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FINITE GROUPS WITH LARGE CENTRALIZERS

EpwarD A. BERTRAM AND [ARCEL HERZOG

It is known that a finite non-abelian group ( has a proper

1

. 3 . .
centralizer of order > |G| if, for example, |G| is even

and |Z(G)| 1is odd, or whenever G is solvable. Often the

1 .
exponent 3 can be improved to é , for example when ( is
o
supersolvable, or metabelian, or |G| =p qB . Here we show

more generally that this improvement is possible in many
situations where G is factorizable into the product of two
subgroups. In particular, much more evidence is presented to

support the conjecture that some proper centralizer has order
1

> |G|2 whenever (G is a finite non-abelian solvable group.

1. Introduction

In [Z2] the first author proved that every finite non-abelian
1

solvable group (G has a proper centralizer of order ]CG(x)I > |Gl3.
. 1 . 1
Furthermore it was shown that the exponent 3 can be improved to 3
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when non—abelian G 1is either supersolvable, metabelian, a solvable

B

A-group, or has order paq » P> q distinct primes.

Let (¢ denote the collection of all finite non-abelian groups G

1

which contain a proper (large) centralizer of order > |G|2. Let S
denote the collection of all finite non-abelian solvable groups. In [Z]
the question was raised as to whether S < (. 1In this paper we
generalize most of the results in (23 and give much more evidence that
S  C. Along the way we also prove, for example, that every finite group
containing a conjugacy class of prime-power cardinality (> 1)
belongs to C(.

Specifically, in the solvable case we prove: (Theorem 2) If non-
abelian G = NM where N and M are nilpotent subgroups of (&, then
G € C. Thus if G' 4is nilpotent (> I) then G e C . (Theorem 7)

7
If G €S and IGI =1 pz (distinct primes pi), with each ai < 4,

then G € (. Finally, a few more results of numerical type (some not

presented here) have enabled us to prove (Theorem 10) ; every non-abelian
group of odd order < 106 belongs to (; every non-abelian solvable
group of even order < 104 is a member of (. The proof of the last
theorem amy be obtained from the authors.

2. Factorizable Groups

THEOREM 1. If G <s a finite non-abelian group with the
factorization G = AB, wbere A and B are nilpotent subgroups of G
and (|A|, |B|) = 1, then G e C.

Proof. By Wielandt's theorem ([4], p. 680) (G is solvable. If

Z = 2(G) = {1}, then G ¢ C by Theorem 1 of [2]. so {1} < Z = A, % B,
with A, <A and B, < B. Let |A1| =a, |B1I =b, 4| = a ana
ab, bal}
|B] = b. since |G| = ab = 2.1 5| + either one of the latter factors
1 JJ
1 1
is larger that |G|2 , or |z| 2 |G|2 and G e (. Suppose without loss
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1

b, 2
>|G|° . If G is nilpotent, then G & C by

of generality that

Corollary 1.1¢() of [Z2]. So assume G/Z is not nilpotent, and a, # a.

Let zA. € Z(A/Al)#. Then 7/A, A/A,

7 (xAl), and since they are

<C
G/AZ

of coprime orders it follows from Lemma 1 of [Z] that

bla 3
(xd )| 2 [z:4 104:4.] = =— >|6|° . since x €12,

lcpta)| 2 | Z,

c

G/Al

G ¢ ¢ and the proof is complete. O
THEOREM 2. If G <s a finite non-abelian group with the

factorization G = NM, wbere N and M are nilpotent subgroups of
G, then G € C.

Proof. By the theorem of Wielandt and Kegel ([4], p. 674) G is
solvable. Our proof is by induction on Xk = min {|m(N)|, |m(M)|}.
Assume without loss of generality that |11(M)| =k. I1If k =0, then G
is nilpotent and G € €. If k =1, then M is a p-group. lLet
M5P=Sylp(G). Then G = NP, with Np=1VnP, so G=1Vp'P and

G € C by Theorem 1.

So assume that k =#n > 2 and that Theorem 2 holds for all k < n.
We may assume without loss of generality that Z = Z{G) < N (othervwise
replace N by the nilpotent subgroup ~NZ), and again by earlier results

we may assume that {1} < Z < N. Hence for some prime p, Zp < IVp,

p ||IZ(N/Zp)I and there exists an T ¢ Np - Zp such that

|CG(x)| 2 [Cyz)] 2 |CN/§pr)[ 2 [Iv.-sz.

