-k5~ —.
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TABLE 2. Critical values of k (for a given m).

m
1.0
1.5

v/3
1.8
1.9
2.0
2.5
3.0
4.0

k*
0.8284
0.9840

1.0718
1.0987
1.1391
1.1803
1.3962
1.6228
2.0928

C1 Solutions

2.0000
1.2414

1.2713
1.2861
1.3113
1.3397
1.5132
1.7157
2.1593

2.00OO
8.5086

12.5851
13.9779
16.2067
18.6603
34.7368
58.2843

133.8407

-
-

2.3094
1.8516
1.7195
1.6667
1.6850
1.8350
2.2352

-
-
-
-

1.9405
1.7503
1.7014
1.8432
2.2391

d Solutions

1.0000
1.7604

2.3094
2.4969
2.7963
3.1250
5.2563
8.3333

18.0625

•

-

2.3626
2.9784
5.6889
9.2799

20.4424

-
-

2.3094
3.2364
4.1198
5.0000

10.3984
18.1650
43.0981

In the same way, the dominant terms for k6, Ko and K2 are 2m3, (l/4)w3 and
(2/3)m3, respectively, so for large values of m, k6 — K2 and K2 - Ko are
dominated by a term proportional to m3. It was noted earlier that the smaller 53

value for k = Ko tends to 16 - 8/5~ = -1.8885 as m -* oo, so we can expect to
have AT£ between Ko and K2 for larger values of m. From the table, this is already
happening at m = 2.5.

6. Superstable solutions

The discussion of C2 and C3 solutions raises a number of questions concerning
solutions with longer periods. For example, unstable C2 solutions only appear for
m > 1 and unstable C3 solutions only appear for m > 1.8843457. Are there
similar critical values for C4, C8, C16,..., C5 solutions? One would guess that
this is the case and that the critical m-values lie between 1 and 1.8843457.

If we take m as fixed, say m = 2, and let k vary then equation (2.1) can be
regarded as a one-parameter first order difference equation, although the map-
ping is not on to a fixed interval but on to an interval (0,2k) which depends on
the parameter k. It looks as if the usual arguments about bifurcations could be
applied for the smaller critical values of k but what happens for the larger critical
values? Do stable C3 solutions precede stable C5 solutions and so on, with
eventually a coalescence of stable C4 solutions into C2 solutions when k = k6? If
so, does the same Feigenbaum ratio apply for k large as for k small?

One way of obtaining guidance on these questions might be to look at the
superstable solutions, where the stability criterion is zero. From equation (2.6), 51

is zero when Y — m and this implies that m = 2k. From equation (3.4), S2 is zero
when 2k = (1 + m2)/m. Since S2 = FXbJF'^), one of these derivatives must
be zero and this means that either bl = m or b2 = m. If we take b1 = m, then
equation (2.1) gives b2 = 2k. For m ¥= 2k, the superstable C2 solution is then
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(m,2k) and the requirement that m = bx = F(b2) verifies the result obtained
from equation (3.4). The example mentioned at the end of Section 3 is the
particular case where m = 3.

In the same way, a C3 solution with S3 = 0 must have m as one of its elements.
We can take bx = m, b2

 = 2k, b3 = 2k/{l + (2k — m)2} and to complete the
cycle we must have bx = F(b3). If we put I — 2k — m, the condition that
bx = F(b^) leads to the equation

/(I + / 2 ) 2 = /2m(l -Im)2. (6.1)

If / = 0, then m — 2k and we have the equilibrium case bx = b2 = b3 = m. For a
C3 solution we can omit the factor / in equation (3.1) and the result is

/4 - w3/3 + 2/2(l + m2) - Im + 1 = 0. (6.2)

This equation has a double root when m = 1.773471 and the numerical evidence
is that this is the smallest value of m for which S3 = 0. (The corresponding value
of k is 2.246115.) For m = 2, equation (6.2) gives k = 1.6840 and k = 4.2534,
which agree with the critical values in Table 2. For m = 3, the corresponding
values of k are 1.8371 and 14.6211, which again agree with Table 2. For m = 3
and k = 1.8371, equation (2.1) has a stable equilibrium point at Y = 0.51047 as
well as the superstable C3 solution.

