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FINITE GROUPS WITH LARGE CENTRALIZERS

EDWARD A. BERTRAM AND MARCEL HERZOG

I t is known that a finite non-abelian group G has a proper

centralizer of order > \G\ if, for example, |ff| i s even

and |Zf<?j| i s odd, or whenever G is solvable. Often the

exponent — can be improved to -z , for example when G is

supersolvable, or metabelian, or \G\ = p q . Here we show

more generally that this improvement is possible in many

situations where G i s factorizable into the product of two

subgroups. In particular, much more evidence i s presented to

support the conjecture that some proper centralizer has order

whenever G is a finite non-abelian solvable group.

1. Introduction

In [2] the first author proved that every finite non-abelian

solvable group G has a proper centralizer of order | C-,(x) | > |£|

Furthermore i t was shown that the exponent -̂  can be improved to —
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400 E. A. B e r t r a m and M. H e r z o g

when non-abelian G i s either supersolvable, metabelian, a solvable

a 6
j4-group, or has order p q , p, q distinct primes.

Let C denote the collection of all finite non-abelian groups G

1_

which contain a proper (large) centralizer of order > |G| . Let S

denote the collection of a l l finite non-abelian solvable groups. In [2]

the question was raised as to whether S c C. In this paper we

generalize most of the results in [2] and give much more evidence that

S <= C. Along the way we also prove, for example, that every finite group

containing a conjugacy class of prime-power cardinality (> 1)

belongs to C.

Specifically, in the solvable case we prove: (Theorem 2) If non-

abelian G = NM where N and M are nilpotent subgroups of G, then

G e C. Thus if G' i s nilpotent (> 1) then G e C . (Theorem 7)

i
If G e S and |G| = PI p . (dis t inct primes p . ) , with each a. <, 4,

then G e C. Final ly , a few more results of numerical type (some not

presented here) have enabled us to prove (Theorem 10) ; every non-abelian

group of odd order < 10 belongs to C; every non-abelian solvable

4
group of even order < 10 is a member of C. The proof of the last

theorem amy be obtained from the authors.

2. Factorizable Groups

THEOREM 1. If G is a finite non-abelian group with the

factorisation G = AB, where A and B are nilpotent subgroups of G

and (\A\, \B\) = 1, then G e C.

Proof. By Wielandt ' s theorem ( [4 ] , p . 680) G i s solvable . If

Z = Z(G) = {1}, then G e C by Theorem 1 of [2] . So 11} < Z = ^ x S^

wi th A < A and B < B. Let \A \ = a , \B \ = b , \A\ = a and

| B | = b. S ince \G\ = ab =
lab

"l

ba .1, e i t h e r one of the l a t t e r f ac to r s

1

i s l a r g e r t h a t \G\ , o r \z\ Z. \G\ and G e C. Suppose wi thout loss
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Large Centralizers 401

of generality tha t >|G| . If G i s ni lpotent , then G e C by

Corollary 1.1 (b) of [2] . So assume G/Z i s not nilpotent, and <2- 7̂  a.

Let xA e Z(A/A )$. Then Z/M ., d/A < C ' . (xA ) , and since they are

of coprime orders i t follows from Lemma 1 of [2] that

\CQ(x)\ 2 \CG/A (xA2)\ 2 tZ.-ApiA^p = - | - > | C T . Since a i Z,
2 pp |

G e C and the proof is complete. g

THEOREM 2. J / G is a finite non-abelian group with the
faatorization G = NM} where N and M are nilpotent subgroups of
G, then G e C.

Proof. By the theorem of Wielandt and Kegel ( [4] , P- 674) G i s

solvable. Our proof i s by induction on k = min {|ir(W |., |TT̂ A/̂  | ]•.

Assume without loss of generality that InfA^I = k. If k = 0, then G

i s nilpotent and G € C. If k = 1, then M i s a p-group. Let

M < P = Syl (G). Then G = NP, with N = N n P, so G = N (P and

G e C by Theorem 1.

So assume that k = n > 2 and that Theorem 2 holds for a l l k < n.