Since #n 2 2, there exists a prime q e¢ m(M), q #p. 1If
Mq < Z(<N), then G = IVMq, and G e C by induction. So we may
assume that Mq > Mq n Z. Considering MZ/Zq, we conclude (again using
Iemma 1 of [2]) that there exists an element Yy € Mq -Z such that

lCG(y) I 2 [(MZ: Zq] . Thus
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v ] | 2] || |m] 2] ,
lcz) | - o)) 2 | . - . > |G|

Z Mn 2|2 N nM Z Z

2, 1" T 2lZ] - T ol TZ11Z]
since p # q. If |C(x)||C(y)| > |G] or |[C(x)| # |[C(y)| then G € G,

1

since x, y ¢ Z. Otherwise |[C(z)| = |C(y)| = IGIZ, whence 2 = Zp x Zq.
since Z > {1}, either |n(Z)| =1 or |w(2)| =2. 1f |n(Z)| =1 then,
in view of [w(N)| 2 |m(M)| =n > 2 there exist x, € N - Z and

y; € M - Z such that C(xl) >N and C(yl) > MZ. Then we have

N| M .
lctz)| oy )| 2 [0] |zl ﬁ# 1zl > |6] , since {1} <2 <A

Since a:l,y,;{Z,GeC.

Finally, consider the case |n(2)| = 2. If w(N) = n(M) = n(2),
then |[n(G)| =2 and G € C by Theorem 1. If =(N) # n(Z), then
|Tr(N)| > 2 implies that there exists x, € N - Z such that C(x2) > M.
Thus

. IMllz] |v| (Ml . _lz] le|
M nszq[ - | n M ]qu

|C(x2)| |cty) |

v

]

(since |1T(Z)| 2). Again G ¢ C since Tys Y £ Z. Otherwise,
n(M) # w(Z), and |mw(M)| > 2 implies that there exists a Yq € M- 2
such that CG(yZ) >M Z. Thus
ij |w| |M| |2} ] |m] z
leg@ | Iegtuy)| 2 it - el - iy = gl - 2t olel
p p p
Since X, Yy ¢ 72, G € C and the proof of Theorem 2 is complete. 0

COROLLARY 2.1. Suppose G €S, and G contains a nilpotent,
maximal subgroup M. Then G e C.

Proof. Every maximal subgroup of a solvable group has prime—power
index. Thus (considering the prime-power factorization of IG’I) we
have G =MP where P ¢ syl (G) for some prime p. Since M is
nilpotent Theorem 2 applies, and G € C. 0

COROLLARY 2.2. Let G be a finite non-abelian group with G'
nilpotent. Then G € C.
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Proof. since G' is nilpotent, G 1is solvable and we know

(see for example [4] , p. 271) that G = G'U for some nilpotent subgroup

U s G. Again Theorem 2 applies, and G € C. O
THEOREM 3. Swppose the finite group G contains an element
g € G- 2 such that G = CG(g)N for some nilpotent subgrowp N. Then
1
ICG(:L')[ > |G|2 for some x € G - Z.
Proof. since g £ 2, N >N n2. Let M= CG(g) and
y € ZIN/N n Z)#. Then y ¢ N - Z and
. iy - Mlwl o (MW _
/A
) 5 Y
Thus either ICG(g)| > |G| or |CG(y) fz2161° . O
COROLLARY 3.1. If |[m(W)| s2, N as in Theorem 3, then G e C.
Proof. 1If equality holds, in the proof of the theorem, then
|7(G)| > 2 and we may apply Theorem 1. d

COROLLARY 3.2. Suwppose the finite group G contains a conjugacy
class of cardinality |(gl| =p° > 1, where p 1is a prime. Then G e C.
Proof. et Pe¢ Sylp(G). Then consideration of the prime-power

factorization of |G| shows that G = CG(g)P . The result follows from

Corollary 3.1, since g £ Z(G). 8}
COROLLARY 3.3. If G e S, and CG(g) is a (proper) maximal

subgrow of G, then G ¢ C.