For a superstable C4 solution, we must again have bx = m, b2 = 2k, b3 =
2k/{l + (2k - m)2}, with bA = F(b3) and b5 = bx = m = F(bA). The condition
that b5 = m leads to an equation

/{(I + /2)2 + /2(1 - Imf}2 = ml2{(\ + I2)2 - lm(\ - Im)2}'', (6.3)

where again / = 2k - m. However, equation (6.3) includes the solutions / = 0
and / = 1/w, which correspond to the equilibrium case and the C2 case. When
we take out a factor 1(1 — Im), the condition for C4 solutions is an equation of
degree 8 in /, namely

(1 + / 2 ) 4 + 2/2(l + m2)(l + /2)2(1 - Im) + ( / 4 - /3w3)(l - Imf = 0.
(6.4)

For m = 2, this equation has roots at / = 0.7314 and / = 24.5668 and these
correspond to k = 1.3657 and k = 13.2834. Thus there is one solution between k5

and Kx and another between K2 and A:6, which agrees with the idea that the stable
C4 solutions occur between the stable C2 and C3 solutions at the lower end of
the /c-scale and between the stable C3 and C2 solutions at the upper end.

However, this tidy arrangement breaks down for larger values of m. For m = 3,
there are superstable solutions at k = 1.7285, 1.9183, 5.8828 and 40.0081, which
suggests that there are four intervals for k where the C4 solutions are stable. This
behaviour occurs also for m = 4 and m = 2.5 and the change over to more than
two superstable solutions appears to occur between m — 2.3131 and m = 2.3132.
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7. Solving a cubic equation

Although the results for equation (2.1) are of interest because they are so
different from the usual results for iterated mapping of an interval they also
throw some light on the problem of solving a cubic equation by using equation
(1.3). Coppel's conditions ensure monotonic convergence, which could be useful
in some cases, but this restriction is not essential and an iteration process where
Sx = -0.1 would usually be preferable to one with Sx — 0.9, even although the
convergence is not monotonic when Sx is negative. In the present investigation the
problem of finding roots of a cubic came up in Sections 4 and 5, where bv b2, b3

had to be found from the values of a, /? and y. In some cases, blt b2 and b3 varied
by a factor of 1000 or more and little was known about their location to begin
with. The method that was used involved essentially transforming the cubic to a
standard form and using a simple formula to give a first approximation to a root
of the standard form. The iteration procedure then provided improved approxi-
mations.

As before, we can take the cubic as p(x) = x3 + ax2 + bx + c. If u = x +
(a/3), then

p(x) = p2{u) = M3 + b2u + c2, (7.1)

with

b2 = b-(a2/3), c2 = c - f + ? £ . (7.2)

If b2 = 0, we have u = (-c3)1/3 immediately (and this covers the case of a triple
root). If c2 = 0, then u = 0 is a solution and u2 + b2 = 0 gives the other roots.
With these special cases out of the way we can take b2 and c2 as nonzero in the
general discussion and the main classification is then (i) b2 > 0, (ii) b2 < 0.

If b2 = q2 > 0, with q > 0, we can put u = qv and get/»2(«) = q3p3{v), where

p3(v) = u3 + v - 2K,

with IK = -c-Jq3. This gives the equation to be solved in a standardised form

v3 + v = 2K, (7.3)

and we can take K as positive. Otherwise, replacing v by -v gives the form we
want. This equation has a single real root, say V, with V > 0, and it looks at first
sight as if we could use equation (2.1) with m = 0 and k replaced by K. However,
this would not work in all cases, since the equilibrium solution is unstable for
K > 1, from equation (2.8). So we are forced to consider a change of origin as a
way of keeping S\ close to zero in the iteration.
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From equation (2.12), p3(v) does not satisfy Coppel's conditions and it can be
shown that the shift of the origin needed to make them apply must be at least 2V
to the left. If we put v = w - 2rV, then we have a shift of origin to the left for
r > 0 and to the right for r < 0. With this change of origin, the equation for w
can be written as

w{(w-3rV)2 +(1 + 3r2V2)} = 2LX, (7.4)

where

2LX = V(l + 2r) + V3(l + 8r3). (7.5)

