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On the shape and size of granular roll waves
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This paper describes, from a theoretical point of view, the appearance and characteristics
of granular roll waves in chute flow, and the maximal size these waves can attain for a
given influx of material into the system. Granular roll waves are steady travelling wave
solutions of the generalized Saint-Venant equations for flowing granular matter, appearing
when the Froude number Fr of the incoming flow exceeds a critical value, Fr > Frcr. We
focus upon the phase space of the corresponding dynamical system, where the roll waves
take the form of a stable limit cycle around an unstable fixed point; this limit cycle gives
precise information on the size and periodicity of the roll wave. It is found that, for any
given value of Fr, the limit cycle cannot become arbitrarily large because it is constrained
by a homoclinic loop in phase space. Roll waves of larger amplitude can be generated by
increasing the Froude number Fr.

Key words: channel flow

1. Introduction

The study of roll waves has a long tradition in fluid mechanics (Cornish 1910, 1934;
Dressler 1949; Whitham 1974; Needham & Merkin 1984; Merkin & Needham 1986;
Kranenburg 1992; Balmforth & Mandre 2004; Fowler 2011). The granular counterpart
of these waves, which we study here, has been the focus of many investigations during the
past few decades, both experimentally and theoretically (Savage & Hutter 1989; Forterre
& Pouliquen 2003; Forterre 2006; Di Cristo et al. 2009; Gray & Edwards 2014; Razis et al.
2014; Edwards & Gray 2015; Viroulet et al. 2018; Razis, Kanellopoulos & van der Weele
2019; Fei et al. 2021). The mainstream approach to describe roll waves is via a generalized
version of the Saint-Venant equations for shallow water, adequately modified to account
for the special characteristics of flowing granular matter.

Roll waves (see figure 1) are, together with the uniform flow and the granular monoclinal
wave, among the few stable travelling waveforms that can occur in fully dynamic granular
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Figure 1. A periodic train of granular roll waves, travelling with wave speed c on a chute with inclination angle
ζ . This is the principal travelling waveform for Froude numbers exceeding the critical value Frcr given by (1.2).
With Frb we denote the local Froude number at the crest of the waves, just before the shock front, whereas
Fra is the Froude number in the trough immediately after the shock front (Frb > Fra > Frcr). The upper plot
depicts the wave profile using identical scaling for the x and z axes, as it will appear in experiment, while the
lower plot has been rescaled to demonstrate the features of the wave profile more clearly.

chute flow (Razis et al. 2019). The specification ‘fully dynamic’ is needed here, since in
granular flows (in contrast to usual fluids) one may also encounter travelling waveforms
which exhibit stopping regions, i.e. regions where the grains come to a temporary standstill
and then have to be set into motion again via a mechanism that involves erosion and
deposition. These intriguing waveforms have been studied in recent years by Edwards &
Gray (2015), Edwards et al. (2017, 2021), Rocha, Johnson & Gray (2019) and Russell et al.
(2019) but in the present paper we focus on fully dynamic travelling waves.

Another interesting class of waveforms that falls outside the scope of this paper is
that of standing waves, the most iconic example of which is the so-called granular jump
(Hákonardóttir & Hogg 2005; Boudet et al. 2007; Gray & Cui 2007; Johnson & Gray 2011;
Faug 2015; Faug et al. 2015; Méjean, Faug & Einav 2017; Viroulet et al. 2017; Méjean
et al. 2020; Kanellopoulos, Razis & van der Weele 2021). The spectrum of possible
waveforms becomes even wider when one considers the fact that granular flows are often
multi-disperse, with particles of varying sizes and shapes, introducing segregation effects
and stratification. Indeed, granular flows can support an immense variety of waveforms,
only matched by the multitude of wave phenomena encountered in the fields of Newtonian
and non-Newtonian fluids combined.

Which travelling waveform will prevail in practice depends primarily on the value of the
Froude number at the inlet of the chute. The Froude number is defined as

Fr(x, t) = ū(x, t)√
h(x, t)g cos ζ

, (1.1)

where ū(x, t) denotes the depth-averaged velocity of the granular sheet, h(x, t) stands for
its height, g is the gravitational acceleration and ζ is the inclination angle of the chute.
As far as the waveforms studied in the present paper are concerned, i.e. travelling waves
in the fully dynamic regime for monodisperse granular matter, the uniform flow and
the monoclinal wave (being a travelling shock wave connecting two uniform flows) are
stable for Fr(x, t) < Frcr (Razis, Kanellopoulos & van der Weele 2018; Razis et al. 2019),
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whereas roll waves are found for Fr(x, t) > Frcr (Forterre & Pouliquen 2003; Gray &
Edwards 2014; Razis et al. 2014; Edwards & Gray 2015; Razis et al. 2019). The critical
Froude number is given by the expression

Frcr = 2
3 (1 − Γ ) (1.2)

and depends only on the Froude offset Γ , which plays a role in the friction between
the chute and the granular sheet (Forterre & Pouliquen 2003; Edwards et al. 2017;
Kanellopoulos 2021). This parameter Γ is determined by the specifics of the experimental
set-up and the granular material, see § 2.

Figure 1 shows the anatomy of a typical train of roll waves propagating downwards with
constant shock speed c. Each member of the wave train consists of an elongated rising
flank, gradually (and for the most part exponentially) building up to a peak, followed by a
sudden drop in height, i.e. a shock front linking the peak to the lowest point of the wave.
Immediately afterwards the wave begins to rise again. The positions ‘before’ and ‘after’
the shock front are denoted by the subscripts b and a, respectively. The main objective of
this paper is to describe, from a theoretical point of view, the reason for the appearance
and the stability of the roll waves, together with their specific shape and periodicity, and
the fact that they cannot grow beyond a certain maximal size depending on the influx of
material into the system.

The paper is organized as follows. In § 2.1 we state the governing equations, namely, the
mass and momentum balance – being two coupled partial differential equations (PDEs)
for h(x, t) and ū(x, t) – together with appropriate constitutive relations that capture the
special physical properties of flowing granular matter. In § 2.2 we non-dimensionalize the
problem and identify the relevant dimensionless numbers. In § 2.3 it is shown how the
governing equations, if one limits oneself to the case of travelling waves (which is the case
we are interested in), reduce to a single ordinary differential equation (ODE) of second
order for h(ξ), where ξ = x − ct is the so-called travelling wave variable. Subsequently,
in § 2.4 we write this second-order ODE in the form of a dynamical system consisting of
two coupled first-order ODEs. In the same subsection we determine the fixed points and
the nullclines of this dynamical system.

In § 3 we then focus on the specific solution of the dynamical system that corresponds to
the periodic train of roll waves. In phase space this solution takes the form of a stable limit
cycle. In § 3.1 we determine the parameter range (especially with respect to the Froude
number and the wave speed) where roll waves may expected to be found; § 3.2 deals with
the birth of the limit cycle, which takes place via a Hopf bifurcation; in § 3.3 we discuss
the particular shape of the limit cycle, which is intimately connected to the shape of the
nullclines; and in § 3.4 we explain why the limit cycle (for a given Froude number of
the incoming flow) cannot grow beyond a certain maximum size. It turns out to be an
immediate consequence of a homoclinic bifurcation taking place in the vicinity of the limit
cycle. In § 3.5 we show that these results remain qualitatively the same when we choose
different values of ζ (the inclination angle of the chute) and Γ (the offset of the Froude
number), but that the quantitative changes may be significant. Throughout the paper, we
continuously indicate how our findings in phase space are linked to the birth, shape and
maximum amplitude of the roll waves in physical space. This is not only of interest from
a fundamental point of view but also of practical relevance. Indeed, the present study may
be anticipated to contribute to our understanding of roll wave formation in large scale
geophysical flows (such as debris flows or rock avalanches) and to answer the critical
question concerning the maximal amplitude that these waves can attain. The spontaneous
formation of waves can seriously amplify the destructive potential of such flows.
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In § 4 we study how the roll wave pattern reacts to an increase of the Froude number
of the incoming flow, which in experiment can be regulated by enhancing the inclination
angle ζ or by further opening the inlet at the top of the chute. It is found that the roll waves
increase in amplitude with growing Froude number. Finally, in § 5 we summarize our main
results and discuss the prospects for testing them experimentally.

2. Governing equations

2.1. The granular Saint-Venant equations and the associated constitutive relations
In analogy with the shallow water approximation for normal fluids, and justified by the
fact that the wavelength of the waves under consideration is orders of magnitude larger
than the thickness of the sheet, which in turn is markedly larger than the wave amplitude
(cf. figure 1), we describe the dynamics of the flowing granular sheet in terms of its height
h(x, t) and depth-averaged velocity ū(x, t). The latter is defined as

ū(x, t) = 1
h(x, t)

∫ h(x,t)

0
u(x, z, t) dz, (2.1)

where u(x, z, t) is the detailed velocity profile, which also depends on the ordinate z. In
the description, any velocity variations in the z-direction are averaged out, while flow
variations in the cross-wise direction are ignored altogether, hence both h(x, t) and ū(x, t)
depend only on x and t, cf. figure 1. Furthermore, we treat the granular material as an
incompressible fluid (Savage & Hutter 1989), assuming constant density throughout the
flowing sheet.