Proof. Every maximal subgroup of a solvable group has prime-power

index in G. The conclusion now follows from Corollary 3.2. 0

COROLLARY 3.4. Swppose G €S, and G has "abelian centralizers",
that is CG(g) 18 abelian for all g € G - 2(G). Then G ¢ C.

Proof. It follows from the work of R. Baer [!] on normal non—

trivial partitions of finite groups that one of the following holds
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(see [5] oxr [6] ):
(a) G/Z = sym (4);
(b) G/Z is a Frobenius group, with CG(:I:)/Z an (abelian) Frobenius

complement, for some x € G - Z. If N/Z is the Frobenius kernel, then
either N/Z is a p-group, or N is abelian;

(c) G/Z is a p-group;

(4) there is an x € G such that CG(:L‘) is the subgroup generated by

Z(G) and all g € G such that gp £ Z. Here L[G: CG(x)] =p.

In case (a), (G/2)' =G'2/72 = G'/G' n Z is abelian. By Theorem 1
of [2] we may assume that G’ n Z # {1}, in which case G' n Z = Z(G')
by Lemma 2b of [Z] . Thus G'/Z(G') is abelian and &' is nilpotent
(of class 2). The conclusion now follows by Corollary 2.2. In case (b)

(G/Z)/(N/Z) = G/N = CG(.Z‘)/Z is abelian in which case G' < N and again

G' 1is nilpotent. 1In case (c) G is nilpotent, and the result follows.

In case (4), CG(:L') is a maximal subgroup and the conclusion follows

from Corollary 3.3. 1l

LEMMA 4.1. Let G be a finite growp and G = AB, A,B < G with
Z(A), ZZ(B) £ 2(G). Then there exists an element x ¢ G - Z such that

[\CYEN

ICGWI 2 ¢l
Proof. cClearly G = (4Z)B. let a € Z(4) - Z(G). 1If there exists
an element b € Z(B) - 2(G), then |C.(a)| |C (b)] 2 |a]1B] = |¢|, ana

1
either ICG(a)IZ |G|12 or |CG(b)|2|G|2 . Otherwise Z(B) = Z(G) so

Z(G) nB = 2(B). Let c € Z,(B) - 2(G). Then |[C.(a)| * |Cple)| 2
. . - JAZ]-1B| _ |AZ|-]B]
laz] - lcger| > |az] ICB/Z(B)(GZ(B))I 25T = T27eE]
2 RgT = ol so either [cg@| = [6” or leye)] 2 lol™ 0
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LEMMA 4.2. Swpose, in addition to the hypotheses of the above

lemma, that 1Al ){ |IB|. Then there exists an X € G - 2 with
1
2

ICG(x)| > |¢|“.

Proof. 1In the case that |CG(a)|'|beb)| 2 |4]-|B] = |G| with
a e Z(A), b € Z(B) and a, b ¢ 2(G), clearly now |A| >IG|15 or |B|

1
> |G]2 . In the case that [C (a)| + |C,(e)] 2 %%%4%%%% 2 |G|, with
Z(B) = 2(G) and c € Zy(B) ~ Z(B), suppose

1

|cota)| = |cgler] = [6[Z . Then also |4z] =TB—OJ%G—)[, so
|B] = |A] -+ [2:2 n4A) |B n Z| a contradiction. a

THEOREM 4. Let G be a finite grow, G = AB for A, Bs G and
1
(lal, |B|) =1. If Z,(4), 2,(B) % 2(G), then |Cb(x)| > |G|2 for some

z e G- Z2(G).

Proof. 1If either Z(A) 4 2(G) ox Z(B) % Z(G) we are done by the
previous lemma. So we may assume that Z2(4) = Z(G) n A and
Z(B) = Z(G) n B. oOur hypotheses imply Z(G) = (Z n A) x (Z n B)=
Z(A) * Z(B). 1f a € ZZ(A) - Z(G) and D ¢ ZZ(B) - Z(G), then

[c ()] 2 |C (az(A))| 2 [4z:2(4)1 = [A:2(4)] [2(G):2(4)],
G/Z(A)

and ICG(b)I 2> [B:2(B)] [2(G):2(B)]. Thus ICqla)l -ICG(b)I > |4l-|B| = |¢].
1f |CG(a)| # |CG(b)| we are done; if