This makes use of the equation p3(V) = 0 to replace 2K by V + V3. The real
root of equation (7.4) is V{\ + 2r) and the corresponding difference equation is

U i ^ 7 2

(1 + 3r2V2)+(wn- 3rV)

This can be put into the standard form (equation (2.1)) by a change of scale and
the stability criterion for the equilibrium solution works out as

2(2r + 1)(, - l)V2

^ l + ( 4 r 2 - 2 r + l ) F 2 ' ( j

We note that Sx > 0 for r > 1, with Sx —> 1 as r —» oo, and this is consistent with
the point mentioned above, that Coppel's conditions are satisfied for r > 1. Since
V is not known to begin with, any shift of origin to satisfy Coppel's conditions is
liable to err on the safe side and this increases Sv For example, if r = 2 and
V = 1, then Sx = 5/7, which implies a comparatively slow convergence.

From equation (7.7), Sx = 0 when r = 1 and this corresponds to the case where
V = m = 2k in Section 2. We also have 5X = 0 when r = -1 /2 and this has a
very simple explanation, that the origin has been shifted to the right to coincide
with the real root we are looking for. As a check, we note that Lx = 0 when
r = - 1 / 2 (from equation (7.5)) and then w = 0 satisfies equation (7.4). This
suggests that we should look for an approximation to V, say Vo, and shift the
origin to the right by Vo or to the left by 2V0> so that Sx is close by zero. In
practice, the origin was moved to the right, with w = v — Vo and with

I2K, for Q^2K< 0.45,
V0=IK+0.\6, for 0.45 < 2/sT < 1.5, (7_g)

\{2K-\)l/\ iox2K>\.5.

Table 3 illustrates how this approximation works for a number of values of V. For
each V, 2K was calculated as V + V1 and Vo was then obtained from K by using
equation (7.8). Thus Vo is our approximation to V and it will be seen that the
approximation is fairly good. It does not matter that VQ is not a continuous
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function of K. All we want is a simple rule that can be fed to a computer. The
iteration equation is then

... 2K-V0-V
3

 ( ? 9 )

with w0 = 0.
In the case where b2 < 0, we can write b2 = -q2 with q > 0. Then the

substitution u = qv givesp2(u) = q3p4(v), where

p4(u) = v3 - v - 2K. (7.10)

As before, 2K = -c-Jq3 in equation (7.10) but we can work with the standardised
equation

v3 - v = 2K (7.11)

and assume K is positive. With this assumption, p4(l) < 0 and there is always a
real root V> 1. For K > 1/(3/3), this is the only real root,.but for 0 < K < 1/(3/3")
there are two more real roots between -1 and 1. For K = l/(3/3~), there is a
double root at v = - 1 / /3~. We can argue that if one root of a cubic is known the
problem reduces to solving a quadratic and this suggests that we should con-
centrate on the root V, which is always real and has the largest magnitude when
there are three real roots. Also, we can be sure that it is not a double root.

To use the same strategy as before, we can put w = v — Vx, where Vl is an
approximation to the root V. The approximation used in this case was

Vx = (2K + 1)1/3 (7.12)

and Table 4 shows that this is a reasonably good approximation over a wide
range of values of K. As in Table 3,2K was calculated as V3 — V for each value

TABLE 3. Approximate solution of i? + v = 2 K.

V = exact solution, Vo = approximation from equation (7.8).

V 0.0 0.2 0.35 0.4 0.7 0.85 0.9 1.5 3.0 10.0 20.0
2/C 0.0 0.204 0.393 0.464 1.043 1.464 1.629 4.875 30.0 1010.0 8020.0

VQ 0.0 0.204 0.393 0.392 0.682 0.892 0.857 1.571 3.072 10.03 20.02

TABLE 4. Approximate solution of u3 — v = 2K.

V = exact solution, Vl = approximation (2 K + 1) .