The height h(x, t) and the depth-averaged velocity ū(x, t) are governed by a system
of two coupled, nonlinear PDEs (Gray & Edwards 2014; Razis et al. 2014; Edwards &
Gray 2015; Razis et al. 2018; Edwards et al. 2019; Razis et al. 2019; Edwards et al. 2021;
Kanellopoulos 2021), namely, the mass conservation

∂h
∂t

+ ∂

∂x
(hū) = 0, (2.2)

and the momentum balance

∂

∂t
(hū) + ∂

∂x
(hū2) = gh sin ζ − ∂

∂x

(
1
2

gh2 cos ζ

)
− μ(h, ū)gh cos ζ + ∂

∂x

(
νh3/2 ∂ ū

∂x

)
.

(2.3)
The left-hand side of (2.3) is the Stokesian derivative of the depth-averaged momentum
per unit volume, divided by the constant density. The terms on the right-hand side of
(2.3) represent the various depth-integrated forces (per unit volume and divided by the
density) acting on the flowing material: (i) the gravity component along the x-direction
(the direction of the flow); (ii) the force arising from variations in h(x, t), i.e. the negative
gradient of the depth-averaged pressure; (iii) the frictional force exerted by the chute bed,
modelled as a (height- and velocity-dependent) friction coefficient μ(h, ū) multiplied by
the normal reaction force acting on the granular sheet; and (iv) the viscous-like diffusive
term arising from depth averaging the in-plane stresses in the sheet.

The last two terms of (2.3) contain constitutive relations that are specific for granular
matter, and it is here that the above equations deviate from their counterparts for
Newtonian fluids such as water. For the friction coefficient μ(h, ū) we adopt the modified
expression introduced by Edwards et al. (2017) that is valid for granular matter in the fully
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dynamic regime, i.e. without stopping regions

μ(h, ū) = tan ζ1 + (tan ζ2 − tan ζ1)

(
1 + βh

L(Fr + Γ )

)−1

. (2.4)

Here, ζ1, ζ2, L, β and Γ are experimental parameters obtained from independent
experiments (Edwards et al. 2021). The angles ζ1 and ζ2 denote the two inclinations
delimiting the interval in which uniform granular flows are possible: for ζ < ζ1 the
granular sheet remains at rest, whereas for ζ > ζ2 it flows downwards in an accelerated
fashion. The length scale L has its origins in the functional form of the experimental fit
to the critical angle curves that determine the friction force, as described by Pouliquen &
Forterre (2002). It represents a characteristic flow thickness (usually ranging from 1 to 2
particle diameters) over which the transition between ζ1 and ζ2 takes place in the above
friction law, (2.4). Its exact value depends on the properties of the grains as well as on the
bed roughness (Pouliquen & Forterre 2002; Edwards et al. 2017). The parameter β and
the Froude number offset Γ are closely related to each other and are given by (Forterre &
Pouliquen 2003)

Fr = β
h

hstop(ζ )
− Γ, (2.5)

where hstop(ζ ) denotes the thickness of the deposition layer that is left on the chute
(inclined at an angle ζ ) after a uniform flow of height h has passed over it. A first version of
(2.5) (without the Γ offset) was derived by Pouliquen (1999) by experimentally measuring
the Froude number as a function of the ratio h/hstop for four different systems of glass
beads, revealing that this ratio is independent of the bead size and the roughness of the
bed. The Froude offset Γ was introduced by Forterre & Pouliquen (2003) in order to fit
the experimental results concerning the mean velocity for different materials (sand and
glass) into a single law, thus formulating (2.5). As stated in GDR-MiDi (2004), one must
be cautious in using this relation for h-values close to hstop, since the fit involved may
lose its accuracy in this limit. In the present study this poses no problem, however, since
for travelling waves without stopping regions one has to ensure anyhow that h remains
everywhere well above hstop; so any possible ambiguities in the value of Γ close to hstop
can hardly affect our results. For an accurate comparison with the literature, we note that
the factor 1/

√
cos ζ was absent from the definition of the Froude number Fr in many of

the pioneering studies.
In Edwards et al. (2017) a parameter β∗ was also introduced, indicating the value of

the Froude number corresponding to a sheet thickness h = h∗(ζ ) with hstop(ζ ) < h∗(ζ ) <

hstart(ζ ), where hstart(ζ ) denotes the height for which a static layer is mobilized when
the inclination is increased to the angle ζ . Physically, h∗(ζ ) is the height of the thinnest
(and therefore slowest) possible steady uniform flow which leaves a deposit of smaller
thickness hstop(ζ ). The parameter β∗ is also affected by the Froude offset Γ , since it must
satisfy β∗ > β − Γ (Edwards et al. 2019). The granular flow is guaranteed to remain fully
dynamic as long as Fr(x, t) � β∗ everywhere along the chute (Edwards et al. 2017).

Another parameter that is characteristic for granular flow is the diffusive coefficient ν

in the fourth term of the right-hand side of the momentum balance (2.3). We adopt the
analytical expression derived by Gray & Edwards (2014)

ν = ν(ζ ) = 2L√
g sin ζ

9β
√

cos ζ
γ (ζ ), where γ (ζ ) = tan ζ2 − tan ζ

tan ζ − tan ζ1
. (2.6)
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This expression is physically relevant in the interval ζ1 < ζ < ζ2, decreasing from infinity
at ζ = ζ1 to zero at ζ = ζ2. For inclination angles outside this interval the expression (2.6)
becomes negative and cannot be used.

For completeness, we note that the advective term ∂x(hū2) on the left-hand side of the
momentum balance (2.3) is often multiplied by a shape factor α (of order 1) to obtain
an optimal correspondence with experiments (Saingier, Deboeuf & Lagrée 2016; Lagrée
et al. 2017). However, for shallow granular flows with relatively small Froude number,
as in the current paper, the solutions are quite insensitive to the value of this shape factor
(Saingier et al. 2016; Viroulet et al. 2017) and therefore we choose to suppress it. Moreover,
for shallow granular flows a certain amount of slipping motion at the bottom is almost
unavoidable, even on a rough chute; this means that the difference in velocity between the
lower and the upper layers is less pronounced, or in other words, that the velocity profile is
not too far from plug flow. In this context, we note that in a study by Forterre (2006) (see
in particular figure 1 in that paper) it was found that a simple plug flow with shape factor
α = 1 fitted the experimental data better than the Bagnold velocity profile, for which α

would be 5/4 (GDR-MiDi 2004; Börzsönyi, Hasley & Ecke 2005; Gray & Edwards 2014).

2.2. Non-dimensional form of the equations
At this point, it is opportune to non-dimensionalize the above set of equations. We will
take the height h0 of the ‘uniform base flow’ as the characteristic length scale. This is the
thickness of the sheet if the material released from the inlet is left to distribute itself evenly
along the entire span of the chute. Practically, in the absence of obstacles, this height
will be attained at some point not far from the inlet. The corresponding depth-averaged
velocity ū0 defines the characteristic time scale h0/ū0. So our non-dimensional variables
are x̃ = x/h0 and t̃ = t/(h0/ū0), and the height and depth-averaged velocity are rescaled
as follows (we use tildes throughout to denote the non-dimensional quantities)

h̃ = h
h0

, ˜̄u = ū
ū0

. (2.7a,b)

The continuity equation (2.2) then becomes

∂ h̃
∂ t̃

+ ∂

∂ x̃
(h̃ ˜̄u) = 0, (2.8)

and the momentum balance (2.3) takes the form

Fr2
0

(
∂

∂ t̃
(h̃ ˜̄u) + ∂

∂ x̃
(h̃ ˜̄u2)

)
= h̃
(

tan ζ − μ(h̃, ũ)
)

− h̃
∂ h̃
∂ x̃

+ Fr2
0

Re
∂

∂ x̃

(
h̃3/2 ∂ ˜̄u

∂ x̃

)
, (2.9)

where Fr0 is the Froude number of the uniform base flow that is supposed to exist far
upstream

Fr0 = ū0√
h0g cos ζ

, (2.10)

and Re is given by the following dimensionless expression, being the granular analogue of
the Reynolds number (introduced by Gray & Edwards (2014) on the basis of the so-called
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μ(I)-rheology), again defined in terms of the base flow conditions

Re = ū0
√

h0

ν(ζ )
. (2.11)

For consistency, also the friction coefficient μ is now expressed as a function of the new
dimensionless parameters

μ(h̃, ˜̄u) = tan ζ1 + (tan ζ2 − tan ζ1)

⎛
⎝1 + βh0h̃

L
(
Γ + Fr0( ˜̄u/

√
h̃)
)
⎞
⎠

−1

. (2.12)

Here, we note that the height h0 and the velocity ū0 appearing in the above expressions, are
in fact related. For the uniform base flow all derivatives with respect to x and t vanish, and
the momentum equation (2.3) reduces to a balance between gravity and friction, tan ζ =
μ(h, ū), or equivalently (in dimensionless parameters) tan ζ = μ(h̃, ˜̄u). Inserting h̃ = 1
and ˜̄u = 1 in the latter equality, using the expression (2.12) for μ(h̃, ˜̄u) (and (2.10) for the
Froude number Fr0 appearing there), we get the following relation between ū0 and h0:

ū0 = β
√

g cos ζ

Lγ (ζ )
h3/2

0 − Γ
√

g cos ζ h1/2
0 . (2.13)

With this, the Froude number Fr0 and the granular Reynolds number Re can be expressed
as functions of h0 alone, and are in fact seen to be related to each other (Kanellopoulos
2021)

Fr0 = βh0

Lγ (ζ )
− Γ, Re = Lγ (ζ )

√
g cos ζ

βν(ζ )
Fr0(Fr0 + Γ ). (2.14a,b)

The above expression for Fr0, which is fully compatible with (2.5) for h = h0 and
hstop(ζ ) = Lγ (ζ ), shows that the Froude number of the base flow is an increasing function
of h0. That is, for fixed ζ , thicker base flows correspond to higher Froude numbers.