1
legtal] = |c )] = |¢l? then 4] - |21 = |B]-|2(0)|® ana

1
(lal , |B]) =1 give |2| = |G|2 » a contradiction. O

COROLLARY 4.1. If G 1is a non-abelian growp, G = Gp Gp and
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1
ZZ(Gp') $ 2(6) for some prime p, then |C.(z)| > |G|2 for some

x €G- 2(G). (In particular, the conclusion holds if G is solvable
and ZZ(Gp') § 2(G6) for some prime p)

Proof. 1f ZZ(Gp) ¥ Z(G) then the previous theorem gives the

conclusion. If ZZ(Gp) < Z(G), then Gp < Z(G) and Zg(Gp') < ZZ(G)'

Now Z2(G) = Z(G) would yield Gp, < Z2(G) and G abelian, so

ZZ(G) > Z(G) and the conclusion follows by Lemma 2(c) of [Z]. 0

THEOREM 5. Let G € S - C. Then the following properties hold:
1
(a) <if NG and N % 2z, then |N| > |G|2 and N n Z = Z(N) # {1};
1
20 >2 and lo| > |6|%.
p p

{b)  for exactly ome prime pll |¢|, F(G)
Also {1} < 2 = 2Z(0) = Z(G ).
p p p

If p tis the special prime in (b), then

(c) Op' = Zp" and F(G) = Op,p(G) ;

(d) Op is non-abelian of class 2, F' < 2, and
1

[0:2 | < |6.:2 | < |6|% <|o| ;
p p - p P 14

(0 /2 )] =7 ,.
(e)  [Cal0/ 2N s = By
L
Proof. (a) Suppose IIVI < |G|2 and x € N - Z(G). Then
1 1

[Cz]| < |¥] - 1 < |G|2 so ICG(x)| > |G|2 , contradicting G ¢ C. also,

1
if y € Z(N) - Z(G), then ICG(y)I > ¥ > |G|2 » again a contradiction.

(b) since G is solvable but not nilpotent, Z(G) < F(G) < G, so
0p > Zp for at least one prime p. If prime g # p and 0q > Zq then

|0p Oql > |G| by (a), a contradiction. Thus for exactly one prime
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1
p, F =20, > 2 and |0p| > |G|2.

Also {1} 2(G ) 2 2(0) =0_ nZ(G) £ Z_ < 2(G ).
p p p p p

(c) Let R=0p,(G). Then Zp' < R €6,

Dofs

By (a), if R £ Z(G), then |R| > |G|® £rom which |R0p| > |Gl , a
contradiction. Thus Op,(G) < Z(G) and so Op,(G) = Zp" Clearly

F(G) = 20 < 0, (G). But O ,(G) < Z(G), so O_, (G) is nilpotent
p p'p p pp

and thus contained in F(G), so (c) is proved.
1
(d) as O > Zp and IOpI > IGIZ_, Op is non-abelian. By Exercise 3

p. 214 in [3], if the nilpotence class of Op is 2 3, then Op

contains a characteristic abelian subgroup A4, which is not contained in
Z(Op), and hence is not contained in Z(G). But then A char Op q 4,
Ai Z(G). This contradicts (a). Thus class (0p) = 2. Since Oq 2 Z

whenever g # p, we have class(F) = 2, so F' < Z(F) 2 Z(G) (the latter
1

follows from |F| > [0p| > IG|2). Finally, let

x € ZZ(Gp) - Z(Gp) = ZZ(Gp) - Zp' Then, if x = pr %
ICG(x)| 2 |po(m)| 2 lccp/zp(E)|= [Gp:zp]. since G £ G, [Gp:Zp] < |G|°.

1
Fi
(e) Clearly C.,(0 ) < Z(G) (since |0 | > |G|"). 1If e [(c(0 /2 )1 _,,
Y ¢'p | pl I | Y ¢ p pr
then Yy ¢ CG(Op) s Z(G). The latter follows from Theorem 5.3.2, p. 178
of [3]. For suppose y is a p’' element and y satisfies
-1 -1
x z €2 for all x ¢ O (that is € C (0 /7 )). Th
y y €2 b y € Cpl0,/7, en
the group <y>, acting by conjugation on Op, is a p'-subgroup of