We may assume without loss of generality that Z = Z(G) < N (otherwise

replace N by the nilpotent subgroup NZ), and again by ear l i e r resul ts

we may assume that {1} < Z < N. Hence for some prime p, Z < N ,

p \Z(N/Z )\ and there exists an x e N - Z such that
P P P

\ C J x ) \ > \ C j x ) \ > \C ( x Z ) \ > [ N : Z 1 .
G a N/z P P

P

Since n > 2, there exis ts a prime q e v(M), q ^ p. If

M < Z(< N)} then G = NM , and G e C by induction. So we may

assume that M > M n Z. Considering MZ/Z , we conclude (again using

Lemma 1 of [2]) that there exists an element y e M -Z such that

\CQ(y)\ 2 LMZ:Z ] . Thus
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402 E. A. Bertram and M. Herzog

|«w|. lcly)\,1^J.wM̂ Z\ \N\\M

W
z\_ > \G\

p

since p ? q. If \C(x)\\C(y)\ > \G\ or \C(x)\ £ \C(y)\ then G e C,

s i n c e x, y i Z. Otherwise \C(x)\ = \C(y)\ = \G\ , whence Z = Z x Z .

S i n c e Z > {2}, e i t h e r | i r f z ; | = 2 o r \%(Z)\ = 2. I f |ir(Zj | = Z t h e n ,

i n view of | i r (W| > |irCWj| = n > 2 t h e r e e x i s t x e N - Z and

y e. M - Z such t h a t C(xJ > N and C(y~) > Ml. Then we have

I c r ^ ; ! I c r ^ ; ! ^ |^| |MZ | > i ^ J , ^ - • \z\ > \G\ , s i n c e u } < z < iv.

Since x^, y , ^ Z, G c C .

Finally, consider the case \it(Z) | = 2. If irW = TTW =

then Î Cff,*! = 2 and G e C by Theorem 1. If irW ^ T(Z), then

Thus

> 2 inplies that there exists x e N - Z such that C(x ) > N.
Ci Li

Iffl l itfl . IZI >\C(x ) I \C(v) I > Iff I
\C(x2)\ \C(y)\ > \N\ |W n z | | z | \N n M\ Jz

(since \tr(Z) \ = 2). Again G e C since £„., y 4 Z. Otherwise,

TT(W ^ •n(Z), and [ TTYA/̂  | > 2 implies tha t there exis ts a y e M - Z

such tha t CjyJ > M Z. Thxas
Lr Z

Since x, z/o / 2j G c C and the proof of Theorem 2 is complete. D
Is

COROLLARY 2 . 1 . Siqppose G e S, and £ contains a nilpotent,

maximal subgroup M. Then G e C.

Proof. Every maximal subgroup of a solvable group has prime-power

index. Thus (.considering the prime-power fac to r iza t ion of \G\) we

have G = M P where P e Syl (G) for some prime p . Since M i s

n i l p o t e n t Theorem 2 app l i e s , and G e C. D

COROLLARY 2 .2 . Let G be a finite non-abelian group with G'

nilpotent. Then G e C.
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Proof. Since G' i s nilpotent, G is solvable and we know

(see for example [4] , p. 271) that G = G'U for some nilpotent subgroup

U < G. Again Theorem 2 applies, and G e C. •

THEOREM 3. Suppose the finite group G contains an element

g e G - Z such that G = C (g)N for some nilpotent subgroup N. Then

I
\CG(x)\ > \G\2 for some x e G - Z.

Proof. Since g ? Z, N > N n 2. Let M = Cjg) and

~y e Z(N/N n Z) . Then y e N - Z and

T h u s e i t h e r I C j g ) I ± \ G \ h o r \ C ( y ) \ > \ G \ H . 0

COROLLARY 3 . 1 . If \-n(N)\ < 2, N as in Theorem 3, then G e C.

Proof. If equal i ty holds, in the proof of the theorem, then

|ir(W| > 2 and we may apply Theorem 1. 0

COROLLARY 3.2 . Suppose the finite group G contains a conjugacy

class of cardinality | [g ] | = p > 1, where p is a prime. Then G e C.

Proof. Let P e Syl (G). Then consideration of the prime-power

factorization of |ff| shows that G = CAg)T? . The result follows from

Corollary 3.1, since g d Z(G). Q

COROLLARY 3 . 3 . If C s S , and Cjg) is a (proper) maximal

subgroup of G, then G e C.