2.3. Travelling waves: reducing the problem to an ODE
The periodic train of granular roll waves is a travelling waveform, which propagates
without change of shape and at a constant shock speed c̃, and therefore its height
and depth-averaged velocity will have the general form h̃(x̃, t̃) = h̃(x̃ − c̃t̃) = h̃(ξ̃ ) and
˜̄u(x̃, t̃) = ˜̄u(x̃ − c̃t̃) = ˜̄u(ξ̃ ). Inserting this form in the governing equations (2.8)–(2.9),
these become ODEs. Specifically, the dimensionless mass balance equation (2.8) takes
the form

− c̃h̃ + h̃ ˜̄u = −K, (2.15)

where the non-negative integration constant K = h̃(c̃ − ˜̄u) corresponds to the
dimensionless flux of material in the co-moving frame per unit width of the channel. Given
the fact that for the base flow, which will be established at some distance from the inlet
(depending among other things on the inclination angle ζ ), we have h̃ = 1 and ˜̄u = 1, this
constant is equal to K = c̃ − 1 along the whole chute.

Now, by solving (2.15) with respect to ˜̄u, we find the depth-averaged velocity ˜̄u =
c̃ − Kh̃−1 = c̃ − (c̃ − 1)h̃−1 and its derivatives ˜̄uξ̃ ,

˜̄uξ̃ ξ̃ in terms of h̃. Substituting these
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expressions into the non-dimensional momentum balance (2.9), the velocity is eliminated
and we obtain the following second-order ODE for h̃(ξ̃ ):

d2h̃

dξ̃2
− 1

2h̃

(
dh̃

dξ̃

)2

+ Reh̃3/2

Fr2
0(c̃ − 1)

[(
Fr2

0(c̃ − 1)2

h̃3
− 1

)
dh̃

dξ̃
+ tan ζ − μ(h̃)

]
= 0,

(2.16)
where also the friction coefficient μ is now expressed exclusively in terms of h̃

μ(h̃) = tan ζ1 + tan ζ2 − tan ζ1

1 + γ (ζ )h̃(Fr0 + Γ )

Γ + Fr0(c̃h̃ − c̃ + 1)h̃−3/2

. (2.17)

Equation (2.16) first appeared in a study by Gray & Edwards (2014) on granular
roll waves and also featured in Razis et al. (2019), where the transition from granular
monoclinal waves to roll waves was discussed. The distinguishing difference here is that
the friction coefficient (2.17) is enriched by the inclusion of the Froude offset parameter
Γ (Edwards et al. 2017; Kanellopoulos 2021).

Roll waves are nonlinear, finite-amplitude travelling waveforms that emerge as an
instability to the uniform flow. Close to their birth, when their amplitude is still small, these
waves are well described by a linear approximation of the governing equations (2.8)–(2.9)
around the uniform solution (h̃0, ˜̄u0) = (1, ˜̄u0). This linear analysis yields the wave speed
c̃ = 1 ± 1/Fr0 + h.o.t., (where h.o.t. stands for higher order terms), or in dimensional
form c = u0 ± √

h0g cos ζ + h.o.t., in which one may recognize the familiar expression
for the velocity (in the laboratory frame) of ‘gravity waves’ propagating on the surface of
a fluid moving at speed u0. As the roll waves gain height, as a result of the aforementioned
instability, the nonlinear terms become increasingly important, in such a way as to mitigate
their growth and eventually arrest it altogether, producing a fully ripened roll wave pattern.
This sequence of events is in fact at the core of the present study, and will be treated in
detail in the next sections.

2.4. The dynamical system formulation
Equation (2.16) can equivalently be written as two coupled first-order ODEs, forming a
dynamical system

dh̃

dξ̃
= s̃ = f (h̃, s̃), (2.18a)

ds̃

dξ̃
= s̃2

2h̃
− Reh̃3/2

Fr2
0(c̃ − 1)

[(
Fr2

0(c̃ − 1)2

h̃3
− 1

)
s̃ + tan ζ − μ(h̃)

]
= g(h̃, s̃). (2.18b)

The fixed points of the above dynamical system lie at the intersections of the nullclines in
the (h̃, s̃) phase space. The nullclines are defined as the curves where the direction field
ds̃/dh̃ = g(h̃, s̃)/f (h̃, s̃) attains infinite and zero slope, respectively,

f (h̃, s̃) = s̃ = 0, (2.19a)

g(h̃, s̃) = s̃2

2h̃
− Reh̃3/2

Fr2
0(c̃ − 1)

[(
Fr2

0(c̃ − 1)2

h̃3
− 1

)
s̃ + tan ζ − μ(h̃)

]
= 0. (2.19b)
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On the shape and size of granular roll waves

0.02

–0.02

0
1

s̃ = s  ̃ N

s̃ = 0

s̃

h̃h̃+

Figure 2. The fixed points (h̃+, 0) and (1, 0) (indicated by open dots) in the (h̃, s̃) phase plane for
Fr0 = 0.7 and c̃ = 2.42457(= c̃H − 0.004), together with the vertical-motion nullcline s̃ = 0 (blue) and the
horizontal-motion nullcline s̃ = s̃N (magenta, given by (2.26)). The black dotted line depicts the almost vertical
contour of zero divergence of the vector field, which is discussed in § 3.3. The grey background arrows denote
the direction field of the dynamical system and the large black arrows signify this field evaluated on the
nullclines. The system parameters are as in table 1 and the inclination angle is chosen to be ζ = 36◦.

In order to clearly distinguish between the two, we will call f (h̃, s̃) = 0 the ‘vertical-motion
nullcline’ and g(h̃, s̃) = 0 the ‘horizontal-motion nullcline’.

Wherever the nullclines intersect, we have a fixed point. From (2.19a) we immediately
see that any fixed point necessarily corresponds to a flat profile of the flowing sheet, with
s̃ = 0 (zero slope). Substituting this (2.19a) into (2.19b), we recover the condition for
uniform flow tan ζ = μ(h̃), which we already discussed in connection with (2.13). This
condition yields two different values of h̃, namely h̃ = 1 and h̃ = h̃+ < 1; the latter is not
a constant, but rather a function of the parameters c̃, Fr0 and Γ , as can be seen from the
following expression that relates these quantities:

c̃ = 1

1 − h̃+

1
Fr0

(
(Fr0 + Γ )(1 − h̃5/2

+ ) − Γ (1 − h̃3/2
+ )
)

. (2.20)

The associated fixed points (h̃, s̃) = (1, 0) and (h̃+, 0) (see figure 2) correspond to
a uniformly flowing sheet with constant thickness and velocity. The fixed point (1, 0)

represents the familiar base flow near the inlet, whereas the second fixed point (h̃+, 0)

represents a thinner uniform flow. Both these uniform flows can occur simultaneously on
the chute, linked by a travelling shock front, forming a ‘monoclinal’ flood wave or an
undular variation of this waveform (Razis et al. 2018, 2019; Kanellopoulos 2021).

To determine the local stability properties of either fixed point we consider the Jacobian
matrix

J(h̃, s̃) =

⎛
⎜⎝

∂f

∂ h̃

∂f
∂ s̃

∂g

∂ h̃

∂g
∂ s̃

⎞
⎟⎠
∣∣∣∣∣∣∣
(h̃,s̃)

=
⎛
⎝ 0 1

∂g

∂ h̃

∂g
∂ s̃

⎞
⎠
∣∣∣∣∣∣
(h̃,s̃)

, (2.21)
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ζ1 (deg.) ζ2 (deg.) L (mm) β β∗ Γ

31.1 47.5 0.44 0.63 0.466 0.40

Table 1. Values of the system parameters as measured by Edwards et al. (2017) for a flow of carborundum
particles over a bottom layer of glass beads glued on a chute. The inclination angle of the chute ζ must be
chosen between ζ1 and ζ2 to get a steady, non-accelerated flow; in the present paper we take ζ = 36◦ as a
typical case, but for completeness we will also investigate other values on the interval (ζ1, ζ2), see § 3.5. For
the given parameter values, the critical Froude number where the uniform flow gives way to roll waves is
Frcr = (2/3)(1 − Γ ) = 0.40, cf. (1.2).

where the elements of the matrix must be evaluated at the fixed point in question. The
corresponding eigenvalues are

λa,b(h̃, s̃) = 1
2

(
Tr J ±

√
(Tr J)2 − 4 det J

)
= 1

2

⎛
⎝∂g

∂ s̃
±
√(

∂g
∂ s̃

)2

+ 4
∂g

∂ h̃

⎞
⎠ . (2.22)