Aut(Op) which stabilizes the normal series Op > Zp > {1} (Lemma 5.3.1

of [3]), and therefore Theorem 5.3.2 applies. Thus conjugation is the

identity automorphism, that is ¥y ¢ CG(Op). O
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THEOREM 6. Let G e S - C, and let p be the wnique prime
satisfying pl[F{G}:Z(G)]. If IZp[ =p then G satisfies the

following properties:

(7) G = 0_ 1is extraspecial;
p p

(i) | =pP™L 5 b5

(ii2) Z2,(G_,) < Z(G), and hence (G_,) = Z(G)_, .
2 p p p

Proof. Property (iii) follows immediately from Corollary 4.l1. By
1

Theorem 5(b),(d) we have that IOp(G)I > |G|2 and 0p is non-abelian;

hence [0_(G)| 2 p3 . If either G > 0 or O /Z is not elementary
p p p pp

(ST

abelian, then either [Gp:Zp] 2 |0p| > |G|°, contradicting Theorem 5(d),

or [Op:Zp] 2 IHI for some characteristic subgroup of H of Op d4
such that Zp = Z(Op) < H < Op' From the latter, H g Z, H< G

1
and |H| < |G|2 in contradiction to Theorem 5(a). We have thus proved
1
2m+1 3

> |e)?.

(i), and [Gp[ =p As for (ii), suppose le[ =p, so

Gp/Zp is elementary abelian of oxder p2. By Theorem 5(c)
0p,(G) = Zp,(G), and by Theorem 6.3.4 of [3] Gp,/Zp, is faithfully
represented on 0p(G)/<I>(Op(G)) = Gp/Zp regarded as a vector space over

Zp. Thus H = Gp,/Zp, < GL(2, p); 1in face H < PGL(2, p) since (by iii)

Z2(Gp,) < Z(G) n Gp, = Zp, = Z(Gp,) and Z(H) = {1}, If p = 2. then

PGL(2, 2) = PSL(2, 2) has no subgroups H of odd order with

Z(H) = {1}, from which we get H = {I} and G e C. If p > 2, then
(PGL(2, p) : PSL(2, p)]1 = 2. 1f p =3, then |PGL(2, 3)| = 24 and
has no 3'- subgroups H with Z(H) = {1}, so G € C. Thus suppose
that p 2 5. Here the only solvable p’- subgroups of PSL(2, p) are,
by the theorem of Dickson (see [7], Theorem 3.6.25, p. 412):
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(i) dihedral groups of order p * I and their subgroups;
(ii) Aalt(4) ; (iii) Sym(4) .
Since Z(H) = {1}, it follows (by [4] , Theorem ¥ 8.18(c), p. 506)

that some element .'x:Zp, of H# fixes an element yZp of (Gp/Zp)#
and hence x stabilizes the normal series {1}< Zp < <Zp, y) . Thus

(by [3], Theorem 5.3.2, p.178) &« centralizes <Zp, y) and so we have
|Cb(x)| 2 p2 le(x)I > x £ 2. If H n PSL(2, p) is of type (i), then
p'

|H| = 2(p + 1) and hence:

4 3

2 2 2 . _
[Cotx)|® 2p" + 2 lzp,f >p° - 2(p+ 1) lzp,[ 2 lel [Gp,[ = |¢[,
yielding G € (. Suppose that H n PSL(2, p) = A4 or 54. Since the
Sylow 2-subgroups of A4 and S are not cyclic or generalized

4 4
quaternion, it follows (by [4] , Theorem ¥ 8.18(a) p. 506) that some

nontrivial 2-element of H# fixes yZpe (Gp/zp)#' So we may assume

that x is a 2-element, x ¢ Z. 1If Zp’ = {1}, then |C (a:)| > 4,
1

G
p

and if Zp' # {1} then ICG (x)| 2 2 ]Zp,l . Thus in both cases,

p'
ICG (.’z:)|2 > 8 |Zp,| » andwhen p 2 7 we obtain
pl
2 4 2 4 3 3
et |” 207 [¢, (=)|" 2 &7 12, > 480" |2,,] 2 |&] p° |2, = |6l
p

and G € C. Whenever lZp,] > 2, then |C (x)|22 12 - IZp,|
1]

G
p
and G € C since p > 3. Finally, suppose that IZp,[ =2, p=5o.