Proof. Every maximal subgroup of a solvable group has prime-power

index in G. The conclusion now follows from Corollary 3.2. Q

COROLLARY 3.4. Suppose G e S, and G has "abelian centralizers",

that is Cjg) is abelian for all g e G - Z(G). Then G e C.
G

Proof. I t follows from the work of R. Baer [1] on normal non-

t r iv ia l partitions of finite groups that one of the following holds

https://doi.org/10.1017/S0004972700002513 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002513


404 E. A. Bertram and M. Herzog

(see [5] or [6] ):

(a) G/Z = Sym (4) ;

Cb) G/Z i s a Frobenius group, with. CJx)/Z an (abelian) Frobenius

complement, for some x e G - Z. If N/Z i s the Frobenius kernel, then

ei ther N/Z i s a p-group, or N is abelian;

(c) G/Z is a p-group;

(d) there i s an x e. G such that CJx) i s the subgroup generated by

Z(G) and a l l g e G such that cp / Z. Here [G: C (x)~\ = p.

In case (a), (G/Z)' = G'Z/l = G'/G' n Z is abelian. By Theorem 1

of [2] we may assume that G' n Z ^ {2}, in which case £' n Z = ZfG'J

by Lemma 2b of [2] . Thus G'/Z(G') i s abelian and G' i s nilpotent

(of class 2). The conclusion now follows by Corollary 2.2. In case (b)

(G/Z)/(N/ZJ s G/N ~ CJx)/Z i s abelian in which case G' < N and againo-

G' i s nilpotent. In case (c) G is nilpotent, and the result follows.

In case (d) , CAx) i s a maximal subgroup and the conclusion followsu

from Corollary 3.3. D

LEMMA 4. 1. Let G be a finite group and G = AB, A,B < G with

Z(A)j Z (B) £ Z(G). Then there exists an element x e G - Z such that

\Cjx)\ >

Proof. Clearly G = (AZ)B. Let a e Z(A) - Z(G). If there exists

an element b e Z(B) - Z(G), then | C (a) \ \ C (b) \ > \A\\B\ > \G\, and

e i t h e r \CG(a)\ S Id*5 or \CQ(b)\ > \G \2 . Otherwise Z(B) = Z(G) so

Z(G) nB = Z(B). Let a e ZjB) - Z(G). Then \Cja)\ • \Cjc)\ >

\AZ\ • \CB(C>\ > \AZ\ •

- S o e i t h e r \Crfa) \ 2 \G\h o r \CQ(c)\ > \ G \ H .
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LEMMA 4.2 . Suppose, in addition to the hypotheses of the abcne

lemma, that \A\ X \B\. Then there exists an x e G - Z with

\CG(x)\ > \G\2.CG(

P r o o f , i n t h e c a s e t h a t \ C Q ( a ) \ • \ C Q ( b ) \ 2 \ A \ - \ B \ = \G\ w i t hQ(a)\ \ CQ(

a e Z(A), b e Z(B) and a, b I Z(G), c learly now |A | > |ff| or \B\

I

> \G\2 . I n t h e case t h a t \CQ(a)\ • | Cg(a) | > [ g ^ ^ g j i ^ \G\3 wi th

Z(B) = Z(G) and o e Z2(B) - Z(B), suppose

\CG(a)\ = \CG(o)\ = |G|2 . Then also |XZ| = | f l n

|B| = |i4| • [2:2 n .4] |B n Z| a contradict ion. Q

THEOREM 4. Let G be a finite group, G = AB for A, B < G .and

(\A\, \B\) = 1. If Z2(A), Z2(B) i Z(G), then \CQ(x)\ > \G\2 for some

x e G - Z(G).

Proof. If e i ther Z(A) $ Z(G) or Z(B) $ Z(G) we are done by the

previous lemma. So we may assume that Z(A) = Z(G) n A and

Z(B) = Z(G) n B. Our hypotheses imply Z(G) = (Z n A) x (Z n B)=

Z(A) x Z(B). If a e Zg^ ; - ZfGj and i e Z2rB; - Z(G), then

| C_f a; I > |C (aZ(A))\ > \-AZ:Z(A)~\ = lA:Z(A)l LZ(G):Z(A)1,
G/Z(A)

and |C_C&;| > LB:Z(B)1 iZ(G) :Z(B)1. Thus iCV/aJI • |C-(Z>; | > U | - | B | = \G\.