The above eigenvalues can be evaluated analytically, yielding four expressions (two for
each fixed point) depending on c̃, Fr0, Γ and the angles ζ1, ζ and ζ2. The corresponding
formulas are

λa,b(h̃, s̃) = 1

2Fr2
0(c̃ − 1)h̃3/2

[
Reh̃3 + Fr2

0(c̃ − 1)
(

h̃1/2s̃ − Re(c̃ − 1)
)

±
{

Re2h̃6 + Fr4
0(c̃ − 1)2

(
Re2(c̃ − 1)2 + 4Re(c̃ − 1)h̃1/2s̃ − h̃s̃2

)
+ 2Fr2

0Re(c̃ − 1)h̃3
((

4h̃1/2s̃ − Re(c̃ − 1)
)

+h̃1/2
(

3μ(h̃) − 3 tan ζ + 2h̃μ′(h̃)
))}1/2

]
, (2.23)

where μ(h̃) is given by (2.17). Since these expressions are rather long, we will simply
evaluate their numerical values whenever we address the issue of the stability, with specific
system parameters (Γ, ζ1, ζ2). For definiteness, in the rest of this study we adopt the
parameter values measured experimentally by Edwards et al. (2017), concerning the flow
of carborundum particles on a bed of glass beads glued to the chute. The values are given
in table 1. This constitutes a realistic setting to demonstrate our results. Other sets of
parameters are also possible (see e.g. table for the flowing sand studied by Rocha et al.
2019), yet the changes this produces are only quantitative, while the qualitative trend is
preserved.

Before we proceed, let us provide the explicit expressions of the trace and the
determinant of the Jacobian matrix at the fixed point (h̃, s̃) = (1, 0), which we will use
in the analysis to follow

Tr J(1, 0) ≡ ∂g
∂ s̃

∣∣∣∣
(1,0)

= Re
(
1 − Fr2

0(c̃ − 1)2)
Fr2

0(c̃ − 1)
, (2.24)

det J(1, 0) ≡ −∂g

∂ h̃

∣∣∣∣
(1,0)

= −
(tan ζ − tan ζ1)(tan ζ2 − tan ζ )Re

((
c̃ − 5

2

)
Fr0 − Γ

)
(tan ζ2 − tan ζ1)(Fr0 + Γ )Fr2

0(c̃ − 1)
.

(2.25)
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On the shape and size of granular roll waves

For the same reason, we give the analytical expression for the horizontal-motion nullcline
associated with (2.19b). This is a quadratic equation for s̃, with the following two roots:

s̃N = Reh̃5/2

Fr2
0(c̃ − 1)

⎧⎪⎨
⎪⎩

Fr2
0(c̃ − 1)2

h̃3
− 1 ±

√√√√(Fr2
0(c̃ − 1)2

h̃3
− 1

)2

+ 2Fr2
0(c̃ − 1)

Reh̃5/2

(
tan ζ − μ(h̃)

)⎫⎪⎬
⎪⎭ .

(2.26)
The nullcline in question consists of two branches, as can be seen in figure 2, where s̃N as
given by (2.26) is represented by the magenta curves. These branches will play a central
role in our analysis.

In closing, we note that the condition (2.19b) for the horizontal-motion nullcline
corresponds to (2.16) without the second-order derivative d2h̃/dξ̃2. This means that on
the nullcline s̃N the second-order ODE governing the travelling waveforms reduces locally
to a first-order ODE. Or equivalently, since the term d2h̃/dξ̃2 stems from the diffusive
term in the momentum balance (2.9), on the horizontal-motion nullcline the full problem
locally reduces to its inviscid counterpart.

3. Roll waves as a limit cycle

3.1. On the parameter range where roll waves may be expected
The local stability of both fixed points with Γ = 0 has been addressed in Razis et al.
(2019). As we will see, the inclusion of the Γ offset makes a marked quantitative difference
yet it does not give rise to any qualitative changes. We will show this in detail for Γ = 0.4
(the value of table 1). In § 3.5 we will also discuss other values of Γ , corresponding to
different experimental set-ups, which lead to the same conclusion.

Regarding the fixed point (h̃, s̃) = (h̃+, 0) given by (2.22) we find that the eigenvalues
λa,b(h̃+, 0) are real and of opposite sign for all relevant parameter values, showing that
(h̃+, 0) is always a saddle point.

The stability properties of the fixed point (h̃, s̃) = (1, 0) are more intricate. In the
interval β∗ � Fr0 < Frcr (where the uniform flow is stable, and where also the monoclinal
flood wave is found) it is an unstable node or, in the immediate vicinity of Frcr, an unstable
spiral (Razis et al. 2019; Kanellopoulos 2021). The monoclinal flood wave manifests itself
as a heteroclinic connection in phase space between the two fixed points (1, 0) and (h̃+, 0).
For Fr0 � Frcr (i.e. the regime where roll waves exist) the fixed point (1, 0) can be either
an unstable spiral, a centre, a stable spiral or a stable node, depending on the parameter
values. Figure 3, for the typical value Fr0 = 0.7, shows the changing characteristics of the
fixed point (1, 0) for varying values of the non-dimensional wave speed c̃.

From the discussion below (2.15) we know that c̃ = 1 + K > 1. Physically, this means
that the travelling waveforms of the granular sheet are always propagating faster than the
carrying base flow. For the specific case of roll waves, we can also give an upper bound
for c̃. Since roll waves manifest themselves as limit cycles in phase space, and since a
limit cycle cannot be formed around a saddle point, it follows that the determinant of
the Jacobian matrix J(1, 0), given by (2.25), must be positive in the roll wave regime.
This means that the factor (c̃ − 5/2)Fr0 − Γ in the numerator of this determinant must
be negative, since all other factors in the expression are positive. This gives us the upper
bound c̃ < 5/2 + Γ/Fr0. So roll waves must be sought for c̃ values within a sub-interval
of

1 < c̃ <
5
2

+ Γ

Fr0
. (3.1)
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node
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λa(1, 0)
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Figure 3. The trajectories in the complex plane, for decreasing c̃ and at a fixed Froude number Fr0 = 0.7, of
the two eigenvalues λa,b(1, 0) of the fixed point (h̃, s̃) = (1, 0). In the insets above the main plot we sketch how
the local stability characteristics of the fixed point (1, 0) change as the eigenvalues vary. The five schematic
pictures below the main plot depict how, simultaneously, the orbits surrounding the fixed point (1, 0) interact
with those around the neighbouring saddle point (h̃+, 0) denoted by ‘S’. The stable and unstable manifolds of
the latter are indicated in red and blue, respectively. The letter ‘H’ stands for Hopf bifurcation (where (1, 0)

is momentarily a centre point and gives birth to a limit cycle) and ‘hom’ denotes the critical event where the
stable and unstable manifolds of the saddle connect to form a closed homoclinic loop. In the region between
‘H’ and ‘hom’ (dashed) the fixed point (1, 0) is surrounded by a stable limit cycle, see the middle picture below
the main plot; this limit cycle corresponds to a periodic train of roll waves.

Now, the positive determinant alone does not ensure the existence of a stable limit cycle.
Also needed is the presence of a Hopf bifurcation, where the fixed point (1, 0) turns from
a stable spiral into an unstable one (momentarily and locally taking the form of a centre
point). The Hopf bifurcation can be found by setting the trace of J(1, 0) equal to zero, see
(2.24): 1 − Fr2

0(c̃ − 1)2 = 0. Thus one finds that the Hopf bifurcation takes place at the
following value of c̃, cf. the analyses by Gray & Edwards (2014) and Razis et al. (2019):

c̃ = c̃H = 1 + 1
Fr0

. (3.2)

It may be noted that the equation 1 − Fr2
0(c̃ − 1)2 = 0 also gives a second solution c̃ =

1 − 1/Fr0, yet this one is discarded since it lies outside the interval (3.1) of admissible c̃
values. The local stability properties of the fixed point (1, 0) in the neighbourhood of the
Hopf bifurcation at c̃H , while keeping Fr0 fixed, show that (1, 0) is an unstable spiral for
c̃ < c̃H and a stable one for c̃ > c̃H . This means that a stable limit cycle (i.e. a roll wave
solution) exists only for c̃ < c̃H . In fact, as we will see, they appear only in a very narrow
interval of c̃-values directly below c̃H = 1 + 1/Fr0 (cf. figure 3).

Before we proceed, let us comment upon a subtle point concerning the dimensionless
wave speed c̃H in (3.2). This relation may give the erroneous impression that roll waves
originating from a base flow with large Fr0 have small wave speeds (and vice versa) since
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On the shape and size of granular roll waves

c̃H is a decreasing function of Fr0. In reality, however, the opposite is true, as was shown
by Razis et al. (2014).

To get the correct picture, one has to consider the dimensional wave speed cH , which
reads as follows (with ū0 given by (2.13) and using the expression h0 = (Lγ (ζ )/β)(Fr0 +
Γ ), cf. (2.14a,b)):

cH = c̃Hū0 = (1 + Fr0)

√
(Fr0 + Γ )

Lγ (ζ )

β
g cos ζ , (3.3)

which is an increasing function of Fr0. This tells us that roll waves stemming from a base
flow with higher Fr0 (and hence higher h0, cf. (2.14a,b)) have a larger amplitude, and
therefore a larger shock speed. This is also observed in practice.