If IHI =24 then G ¢ C, as above. By [7] Exercise 9, p. 418
PGL(2, q) contains only solvable p'-subgroups of types (i) - (iii), and
thus IHI = 48 is impossible. The proof of the theorem is now complete. []

n
THEOREM 7. If G e S and |G| = 1 piai where the p, are
1=1

distinet primes and a <4 for all i, them G € C.
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Proof. The proof is by induction on the number of prime factors, n.
If n =1, then (G is nilpotent, so G € (. So assume # > I and the

theorem holds for smaller values of 7. By Theorem 5 (b) OP(G) > Zp(G)

for a unique prime p||G|, say 0 >2Z . 1f |Z | =p,, then Ge C
P; P Py 1
2 .
by Theorem 6. If ]Zp | > pl then either all groups of order
1
n o
It pi 1 are abelian and, G € C by Theorem 1, or by induction there
=2
" o
exists a subgroup H € (, IHI = 1 p; z. Hence for some
1=2
xe H- Z(H) (so x ¢ Z(G)) we obtain
1 1
2, 7 a.,8 2
|CG(:L')|2|Z | |¢, ()| >p5¢ M p. ) 2 |G|, and again G e C. O
p; H Ti=g "t

THEOREM 8. Let Ge S, and |G| =pnqr with p, q, r distinet
primes. If SyZp(G)QG, then Ge (.

Proof. 1If (|Z(G)I > gqr) > 1, then G contains an abelian
subgroup of order qr and G € ( by Theorem 1. Otherwise, by Theorem

S5(M), 2(G) =2(G) <0 =G6G. Th Z=12(G6) <2 (G)=272_
(b) (G) (p p > us o 2(%, 9

subgroup H of order gr acts on ZZ/Z' Since H is non-abelian an

SO a

. # .
element h, say of order »r, fixes some &I € (Z2/Z) . Since

(r, p) = 1, h centralizes z (using Theorem 5.3.2 of [3]). Thus
|CG(:z:)| >r . ICG (x)| 27 |C (a2)| 2 r - [Gp:Z]. Also,some element

G /2

p o

Yy, of order q, satisfies |CG(y)| 2q* |2|, y ¢ 2. we obtain

|CG(:2:)| . |CG(y)| 2q-r:- |Gp| = |G|. since (q, r) =1 we must have
ICG(-'L‘)l # ICG(y)[ , so G eC. O

COROLLARY 8.1. Let Ge S and |G| = p'qr, where p, q, r ave
primes with p > q > r. Then G €O
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Proof. Due to the ordering of the primes, it is clear that
Sylp(G) 9 G, and G € ¢ by Theorem 8. 1]

COROLLARY 8.2. Let G €S and |G| =p" q r, where p, q, r are
distinet primes and ord(p) 2n - 1 (mod q). Then G e C.

Proof. 1f gq||z(G)| , then G € ¢ by Theorem 1. If Sylp(G)Q G

then G € C by Theorem 8. So assume that q,{’ ‘Z| and Op < Gp. By

Theorem 5 (b) Zp > {1}, so |0p/zp| < pn—Z. Thus an element x ¢ Z, x

of order ¢, centralizes OP/ZP . But then G € C by Theorem 5(e). [

COROLLARY 8.3. If GeS and |G| = p5 qr with p, q, r distinct
primes, then G e C.

5
Proof. By Theorem 1 we may assume that [Z(G)|| p". Clearly

GeC if |Zz| ng. 1f |Z| =p then Sylp(G)Q G by Theorem 6,

. 2 .
and thus G ¢ C by Theorem 8. So suppose that |Z| = p°. sSince a
subgroup of order g»r is non—-cyclic, we may assume without loss of
generality that an element of order r centralizes an element r of the

abelian group Op/Zp = 0p/Z, by the theory of Frobenius complements.

3

Thus |C‘G(x)| > |c ()| + »2p° - r. Also ICG(y)I > p2 - q, for

0 /%2
P/ p
an element Y of order ¢, and we obtain ICG(x)HCG(y)| > |G|. since

%, Yy ¢ 2(G) and (p, q) =1 we have G € C. 0

THEOREM 9. Suppose G e S - ¢ and |G| =p'm, (p, m) = 1, 0, > 2,

(a) If every non-abelian solvable group of order m is in C, then
n 2 4.

(b) If p is the minimal prime dividing |G|, then n 2 7.