I f \CJa)\ ^ \Cjb)\ we a r e done ; i f

| C G r a ; | = \ C Q ( b ) \ = \ G \ 2 t h e n \ A \ • \ Z ( B ) \ Z = \ B \ - \ Z ( A ) \ 2 a n d

2
, | B | ; = 1 give |Z| = |C| , a contradiction. Q

COROLLARY 4 . 1 . If G is a non-abelian group, G = G G , and
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ZJG ,) % Z(G) for some prime p, then \CJx)\ > \G\ for some

x e G - Z(G). (In particular, the conclusion holds if G is solvable

and Z (G ,) % Z(G) for some prime p)
& p

Proof. If Z (G ) }fr Z(G) then the previous theorem gives the

conclusion. I f Z (G ) < Z(G), then G < Z(G) and ZJG ,) < ZjG).
dp p 1 p <i

Now Z (G) = Z(G) would yield G , < Z(G) and G abelian, so
6 P

Z~(G) > Z(G) and the conclusion follows by Lemma 2(c) of [2 ] .

THEOREM 5 . Let G e S - C. Then the following properties hold:

(a) if N *^G and N $ Z} then \N\ > \G\2 and N n Z = Z(N) £ {1};

(b) for exactly one prime p\\G\t F(G) = ZO > Z and \0 | > \G\2 .

Also {1} < Z = Z(0 ) = Z(G ) .
P P P

If p is the special prime in (b), then
(c) 0pl = Zpl, and F(G) = 0ptp(G) ;

(d) 0 is non-abelian of class 2, F' 1 2, and

(e) i c G ( o v / z v n v , - z p l .

Proof . (a) Suppose \N\ S \G\2 and x e N - Z(G). Then

1 1
| C x ] | < \N\ - 1 < \G\2 so \CG(x)\ > \G\2 , c o n t r a d i c t i n g G { C. Also ,

o

i f y e Z(N) - Z(G), then \Cjy)\ > \N\ > \G\ , again a contradiction.

(b) Since G i s solvable but not nilpotent, Z(G) < F(G) < G, so

0 > Z for a t l eas t one prime p. If prime q / p and 0 > Z then

\0 0 | > |(?| by (a) , a contradiction. Thus for exactly one prime
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p, F = W > Z and \O \ > \G\2.

Also ti}< Z(G ) < Z(0 ) = 0 n Z(G) < Z < Z(G ) .
P P P P P

(c) Let R = 0 ,(G). Then Z , < R «3G.

By ( a ) , i f R £ Z(G), then |i?| > \G\2 from which | /?0 | > |<J| ., a

c o n t r a d i c t i o n . Thus 0 ,(G) < Z(G) and so 0 ,(G) = Z ,. Clear ly

= Z0 £ 0 , CC;. But 0 ,(G) < Z(G), SO 0 , (G) i s n i l p o t e n t

and thus conta ined in F(G), so (c) i s proved.

p
(d) As 0 > Z and |0 I > \G\ . 0 i s non-abelian. By Exercise 3

p p * p* * * J p

p. 214 in [3] , if the nilpotence class of 0 is > 3, then 0

contains a characteristic abelian subgroup A, which is not contained in
Z(0 ) , and hence is not contained in Z(G). But then A. char 0 ^ G.

P P
A i Z(G). T h i s c o n t r a d i c t s ( a ) . Thus c l a s s (0 ) =2. S i n c e 0 < Z

p q

whenever q ^ p, we have c l a s s W = 23 s o F' < Z(F) < Z(G) ( the l a t t e r

follows from \F\ > \0 \ > \G\2). F i n a l l y , l e t

x e ZJG ) - Z(G ) = ZJG ) - Z . Then, i f I = I Z ,
2 p p 2 p p p 1_

\CG(x)\ > \C (x)\ > \CQ / z G)\= LG:Z ] . S ince G / C3 [ G : Z ] < \G\2.
P P P P

(e) C lea r ly CQ(0' ) < Z(G) ( s ince \0 \ > \G\2). i f y e [C^CO /Z ; ] M

then j / e C^CO J i Z(G). The l a t t e r fol lows from Theorem 5 . 3 . 2 , p . 178

of [3] . For suppose y i s a p' element and y s a t i s f i e s

x" y~ x y e Z for a l l x e 0 ( t ha t i s y e C-CO /Z j j . Then
p P <J P P

the group <j/>, acting by conjugation on 0 } is a p'-subgroup of

AutfO -' which stabilizes the normal series 0 > Z > {1} (Lemma 5.3.1

of [3]) , and therefore Theorem 5.3.2 applies. Thus conjugation is the

identity automorphism, that is y e. CQ(0 ) • Q
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THEOREM 6. Let G e S - C, and let p be the unique prime

satisfying p [_F(G):Z(G)1. If \Z \ = p then G satisfies the

following properties:

(i) G = 0 is extraspeeial;

(ii) \Gp\ =P
2m+1 >pS J

(iii) Z (G ,) < Z(G), and hence Z(G ,) = Z(G) , .