In the non-dimensional context, however, if we fix the value of Fr0 (and hence h0) one
has to follow a path through (Fr0, c̃) parameter space with decreasing c̃ to witness the birth
of roll waves, and to see their amplitude gradually grow. This will be the type of path that
we follow in our analysis.

3.2. The birth and evolution of the limit cycle
Figure 3, based on the analytical expressions of (2.22), depicts the trajectories of the
eigenvalues – also known as the root locus – of the fixed point (1, 0) for decreasing values
of c̃, while the Froude number Fr0 is kept constant.

The sketches above the central plot of figure 3 show the changing character of the
fixed point in question. We also depict, in the five figures below the main plot, the
simultaneously changing interplay between (1, 0) and the saddle (h̃+, 0), here denoted
by the letter ‘S’. The roll waves occur in the narrow dashed interval to the right of the
imaginary axis, where (1, 0) has just become an unstable spiral. In this interval, which is
only a small part of the section where (1, 0) is an unstable spiral, the fixed point (1, 0)

happens to be surrounded by a stable limit cycle, corresponding to a periodic train of roll
waves. Figure 4 shows that, in the (Fr0, c̃) parameter space, the region of stable limit cycles
(grey zone) is indeed remarkably narrow: the curves along which the Hopf bifurcation and
the homoclinic event take place are seen to lie very close to each other.

In figure 5 we present the limit cycle for three different values of c̃ and for fixed Froude
number Fr0 = 0.7. In figure 5(a,b), with c̃ = c̃H − 10−4, the limit cycle – the blue closed
curve surrounding (1, 0) – has just been born and hence the corresponding roll wave train
(plot to the right) exhibits an almost sinusoidal behaviour with relatively small amplitude.
Somewhat further away from the Hopf bifurcation, at c̃ = c̃H − 10−3, figure 5(c,d), the
limit cycle is seen to have increased in size. The amplitude and the wavelength of
the corresponding roll waves have increased accordingly, and the wave pattern starts
to visibly deviate from a sinusoidal one. In figure 5(e,f ), at c̃ = c̃H − 4 × 10−3 (again
further away the Hopf bifurcation), the amplitude and wavelength have grown further
and the asymmetry of the limit cycle has become very pronounced, corresponding to the
characteristic roll wave pattern observed in practice.

A striking feature of the limit cycle is the almost straight segment on its topmost
part, which (as we shall see in the next subsection, cf. figure 6) can be attributed to
the horizontal-motion nullcline s̃N . This almost straight segment of the limit cycle is
responsible for the nearly exponentially rising flank of the roll waves. This can be seen
by writing down the mathematical expression for the observed straight segment above the
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3.5

1.5

0.4 0.7 2.0 Fr0

2.45

2.40

0.69 0.70 0.71

H

hom

H

hom

c̃

Figure 4. The (Fr0, c̃) parameter plane, with the region in which roll waves occur shaded in grey. The upper
bound of this region (denoted by ‘H’) is given by (3.2) where the Hopf bifurcation takes place, cf. figure 3,
and the lower bound corresponds to the homoclinic event (‘hom’). For Froude numbers below Frcr = (2/3)

(1 − Γ ) = 0.4 (hatched region) no roll waves exist; the corresponding critical value of c̃ follows from (3.1) and
equals 3.5, so the curves ‘H’ and ‘hom’ both emanate from the critical point (Fr0, c̃) = (Frcr, 5/2 + Γ/Frcr) =
(0.4, 3.5). On the scale of the main figure the two curves ‘H’ and ‘hom’ seemingly coincide, therefore we also
show an inset in which we magnify the section around Fr0 = 0.7 (which is one of the typical values used in the
text). The system parameters are as in table 1 and the inclination angle of the chute is ζ = 36◦.

fixed point (1, 0)

s̃ = dh̃

dξ̃
= s̃1 + a(h̃ − 1), (3.4)

where a is the small positive slope of the segment, and s̃1 denotes the s̃-value of the
segment at h̃ = 1. The above equation comprises a first-order linear ODE for h̃(ξ̃ ), which
is readily solved to give

h̃(ξ̃ ) = 1 − s̃1

a
+ Ceaξ̃ , (3.5)

where C is the constant of integration. This expression (3.5) is exponentially rising with
ξ̃ , demonstrating that the straight segment in the (h̃, s̃) plane translates to an exponential
portion of the wave profile h̃(ξ̃ ).

One of the advantages of the dynamical systems approach presented here, is that it
allows for the analytical determination of the wavelength of roll waves at the moment of
their birth. Close to the Hopf bifurcation (i.e. when c̃ � c̃H) the periodic wave train is
almost perfectly sinusoidal, as seen in figure 5(b). Its wavelength is

Λ � ΛH = 2π

|λH(1, 0)| , (3.6)

where |λH(1, 0)| stands for the magnitude of the eigenvalues λa,b(1, 0) at the Hopf
bifurcation. These eigenvalues are purely imaginary. For the parameters used here we have
λH(1, 0) = ±0.506i. At the Hopf bifurcation itself, i.e. for c̃ = c̃H , the selected wavelength
is precisely ΛH , but at that moment the size of the limit cycle – and hence the amplitude of
the roll waves – is still nil. In the case of figure 5(a,b), slightly beyond the Hopf bifurcation,
we find numerically that the wavelength is Λ = 12.45; this is indeed close to the value at
the exact Hopf bifurcation, ΛH = 12.40, given by (3.6).
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Figure 5. Phase space portraits and corresponding wave profiles for three successive values of c̃ at fixed Fr0 =
0.7, as shown in the accompanying section of the (Fr0, c̃) parameter plane: (a,b,g(i)) at c̃ = c̃H − 10−4 =
2.42847, the limit cycle has just been born from (1, 0) and is still quite symmetric. The waves are nearly
sinusoidal and of small amplitude. (c,d,g(ii)) At c̃ = c̃H − 10−3 = 2.42757, the limit cycle has become bigger
and starts to develop an asymmetry. The roll waves are therefore of larger amplitude and wavelength, and
their shape deviates from the harmonic. (e,f,g(iii)) At c̃ = c̃H − 4 × 10−3 = 2.42457, the limit cycle has grown
further and now exhibits a marked asymmetry. A practically straight segment appears on its topmost part, which
is responsible for the nearly exponential shape of the rising flanks of the roll waves. The latter are now seen to
have an even larger amplitude and wavelength. The background grey arrows denote the direction field of the
dynamical system. The system parameters are as in table 1 and the inclination angle is ζ = 36◦.
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0

s̃ = s  ̃ N

h̃+ h̃1

s̃

Figure 6. The path traced out by the limit cycle (solid blue curve) in the upper half-plane is seen to closely
follow a path in the immediate vicinity of the two branches of the horizontal-motion nullcline s̃ = s̃N (magenta
dashed curves, given by (2.26)). In fact, the vector field forces all trajectories in this region through a narrow
channel around the left branch until they cross the contour of zero divergence (dotted), after which they start to
drift apart. Subsequently, the limit cycle crosses the right branch of the horizontal-motion nullcline and curves
downwards. The background grey arrows denote the direction field of the dynamical system; the parameters
are as in table 1 and the inclination angle is ζ = 36◦.

3.3. The influence of the nullclines on the shape of the limit cycle
Having examined the birth and evolution of the roll waves, we now focus on their
characteristic shape, showing that this is dictated to a large extent by the form of the
nullclines. Figure 5(e,f ) shows that the roll waves are comprised of an elongated rising
flank followed by a relatively abrupt shock front. The former corresponds to the upper
part of the limit cycle, lying in the positive s̃ half-plane, while the latter is associated with
the parabolic-like section in the negative half-plane. Along the upper part (the straight
segment) the dynamics is slow, whereas the lower part is traversed very quickly.

Here, we will show that the overall shape of the limit cycle is heavily influenced by the
nullclines of the dynamical system. The nullclines are the curves in phase space where
the slope ds̃/dh̃ is either zero or infinite. As we have shown in § 2.4, the vertical-motion
nullcline (where ds̃/dh̃ diverges) coincides with the horizontal axis s̃ = 0, see (2.19a).
The horizontal-motion nullcline s̃ = s̃N (where ds̃/dh̃ = 0), which is given by (2.26), has
a rather more intricate form and consists of two branches. In figure 6 the nullclines are
shown for the specific parameter values Fr0 = 0.7 and c̃ = c̃H − 0.004406. The dotted
line in this figure denotes the contour of zero divergence, i.e. the curve along which the
expression

∇ ·
(

f (h̃, s̃)
g(h̃, s̃)

)
= ∂f (h̃, s̃)

∂ h̃
+ ∂g(h̃, s̃)

∂ s̃
(3.7)

becomes zero. To the left of this line the divergence (3.7) is negative, whereas to its right
it is positive.