Proof. (a) By Theorem 5(b), Zp = Z(Op) # {1}. 1f |Zp| = p,

then n > & by Theorem 6. Suppose lZp| > p2 and M < G, |M| = m.
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1
If M is abelian, then ZM > ZpM is abelian of order 2 p2m > |G|2 s
if n < 4, contradicting G ¢ C. If M e C, then for some

1 1

x € M- Z2(G) we have ICG(x)I > p2m2 > |G|2

,» if =n £ 4, again
contradicting G ¢ C.
(b) If n <4 then G e€ C by Theorem 7, since p is minimal and (by

n
Theorem 5(b)) p > m. So assume that 6 <7n < 6. Let M < G, |M| =m.

By Theorem 1 we may assume |m(M)| > 2. Since p is minimal and pn > m,
it follows by Theorem 7 applied to M that either M is abelian or
M e (. If M is abelian, then G ¢ C by Theorem 1. Thus suppose

M el If IZ(Gp)| = Zp| > ps » then for some x € M- Z we find
1 1
2 2 3 1

ICG(.'Z:)I >m |Zp(G)l >mp” 2 |G|2, and G €. So assume that

3
1 Z .
< | pl <p

Case 1. p = 2.

5

since m -+ 2% < |G| < |0p|2

, if |0pl <2 then m<2°. as m

is odd and m < 32, -either every group of order m is nilpotent (and

G € C by Theorem 1) or m= 3-7 . Thus |G|=25-3-7, or

6

|G| =2° ¢ 3+ 7. 1In either case, |02|2 > |¢| yields IOZI = IGZ"

and G € C by Theorem 8. So suppose that IOpI = 26 = |Gp|. By Theorem

. 3
6, we may assume that IZpI > p, and since |Zp| <p we have

2
|Zp| = p . Also, we may suppose that l‘n(m)l 2 2 and not every group of
order m is abelian. As m < 64 m odd, we have two cases: m =3 * 7
and m = 32 * 7. This is because if r]m, r > 7 a prime, then an

element &« of order r acts trivially on OP/ZP , of order 16, and

x € Z by Theorem 5(e). But now «(m) = 2, so every group of order m

is abelian, a contradiction. By Theorem 5(d), Op/Zp is abelian, and

since 7 / (16-1) an element of order 7 centralizes some element
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Dok

—_ # _ .
z e (op/zp) . Thus |C (z)] 2 lop/zpl 7=16 7> |G|, and G e C.

Case 2. p > 2.
If |Zp| = p then by Theorem 6 we may assume that »n = 5, and

[Gp/Zpl = IOP/Zpl = p4. If r ¢ w(m) then either every element of order
r is in Z{(G) , or (by Theorem S(e)) »r divides

4 .

H(pt—1)=(p2+1)(p2+p+1)(p—1)4(p+1)2. As p<rpr, r

i=1

2 2
divides either p + 1 or p + p + 1. Thus there are at most two

primes rl # rg e nim) for which there exist ri—elements outside

2
Z(G). Since p < r;» r, does not divide the above product; but

7
D?r :Zr ] does divide I (p - 1), again by Theorem 5(e), so
i "1 1=1

[Gr :Zr 1< ri and Gr is abelian. If only one such Pi exists then
T 1 7

there exists an abelian subgroup of (¢, of order m, and G e€ (. So

suppose that such r, # r, exist, r, p2 + 1 and rglp2 +p + 1.

Since r p4 - 1 there exists an z € 0_ - Z_ such that » ||C.(x)].
2 p D 2176

1
. . . 4 5 2
Since Op/zp is abelian (Theorem 5), |Cb(x)| > rzp >p = Opl > |G| .

Case 2 is complete and the theorem is proved. 0

COROLLARY 9.1. Swppose G e S and |G| = pnqmrl where p, q, r
1

are distinct primes. If pn > |G|2 and n 2 4, then G ¢ C.

Finally, using many of the previous theorems and corollaries,
together with a few more specialized results, the authors have proved

the following:

THEOREM 10. Every non-abelian growp of odd order < 106 is a

member of C. Every non-abelian solvable group of even order < 104

18 a member of C.
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that

€71

[21

[3]
[4]

£5]

Lé63

£7]

E. A. Bertram and M. Herzog

In the odd order case we rely on the theorem of Feit-Thompson

every group of odd order is solvable.
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