V 1.0 1.1 1.2 1.4 1.6 1.8 2.0 4.0 10.0 20.0
IK 0.0 0.231 0.528 1.344 2.496 4.032 6.0 60.0 990.0 7980.0
Vy 1.0 1.072 1.152 1.328 1.518 1.714 1.913 3.936 9.97 19.98
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of V and Vx was then obtained from equation (7.12). One point which is of
importance later is that Vx is always an underestimate of V. From equation (7.10),

and this implies Vx < V, since/^(u) = 3v2 - 1 > 2, for v > 1.
After the change of origin, the iteration for w becomes

( 7 1 3 )

(wn +(3/2)Vl)
2 - 1 + (3/4)V2

with w0 = 0. If we put 2L2 = 2K + Vx - Vx
3, then 2L2 = -p4(Vx) > 0. Equation

(7.13) can be put into the standard form (equation (2.1)) by a change of scale,
provided ( 3 / 4 ) ^ - 1 > 0, that is, provided Vx > 2 / \/3~ = 1.1547. However, if
1 < Vx < 1.1547, we cannot get to the standard form by a change of scale. This
difficulty arises because of an assumption made at the beginning of Section 2,
that by a suitable change of origin we can have a2 < 4b in p(x) = x3 + ax2 + bx
+ c. This assumption is correct and we could satisfy it comfortably by using
w = v — V2, with

K2 = Max{K 1 ,(4/3)} .

On the other hand, V2 is not as good as Vx as an approximation to V, so we can
expect |S t | to be larger and the iteration longer in some cases if we use
w = v — V2.

A closer check shows that no difficulty arises if equation (7.13) is used, even
when (3/4)Kj2 — 1 < 0. If we rewrite the equation as

Wn+1 = 2 T

then for wn > 0 and Vx > 1

w2 + 3VlWn + 3V2 - 1 > 2, (7.15)

and this ensures that 0 < wn+l < L2. So if we start with w0 = 0, then wn > 0 for
n = 1,2,3, Thus although the denominator in equation (7.14) is not positive
definite we need not worry about it becoming zero or negative, since this cannot
happen as long as wn > 0. There will be an equilibrium value W = W - Vx and
from Table 4 it is clear that 0 < W < 0.1. The stability criterion, Sx, is the value
of dwn+l/dwn when wn — Wand this gives

W2 + 3VW +3V2 \W2 + 3VXW +3VX
2 - \

We note that Sx < 0, so the convergence is not monotonic.
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If we replace Vx by V — W'm equation (7.16),

_ -W(3V- W)
W2 - 3VW + 3V2 - 1
-3VW

for W small.3V2 - 1

With this first order approximation,

l̂ il = 3^—£ (7.17)
11 3V2 - 1

and it is easy to show that V/(3V2 - 1) is monotonic decreasing for V > 1. Thus
the first order term gives

and the available numerical evidence agrees with this.
It is of interest that the example cited by Hildebrand [7] to show how Lin's

method could break down was p{x) — x3 — x — 1. For this example, p(x) = 0
has a single real root at x = 1.324718, so Hildebrand started with x0 = 1.3 and
used the iteration formula

which produces fluctuations of increasingly large amplitude. In contrast, equation
(7.12) gives X = 21/3 = 1.26 as an approximation to the solution and the substitu-
tion w = x — 1.26 led to an iteration formula which gave x = 1.324718 after five
iterations.

The method suggested above for solving a cubic is similar in principle to that
given by Hartree [6] and by Fletcher and others [4], who noted that in general a
cubic can be brought to the standard form x3 ± x = c and then x can be found
by interpolation in tables of x3 + x or x3 — x. For the work in Section 5, that is
determining (bx, b2, b3) from x3 — ax2 + fix - y = 0, the time taken for each
solution was about 9 milliseconds. This was using double precision and stopping
when |wn+1 - wn\ was less than 10'11. Once one root had been found the
corresponding linear factor was removed from the cubic so that the remaining
roots could be determined by solving a quadratic. This procedure worked in
almost all cases but it broke down when the remaining roots formed a double
root. In such cases, rounding-off errors changed the double root to real roots with
a small separation or to complex roots with a small imaginary part. This was
covered in the computing programme by flagging cases where the roots were close
together, so that these cases could be examined separately. (Apart from the cubics
which arose in Section 5, a variety of examples was tried to test the procedure.)
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