Proof. Property (i i i) follows immediately from Corollary 4.1. By

1_

Theorem 5 ( b ) , ( d ) we have t h a t \0 (G)\ > \G\ and 0 i s n o n - a b e l i a n ;

hence \0 (G)\ > p If either G > 0 or 0 /Z is not elementary
' P I F P P P P

1_
o

abel ian , then e i t h e r LG :Z ] 2 \0 I > \G\ , contradict ing Theorem 5 (d) ,
p p ' p ' ' '

or [ 0 : Z ] > | # | for some cha rac te r i s t i c subgroup of H of 0 ^ G

such tha t Z = Z(0 ) < H < 0 . From the l a t t e r , H % Z, H < G
1_
o

and \E\ < \G\ in contradict ion to Theorem 5(a) . We have thus proved

2
( i ) , and \G \ = p mi~1 > \G\ . As for ( i i ) , suppose \G | = p > s o

2
G /Z i s elementary abelian of order p . By Theorem 5(c)

0 ,(G) = Z ,(G), and by Theorem 6.3.4 of [3] G ,/Z , i s faithfully

represented on 0 (G)/$(0 (G)) = G /Z regarded as a vector space over
P P P P

Z . Thus H = G ,/Z , < GL(2, p)s i n face H < PGK2, p) s i n c e (by i i i )

Z (G ,) < Z(G) n G , = Z , = Z(G ,) and Z(H) = {1}. I f p = 2. then
ii p p p p

PGL(2j 2) = PSL(2, 2) has no subgroups H of odd order with

Z(H) = {1}, from which we get H = {1} and G e C. If p > 2, then

EPGL(2> p) : PSL(2, p)l = 2. I f p = Zy t h e n \PGL(2J 3) \ =24 a n d

has no 3'- subgroups H with Z(H) = {1}, so G e C. Thus suppose

t h a t p > 5. Here the only solvable p ' - subgroups of PSL(2, p) a re ,

by the theorem of Dickson (see C7] , Theorem 3.6.25, p . 412):
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(i) dihedral groups of order p ± 1 and their subgroups;

(ii) KLt(4) ; ( i i i ) Sym(4) .

Since Z(H) = {1}, i t follows (by [4] , Theorem^ 8.18(c), p. 506)

# #

that some element xZ , of H fixes an element z/Z of (G /Z )

and hence x stabilizes the normal series {1}< Z < \Z , y) . Thus

(by [ 3 ] , Theorem 5.3.2, p.178) x centralizes \Z } y) and so we have
\CJx)\ > p2 \Cr(x)\ 3 x 4 Z. I f H n PSL(2, p) i s o f t y p e ( i ) , t h e n

U p>

\H\ < 2(p + 1) a n d h e n c e :

\CG(x)f >p4 • 22 • \Zp,\
2 > p3 • 2(p + V\Zp,\ Z \Gp\ \Gp,\ = \G\3

yielding G e C. Suppose that H n PSL(2, p) = A or S . Since the

Sylow 2-subgroups of A . and S are not cyclic or generalized

quaternion, i t follows (by [4] , Theorem 7 8.18(a) p. 506) that some
# if

nontrivial 2-element of H fixes yZ e (G /Z ) . So we may assume
that x is a 2-element, x < Z. If Z , = {1}, then \Cr (x) \ > 4,

P (*p,
and i f Z , ^ {1} then \C (x)\ > 2 \ Z ,\ . Thus in both cases,

V Gp, p

p
\Cr (x)\ > 8 \Z ,\ , and when p > 7 we obtain

v p

\C ( x ) \ 2 > p 4 \C ( x ) \ 2 z 8p4 \Z | > 4 8 p 3 \Z \ > \H\ p 3 \ z ,\ = \ c \ 3u u p t P V P
p

and G e C. Whenever \Z ,\ > 2, then \C (x)\ > 12 • \Z ,\
P ^pt P

and G e C since p > 3. Finally, suppose that |Z ,| = 2, p = 5.