Let us first concentrate on the aforementioned nearly straight segment in the upper
part of the limit cycle. This is seen to trace out a path adjacent to the horizontal-motion
nullcline s̃ = s̃N . The limit cycle enters the upper half of the phase plane vertically, when it
crosses the h̃-axis, but soon it has to re-adjust its orientation – always following the arrows
of the vector field – when it approaches the left branch of the horizontal-motion nullcline
s̃ = s̃N .
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On the shape and size of granular roll waves

Along this left branch, the divergence of the vector field is negative, so all nearby
trajectories are squeezed together. As we see in figure 6, they converge into a narrow
channel in the proximity of the horizontal-motion nullcline s̃N , following its course until
they are catapulted into the gap between the two branches and pass through the contour of
zero divergence (the dotted line in figure 6). After this point, they start to drift away from
each other, with some trajectories heading upwards and others going downwards. The limit
cycle belongs to the latter category. The reason for this is that, for the current parameter
values, the unstable manifold of the saddle in (h̃+, 0) (which embraces the limit cycle, cf.
the central sketch in the lower part of figure 3) curls downwards. This will be discussed
further in the next subsection.

When it starts to curve downwards, the trajectory of the limit cycle quickly intersects
the right branch of the horizontal-motion nullcline. Here, the second derivative d2h̃/dξ2

momentarily vanishes (which corresponds to an inflection point of the associated wave
profile) and immediately afterwards, the trajectory bends towards the South and makes its
way to the negative half-plane. It crosses the h̃-axis vertically, so at this point h̃(ξ̃ ) attains
its maximum value, corresponding to the crest of the roll wave.

The above description, in which the limit cycle has a pronounced straight segment,
holds when the limit cycle approaches its maximal size and is restrained in its growth by
the horizontal-motion nullcline (and by the unstable manifold emanating from the saddle
point). We illustrate this in figure 7 for three successive values of the Froude number:
Fr0 = 0.7, Fr0 = 0.9 and Fr0 = 1.1, and corresponding values of c̃ close to c̃hom(Fr0),
where the subscript ‘hom’ refers to the homoclinic event that takes place at this value, as
we will see shortly. The three limit cycles in the left column are very close to their maximal
size and the role of the nullclines is seen to be profound.

In the positive s̃ half-plane, the two branches of the horizontal-motion nullcline s̃ = s̃N
(magenta dashed curves) together constitute the nearly straight upper border of the limit
cycle. The orbit is forced to follow the left branch, where the divergence of the vector field
is negative, and starts to drift away on the right hand side, where the divergence of the
vector field is positive.

In the negative s̃ half-plane, where s̃ = s̃N runs almost vertically, this nullcline is
responsible for redirecting the trajectory of the limit cycle: at its lowest point it turns from
South-West to North-West. This specific point corresponds to the spot of steepest descent
in the shock front of the roll wave. (In fact, it is one of the two inflection points of the wave
profile, where d2h̃/dξ2 = 0. These inflection points are located at the intersections of the
right branch of the horizontal-motion nullcline with the limit cycle. One of these is the
present point of steepest descent, while the other one is the aforementioned point close to
the wave crest.)

On the other hand, the intersections of the limit cycle with the vertical-motion nullcline
s̃ = 0 (where the slope of the direction field diverges) correspond to the highest and lowest
point of the roll wave pattern. The nullcline in question is merely the horizontal axis. That
is to say, the limit cycle (as well as any other trajectory) always crosses the h̃-axis vertically,
towards the South for h̃ > 1 and towards the North for h̃+ < h̃ < 1, cf. figure 6.

Among the three cases shown in figure 7, the roll wave depicted in the top row (where
Fr0 = 0.7) has the smallest amplitude and the largest wavelength. When the Froude
number increases, as in the second and the third row, where Fr0 = 0.9 and Fr0 = 1.1,
respectively, the two fixed points of the dynamical system are seen to move further away
from each other. As a result, the limit cycle follows the horizontal-motion nullcline s̃ = s̃N
to larger positive values of s̃, i.e. it reaches larger slopes, which means that the rising flank

950 A27-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.811


G. Kanellopoulos, D. Razis and K. van der Weele

0

–0.2

–0.4

0

–0.2

–0.4

0

–0.2

–0.4

s̃

s̃

s̃

h̃1

h̃1

h̃1

0

–0.2

–0.4

0

–0.2

–0.4

0

–0.2

–0.4

s̃

s̃

s̃

h̃1

h̃1

h̃1

1.1

1.0

0.9

0.8

28 000 28 050

28 050

h̃ (ξ̃)

ξ̃

1.1

1.0

0.9

0.8

28 000 28 050

h̃ (ξ̃)

ξ̃

1.1

1.0

0.9

0.8

28 000 28 050

h̃ (ξ̃)

ξ̃

2.5

2.0

0.7 0.9 1.1 0.69999 0.89999 0.90000 0.90001 1.09999 1.10000 1.100010.70000 0.70001

2.42418 2.10845 1.90731

1.90729

1.90727

2.10843

2.10841

2.42416

2.42414

c̃

Fr0 Fr0 Fr0 Fr0

H

hom

hom
hom

hom

(e)

(b)(a) (c)

(h)(g) (i)

(k)(j) (l) (m)

(d ) ( f )

Figure 7. (a,d,g) The maximal size limit cycles in phase space (blue solid curves) along with the two
branches of the horizontal-motion nullcline s̃ = s̃N (magenta curves) for Froude numbers Fr0 = 0.7, Fr0 =
0.9 and Fr0 = 1.1, respectively. The corresponding wave speeds are c̃hom(0.7) = c̃H(0.7) − 0.004406 �
2.424165, c̃hom(0.9) = c̃H(0.9) − 0.002679 � 2.108432 and c̃hom(1.1) = c̃H(1.1) − 0.00179804 � 1.907293.
(b,e,h) The associated fully ripened wave profiles. (c, f,i) ‘Escape’ of the limit cycles (through the gap between
the two branches of the horizontal-motion nullcline) for c̃-values that are just below the aforementioned critical
ones, namely: c̃ = 2.424161 for Fr0 = 0.7, c̃ = 2.108431 for Fr0 = 0.9 and c̃ = 1.907292 for Fr0 = 1.1. The
above choices of Fr0 and c̃ are indicated in the (Fr0, c̃) diagram in (j–m); the regions marked by the arrows in
the first plot are given in more detail in the three magnifications to the right. The other parameters are invariably
taken as in table 1 and the inclination angle is ζ = 36◦.

of the roll wave has more space to develop itself. This is the reason for the continuing
increase in amplitude observed in the second and third rows.

The depicted limit cycles are of ‘maximal size’ for the given Froude numbers: for values
of c̃ below the critical ones of figure 7, and with the same numerical precision, the limit
cycles break down. In the rightmost column of figure 7, the phase space trajectories are
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On the shape and size of granular roll waves

now seen to escape to infinity in the North-East direction, so the dynamical system ceases
to give physically meaningful solutions for the Froude numbers in question. Physically this
means that the profiles shown in figure 7 are the largest possible roll waves for the given
Fr0 values. This will be discussed in more detail in § 3.4.

As a side note, we observe (from the values of c̃ given in the caption of figure 7) that
the difference between c̃H(Fr0) and c̃hom(Fr0) gradually diminishes for growing Fr0. In
the limit of large Froude numbers Fr0, the interval of c̃-values for which roll waves exist
becomes truly narrow, in agreement with the findings of Gray & Edwards (2014).

3.4. On the maximal size of the roll waves
In this subsection we explain, from the dynamical systems perspective, why roll waves
cannot become arbitrarily large for fixed parameter values and a given base flow. More
specifically, we will address the question: Why does the limit cycle for a given Froude
number Fr0 exhibit a maximal size? To answer this, we will study what happens when
the parameter c̃ is pushed below its threshold value. In practice, the system will never
spontaneously push itself beyond the threshold, and the present discussion will illustrate
why this is so: the system would then enter a regime where no bounded travelling wave
solutions exist.

In the rightmost column of figure 7 we present the breakdown of the limit cycle when
the value of c̃ is decreased below the critical value c̃hom(Fr0), for each of the three cases
Fr0 = 0.7, 0.9 and 1.1. Responding to the change in c̃, the limit cycle tends to expand, but
in the process it runs into the ‘escape channel’ in the gap region between the two branches
of the horizontal-motion nullcline s̃N . In these plots, we also see that the branches of
s̃N reach higher positive values of s̃ for growing Froude number, as mentioned earlier,
allowing the spiralling trajectories to expand further in that direction.

The reason behind the limit cycle’s escape lies in the interplay between the stable and
unstable manifolds of the saddle point (h̃+, 0). In figure 8 we illustrate this for the case of
Fr0 = 0.7, where we follow a vertical path through a small part of the (Fr0, c̃) parameter
space.

In figure 8(a,b) (top row), when the value of the wave speed is c̃hom(0.7) < c̃ < c̃H(0.7),
the unstable manifold of the saddle (blue line) curls itself below the saddle’s stable
manifold (red line) and closes in upon the stable limit cycle around (1, 0). Meanwhile,
the stable manifold comes down from the positive s̃ half-plane; it describes a wide curve
around the region containing the limit cycle and finally arrives in the saddle (h̃+, 0).

By contrast, when c̃ < c̃hom(0.7), as depicted in figure 8(e,f ) (third row), the stable
manifold (red) begins at the unstable spiral point (1, 0). It spirals outwards and ends,
like before, in the saddle (h̃+, 0) (establishing a heteroclinic connection). The unstable
manifold (blue) now sweeps over its stable counterpart, flying off in the North-East
direction, and – importantly – opening the aforementioned ‘escape channel’. To see this
more clearly, in the right column of figure 8 we have expanded the relevant strip of the
phase plane around s̃ = 0. Thus the limit cycle ceases to exist. All the orbits in the region of
the former limit cycle (with the exception of the saddle’s stable manifold itself) eventually
escape to the North-East.

In the intermediate threshold case, c̃ = c̃hom(0.7), the unstable and stable manifolds
join precisely onto each other, thus forming a homoclinic loop, see figure 8(c,d) (second
row). This homoclinic loop corresponds to a granular solitary wave with an unusually high
amplitude and infinite wavelength (Razis et al. 2019). One cannot expect to witness this
solitary wave in practice, however, since it exists only at this exact value c̃hom(Fr0), which
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Figure 8. The changing interplay between the stable (red) and unstable (blue) manifolds of the saddle point
(h̃+, 0) for Fr0 = 0.7, at three values of c̃ as shown in the depicted section of the (Fr0, c̃) parameter plane. In
(b,d, f ), a close-up of the area of interest is given, showing how the interplay determines the fate of the limit
cycle. (a,b,g(i)) For c̃hom(0.7) < c̃ < c̃H(0.7), the unstable manifold (blue curve) is seen to dive below the
stable manifold (red curve) and ends on the stable limit cycle surrounding (1, 0). (c,d,g(ii)) For c̃ = c̃hom(0.7),
the manifolds join precisely together and form a homoclinic orbit. The maximal size limit cycle has been
indicated as a dotted curve. (e,f,g(iii)) For c̃ < c̃hom(0.7), the unstable manifold sweeps over the stable one
and flies off, whereas the stable manifold now forms a heteroclinic connection between (1, 0) and the saddle
(h̃+, 0). The background grey arrows denote the direction field in phase space; the system parameters are as in
table 1 and the inclination angle of the chute is ζ = 36◦.
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Figure 9. (a) The maximal size limit cycle (solid blue line) and the unstable homoclinic loop (black dashed
line) in phase space, cf. figure 8(c,d). (b) The corresponding roll wave train of maximal amplitude (solid
blue curve) and the unstable solitary waveform (black dashed curve). The rising flanks of the roll wave train
have precisely the same shape as the associated part of the solitary wave. Both these waveforms travel at
dimensionless wave speed c̃hom. The solitary waveform only exists at this very specific value of c̃hom. For the
roll wave train, this same value of c̃hom is associated with the maximum amplitude the roll waves can attain for
the given Froude number Fr0. The system parameters are as in table 1 and the inclination angle of the chute is
ζ = 36◦; in view of the extreme fine tuning of c̃ needed to create the homoclinic loop, and since the associated
wave profiles are very unstable, the waves presented here have been generated using a value of c̃ marginally
larger than c̃hom(Fr0).

requires an unrealistic amount of fine tuning. Moreover, the homoclinic orbit is unstable
to any small perturbations.

At this critical state, the limit cycle has attained its maximal size, and its upper segment
coincides with the corresponding part of the homoclinic loop. In figure 8(c,d) the limit
cycle is represented by the dotted blue line, and in figure 9(a) we depict it as a solid blue
line. Evidently, even at this maximum size, the limit cycle is still distinctly smaller than
the homoclinic loop. This can also be seen from the associated wave profiles (the roll wave
train and the solitary wave, respectively) depicted in figure 9(b). Interestingly, despite their
difference in amplitude, both of these waveforms have the same wave speed c̃hom(Fr0). In
fact, the rising flanks of the roll wave pattern (solid blue) have exactly the same form as
the corresponding part of the large solitary wave (black dashed curve). The instability of
the homoclinic loop implies that also the roll wave pattern becomes unstable at this critical
event.

From the physical point of view, the breakdown of the limit cycle implies that for
a specific value of Fr0, the amplitude of the granular roll wave cannot grow beyond a
certain size, with a well-defined wave speed value c̃hom(Fr0). This is in agreement with
the findings of Razis et al. (2014), who determined the maximum amplitude of roll waves
in the absence of viscous-like effects. To witness larger roll waves, one should open the
inlet at the top of the chute further or increase the inclination angle ζ , thereby raising the
value of Fr0. The point (1, 0) then corresponds to a higher uniform flow and, with the new
set of parameter values, a higher roll wave will be formed. This is described below in § 4.

3.5. The influence of varying the system parameters ζ and Γ

Up to now, we have varied the parameters c̃ and Fr0. It is natural to ask to what extent the
above scenario (concerning the birth of the roll waves and the subsequent ripening to their
maximal size) is affected by a change in the other system parameters. So here we discuss
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Figure 10. The three-dimensional (Fr0, c̃, ζ ) parameter space, being an extension of the (Fr0, c̃) plane shown
in figure 4, with the region in which roll waves occur shaded in grey. The upper bound of this region (the green
surface denoted by ‘H’, where the roll waves are born via a Hopf bifurcation) is given by (3.2); the lower bound
‘hom’ is where the roll waves attain their maximal size, which is determined by the homoclinic event as shown
in figure 7. The three plots in the lower row depict the region in question – with the numerically calculated
values of ‘hom’ – for three cuts through the three-dimensional plot at Fr0 = 0.7, 0.9, and 1.1; note the different
scaling along the c̃-axis in these plots. The system parameters are as in table 1.

the inclination angle ζ and the Froude offset Γ . It will turn out that changes in these two
parameters cause only quantitative changes; the scenario as a whole remains qualitatively
the same.

As far as ζ is concerned, figure 10 shows how the thickness of the region between ‘H’
(the birth of the roll waves) and ‘hom’ (where they attain their maximal size) depends
on the inclination angle. At the boundaries of the inclination interval, i.e. for ζ = ζ1 and
ζ = ζ2, the thickness becomes zero. This stands to reason, because at ζ = ζ1 the sheet is
still stagnant and hence the waves have no opportunity to establish themselves. For ζ = ζ2,
on the other hand, the uniform base flow breaks down (since the flow is on the verge of
turning into an uncontrollable avalanche), so here the waves cannot develop because they
lose the substrate on which to do so. In the intermediate interval of ζ values, however, it
is seen that the roll waves always follow the same sequence from birth (zero amplitude)
to maximal size. The three detailed plots in figure 10 show that the thickness of their
region of existence is largest for ζ ≈ 42◦. Physically, this means that (for an experimental
set-up with the parameters of table 1) roll waves with the largest possible amplitude may
be anticipated to be found around this inclination angle.

To illustrate the influence of the parameter Γ , in figure 11 we show three stages of the
sequence between ‘H’ and ‘hom’ for an entirely different set of system parameters (see
table 2) corresponding to the experimental set-up used by Rocha et al. (2019), who studied
the flow of sand on a chute with ballotini beads glued to the bottom. The inclination angle
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Figure 11. Roll wave profiles for the experimental set-up employed by Rocha et al. (2019), concerning the flow
of sand on a chute. The system parameters of this set-up are given in table 2. The inclination angle of the chute
is ζ = 34◦ and the Froude number of the incoming flow is Fr0 = 0.7, well above the critical value Frcr =
0.107 for this set-up. The depicted wave profiles correspond to three successive values of the wave speed: (a)
c̃ = c̃H − 0.5 × 10−4, (b) c̃ = c̃H − 7.0 × 10−4 and (c) c̃ = c̃H − 24.28 × 10−4, where c̃H = 2.42857 marks
the birth of the roll waves.

ζ1 (deg.) ζ2 (deg.) L (mm) β β∗ Γ

29.0 45.5 0.90 0.71 0.11 0.84

Table 2. The system parameters of the experimental set-up used by Rocha et al. (2019) for the flow of red
sand over a bottom layer of ballottini beads glued on a chute.

of the chute, which must be chosen between ζ1 and ζ2, is taken to be ζ = 34◦, just as
in the actual experiment. For the given parameter values, the critical Froude number that
must be exceeded to get roll waves is Frcr = (2/3)(1 − Γ ) = 0.107, cf. (1.2). The wave
profiles in figure 11 have been generated for a base flow with Fr0 = 0.7, which amply
fulfils the condition Fr0 > Frcr. The values of the dimensionless wave speed in the three
plots are (a) c̃ = c̃H − 0.5 × 10−4, (b) c̃ = c̃H − 7.0 × 10−4 and (c) c̃ = c̃H − 24.28 ×
10−4, where c̃H = 2.42857 marks the birth of the roll waves. It is seen that the ripening
of the roll waves from birth to maximal size follows the same trend as described in the
previous subsection (see especially figure 5) for the system associated with the parameter
values of table 1.

For completeness, we have also checked other sets of system parameters, such as those
corresponding to the flow of glass beads from the aforementioned study by Rocha et al.
(2019) (for which Γ = 0). In all cases studied, we found that the roll waves undergo
the same qualitative sequence of events. So all the evidence suggests that the scenario
is generic and quite insensitive to the precise values of ζ or Γ .

4. The response of roll waves to changes in the influx

In this section we study what happens when, starting from a situation in which one
has a fully ripened roll wave of maximum size, we change the Froude number Fr0. In
experiment, this can be done either by changing the flux of granular material at the inlet
(thereby modifying the level h0 of the base flow) or by adjusting the inclination angle ζ

of the chute. In order to see how the flow reacts to such a change, we have to abandon the
dynamical systems approach and return to the original set of PDEs (2.2)–(2.3). After all,
although the dynamical system is a powerful tool for studying the system in its equilibrium
state, it provides little or no information about how this equilibrium is reached.