If \H\ = 24 then G e C, as above. By [7] Exercise 9, p. 418

T?GL(2, q) contains only solvable p '-subgroups of types (i) - (iii), and

thus |#| =48 is impossible. The proof of the theorem is now complete.

n
THEOREM 7. If G e S and \G\ = n p .ai where the p. are

i=l * %

distinct primes and a. < 4 for all £, then G e C.
1
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Proof. The proof i s by induction on the number of prime factors, n.

If n = 1, then G is nilpotent, so G e C. So assume n > 1 and the

theorem holds for smaller values of n. By Theorem 5 (b) 0 (G) > Z (G)

for a unique prime p | , say 0 > Z . If \Z \ = p , t hen G e C
Pl pl pl 1

i 2
by Theorem 6. If |Z | > p then either a l l groups of order

n
II p. i are abelian and, G £ C by Theorem 1, or by induction there

i=2 ^

n
exists a subgroup H e C, \H\ = U p . i. Hence for some

i=2 %

x c H - Z(H) (so x / Z(G)) we obtain

1 1
2 ^ a 2 2

\Cjx)\ > \Z I |C" Cx;| > p f R p. i) £ |G| , and again G e C. D
G- p1 H 1 i=2 %

THEOREM 8. Let G e S, and \G\ = pnqr with p, q, r distinct

primes. If Syl (G) ^ G, then G £ C.

Proof. I f (\Z(G)\ j qr) > 1, then G contains an abelian

subgroup of order qr and G e C by Theorem 1. Otherwise, by Theorem

5(b) , Z(G) = Z(G ) < 0 = G . Thus Z = Z(G ) < ZJG ) = ZoJ so a
p p p p 2 p 2

subgroup H of order qr acts on ZJZ. Since H i s non-abelian an

element h, say of order r, fixes some xZ e (Z /Z) . Since

(r, p) = 1, h cen t ra l i zes x (using Theorem 5.3.2 of [ 3 ] ) . Thus

\Cjx)\ > r • |C_ (x)\ > r • \C (xZ)\ > r • LG :Z~\. Also,some element
G O- n /n P

V G / L c

P

y, of o r d e r q3 s a t i s f i e s \CG(y)\ > q • \Z\, y / Z. We o b t a i n

\CJx)\ • \Cjy)\ > q • r • |G | = |C | . Since (q, r) = 1 we must have

\CG(x)\ ^ \CQ(y)\ , so G £ C. D

COROLLARY 8 . 1 . Let G e. S and \G\ = pnqr, where p, q, r are

primes with p > q > r. Then G e C.
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Proof. Due to the ordering of the primes, i t is clear that

Syl (G) «3 Gj and G £ C by Theorem 8. D

COROLLARY 8.2. Let G e S and \G\ = pn q r, where p, q, r are

distinct primes and ord(p) z n - 1 (mod q). Then G e. C.

Proof, if q IZ(G)I , then G e C by Theorem 1. If Syl (G) < G
P

then G e C by Theorem 8. So assume tha t qX | Z | and 0 < G . By

yi— P
Theorem 5 (b) Z > {1}, so \0 /Z | < p . Thus an element x / Z, x

of order q, cent ra l izes 0 /Z . But then G e C by Theorem 5(e) . Q

COROLLARY 8.3. If G e S and \G\ = p5 q r with p, q, r distinct

primes, then G e C.

Proof. By Theorem 1 we may assume tha t \Z(G) Clearly

G e C if |Z| > p . If \Z\ = p then Syl (G) < G by Theorem 6,

0

and thus G e'C by Theorem 8. So suppose tha t \z\ = p . Since a

subgroup of order qv i s non-cycl ic , we may assume without loss of

general i ty tha t an element of order r cent ra l izes an element x of the

abelian group 0 /Z = 0 /Zt by the theory of Frobenius complements.

Thus \CG(x)\ > \CQ / z Cx)\ • r > p3 • r. Also \CQ(y)\ > p2 • q, for
P P

an element y of order q, and we obtain | C^(x) \ | CJy) \ > \G\. Since

x, y i- Z(G) and (p, q) = 1 we have G e C. 0

THEOREM 9. Suppose G e S - C and \G\ = pnm, (p, m) = 1, 0 > Z .

(a) If every non-abelian solvable group of order m is in C, then

n > 5.

(b) If p is the minimal prime dividing \G\, then n > 7.

Proof. (a) By Theorem 5(b) , Z = Z(0 ) ? {1}. I f |Z | = p,

p
then n > 5 by Theorem 6. Suppose \Z \ > p and M < G> \M\ = m.
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o o
I f M i s abel ian, then 2M > Z M i s abelian of order 2 p m > \G\ ,

i f n < 4, contradict ing G / C. If M e C3 then for some

1 1
x e M - Z(G) we have | C1 (#; | > p m > |ff| , if n < 4, again

con t rad ic t ing G j . C.

(b) I f n < 4 then G e C by Theorem 7, since p i s minimal and (by

Theorem 5 (b)) p > m. So assume that 5 < n < 6. Let M < G} \M\ = m.

By Theorem 1 we may assume \T\(M) \ > 2. Since p i s minimal and p > m,

i t follows by Theorem 7 applied to M t h a t e i the r Af i s abelian or

M e C. I f A/ i s abel ian , then G e C by Theorem 1. Thus suppose

M e C. I f \Z(G ) \ = |Z | > p 3 , then for some x e M - Z we find

^ ± 1
I ^ T x ; | > m \Z (G)\ > m p > \G\2 , and G e C. So assume t h a t

* < | z p l < P S -

Case 1. p = 2.
c p r r

Since m • 2 < |<7| < |0 | , if \0 \ < 2 then m < 2 . As m

i s odd and m < 32, e i t he r every group of order m i s n i lpotent (and

G e C by Theorem 1) or m = 3- 7 . Thus |G| = 2 • 3 • 7, or

\G\ = 2 • 3 • 7 . In e i t h e r case, | 0 j > | c | y ie lds | 0 O | = |(? | ,

and G e C by Theorem 8. So suppose tha t |0 | = 2 = \G \. By Theorem

6, we may assume t h a t |Z | > p3 and since |Z | < p we have

o
\Z | = p . Also, we may suppose that |irCm |̂ > 2 and not every group of

order m i s abelian. As m < 64 m odd, we have two cases: m = 3 • 7

and m = 3 • 7. This i s because if r|m, r > 7 a prime, then an

element a; of order r acts t r ivial ly on 0 /Z , of order 36, and
P P

x e Z by Theorem 5(e). But now •n(m) = 2, so every group of order m
i s abelian, a contradiction. By Theorem 5 (d) , 0 /Z i s abelian, and

P P
since 7 X (16-1) an element of order 7 centralizes some element
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x e (0 /Z ) # . Thus \Cjx)\ > \0 /Z \ • 7 = 16 • 7 > \G\2, and G e C.
p p & p p i i ••

Case 2. p > 2.

If |Z I = p then by Theorem 6 we may assume that n = 5, and

|G /Z | = \0 /Z | = p . If r e irfrnj then either every element of order

r is in Z(G) , or (by Theorem 5(e)) r divides

n (p1 - 1) = fp2 + l)(p2 + p + l)(p - l)4(p + I)2 . hs p < r, r
i=l

2 2
divides either p + 1 or p + p + 1. Thus there are at most two

primes r^ £ r e nTm,) for which there exist r.-elements outside1 2 i
2

Z(G). Since p < v., r. does not divide the above product; but

* i
[G :Z ] does divide II (p - 1), again by Theorem 5 (e) , so

i i i=l

LG :Z ] < v. and G is abelian. If only one such v. exists then
Vi Vi ~ V ri *

there ex i s t s an abelian subgroup of G, of order 777, and G e C. So

2
suppose that such v £ r exist, r.. p + 1 and r. + p + 1.

Since
I 4r./p - 1 there exists an x e 0 - Z such that rr6\ p p z \CJx)\.

S i n c e 0 / Z i s a b e l i a n ( T h e o r e m 5 ) , \C ( x ) \ 2 v p > p = \ o \ > \GI .
P P KJ 6 p

Case 2 is complete and the theorem is proved. Q

COROLLARY 9.1. Suppose G e S and \G\ = pnqlrl where p, q, r

I
YI 2

are distinct primes. If p > \G\ and n < 4, then G e C.

Finally, using many of the previous theorems and corollaries,

together with a few more specialized results, the authors have proved

the following:

THEOREM 10. Every non-abelian group of odd order < 10 is a

member of C. Every non-abelian solvable group of even order < 10

is a member of C.
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In the odd order case we rely on the theorem of Feit-Thompson

that every group of odd order i s solvable.
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