950 A27-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.811


G. Kanellopoulos, D. Razis and K. van der Weele

0.0028

0.0018

0 0.035

href

h(x, t) (m)

x (m)

0.0028

0.0018

0 0.035

href

h(x, t) (m)

x (m)

0.0028

0.0018

0 0.035

href

h(x, t) (m)

x (m)

+

–

(b)

(a)

(c)

Figure 12. Evolution of the roll wave profiles for different values of the influx, i.e. different values of the
Froude number Fr0. Depicted are the profiles after 10 s (solid lines) together with the initial profiles (dashed
lines) for: the reference Froude number Fr0 = 0.70 (a), increased Froude number Fr0 = 0.77 (b) and reduced
Froude number Fr0 = 0.59 (c). We have imposed periodic boundary conditions, with domain length equal to
the wavelength of the reference wave. The system parameters are as in table 1 and the inclination angle of the
chute is ζ = 36◦.

The fact that the only stable waveform for Fr0 > Frcr > β∗ (i.e. in the fully dynamic
regime) is the roll wave (Razis et al. 2019), means that – as long as we stay in this regime –
any change in the inflow can only result in another roll wave. To verify this, we conduct the
following numerical experiment. Starting from a fully ripened roll wave for Fr0 = 0.7 and
dimensional wave speed c = 0.228 m s−1 (corresponding to c̃ = 2.42505 � c̃H(0.7) −
0.003525 in non-dimensional units, in the grey zone of figure 4), we force the system into
a new state – with a higher or a lower Froude number – by raising or lowering the thickness
of the base flow by 0.3 mm. We call these the positively and negatively perturbed profiles,
respectively. These perturbed profiles, one at a time, are used as the initial condition h(x, 0)

for the PDEs (2.2)–(2.3). As far as the initial velocity condition ū(x, 0) is concerned, we
use the dimensional analogue of the mass balance (2.15) with the aforementioned value
c = 0.228 m s−1.

So we run the PDE system (2.2)–(2.3) for three different settings: (a) the reference
system (without any subtractions or additions) at its proper Froude number Fr0 = 0.7, (b)
the positively perturbed system with an initial condition in which we have added 0.3 mm
to the reference profile, corresponding to Fr0 = 0.767252 and (c) the negatively perturbed
system, where we start from an initial condition that lies 0.3 mm below the reference
profile, corresponding to Fr0 = 0.588516. The numerical scheme we employ is the method
of lines (Schiesser 1991), described in detail in Razis et al. (2019).

The numerical experiment is conducted on a domain equal to one wavelength of the
reference roll wave, with periodic boundary conditions. This means that also the positively
and negatively perturbed profiles are confined to this same domain, which differs from the
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natural wavelengths they would attain on a chute of infinite length. This is admittedly a
rigid aspect of the current numerical experiment, yet it is a necessary measure to keep the
computer time within reasonable bounds. On a longer chute, the perturbed profiles would
be prone to a slow coarsening process (Razis et al. 2014), in which the waves would tend
to cluster, redistributing the granular matter in the evolving wave train and thereby altering
the values of h0 and Fr0. It would take too much computer time to reach the steady state
in that case.

Figure 12 shows our results. The dashed curves represent the initial profiles h(x, 0)

(being the same shape for all three experiments, but superimposed on base flows of
different height) while the solid curves are the numerical solutions of the PDEs after
t = 10 s. It is seen that the roll wave of the reference system (a) remains unchanged. This
is as expected and – importantly – shows the stability of the solution obtained by the
dynamical systems approach. The perturbed initial profiles on the other hand (b,c), after
10 s are seen to have developed into roll waves with increased and reduced amplitude,
respectively, around their given base flow levels. Meanwhile, the wave speeds of these
perturbed profiles have also adjusted themselves accordingly.

In short, within the limitations of the numerical experiment (which does not allow for a
change in wavelength), the system has aptly reacted to the modified influx by forming roll
waves of the correct amplitude and wave speed to comply with the new value of Fr0.

5. Concluding remarks

Here, we briefly recapitulate our main findings and comment upon the feasibility of testing
the results of this paper in experiment.

The central point of the paper has been to describe, via a dynamical systems view,
the appearance and the ripening of roll waves in granular chute flow. We find that roll
waves – which in phase space take the form of a limit cycle – are born by means of a
Hopf bifurcation of the fixed point (1, 0). This fixed point represents the incoming base
flow, and the Hopf bifurcation corresponds to its destabilization through the development
of a periodic wave train. This is the onset of the so-called roll wave instability; see also
the seminal paper by Gray & Edwards (2014). One of the new results gained from the
dynamical systems approach has to do with the wavelength selection at the moment of
birth of the roll waves: the wavelength Λ immediately after the Hopf bifurcation can be
expressed analytically in terms of the magnitude of the eigenvalue of the fixed point (1, 0),
see (3.6).

After birth, the roll waves grow. The present approach allows us to relate the
characteristic shape of the growing roll waves (or equivalently, the limit cycle) to the form
of the nullclines of the dynamical system, in particular to the horizontal-motion nullcline
s̃N , which is given analytically by (2.19).

Finally, the roll waves attain their maximal size when they meet a homoclinic loop,
formed by the stable and unstable manifolds of the second fixed point of the dynamical
system, (h̃+, 0). This second fixed point – a saddle – corresponds to uniform flow
conditions with a smaller thickness than the incoming flow. The homoclinic loop is
associated with an unstable solitary wave with a considerably larger amplitude than the
roll waves; see figures 8(c,d) and 9. When the limit cycle meets this homoclinic loop
(which happens along the upper part of the limit cycle, which is associated with the
exponentially rising flank of the roll wave), the limit cycle becomes unstable. The orbit
that previously traced out the limit cycle now escapes to infinity, as shown in figure 7. This
escape demarcates the maximum size the limit cycle (and hence the roll wave) can acquire
given a certain Froude number Fr0 of the base flow.
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The whole evolution of the roll waves, from their birth until they reach their maximal
size, takes place in a surprisingly narrow region in parameter space. This region, between
the Hopf bifurcation (H) and the homoclinic event (‘hom’), is shaded in the (Fr0, c̃)
parameter plane of figure 4. The same region is also sketched in the three-dimensional
parameter space (Fr0, c̃, ζ ) of figure 10.

Throughout our analysis, we adopt the frictional law (2.4) – or in its non-dimensional
form, (2.12) – that involves the offset Γ of the Froude number. To the best of our knowledge
this is the first time that this has been done for roll waves. The offset is found to cause no
qualitative changes to the sequence of events from the birth of the roll waves to the stage
when they attain their maximal size, although its quantitative effect is considerable. This
qualitative robustness of the evolution of granular roll waves under changes in the offset
Γ has been further examined in § 3.5, where we also found that the evolution is equally
robust under variations of the inclination angle ζ (as long as one stays within the interval
ζ1 < ζ < ζ2).

The aforementioned ‘escape’ of the limit cycle is not the end of the roll waves. It only
means that for a given value of Fr0 there is a maximum to the amplitude which the roll
waves can attain. We performed a numerical experiment to show that, when the influx of
material on the chute is enhanced (i.e. when we increase the value of Fr0), the roll waves
on the chute spontaneously adapt their amplitude and wave speed to a correspondingly
larger value; see figure 12. Inversely, when we decrease the influx (thereby lowering the
value of Fr0), the amplitude of the roll waves self-regulates itself by becoming smaller.

In order to put the results of the present paper to the test, we recommend to use
an experimental set-up with Frcr as small as possible, such that the condition for the
appearance of roll waves (Fr0 > Frcr) will be easy to satisfy. This means, since Frcr =
(2/3)(1 − Γ ), that it will be advantageous to choose a material with a large value of Γ .

Such a set-up was used in the experiments of Rocha et al. (2019), who – among other
things – studied the flow of red sand with Γ = 0.84, implying that Frcr = 0.107. Indeed,
in ‘movie 1’ from the online supplementary material to that paper, snapshots of which are
shown on the cover of the journal, a wavy pattern is clearly discernible. Given the fact
that the flow in this video has reached a steady state, and that the Froude number certainly
exceeds the critical value 0.107 (since β∗ = 0.11 for the set-up in question and the authors
explicitly state that the flow is fully dynamic, i.e. Fr0 > β∗), we strongly believe that this
wavy pattern is a periodic train of roll waves. Therefore, in our view, the set-up used
by Rocha et al. (2019) is perfectly suited for testing the results of the present study. For
instance, for Fr0 considerably larger than Frcr, our theory predicts that the dimensionless
wave speed c̃ will be very close to the Hopf value c̃H = 1 + 1/Fr0 and we think that this
might be checked in a relatively straightforward way on this specific chute. That is to say,
for any Fr0 	 Frcr we predict that the observed (dimensional) speed of the roll wave train
should be close to the value given by (3.3).

As a final note, we want to point out that the methodology of the present paper is not
restricted to granular fluids. It can also be applied to ordinary Newtonian fluids, where one
may anticipate to find qualitatively similar results. Pioneering work on roll waves in water
using the dynamical systems approach has been performed by Needham & Merkin (1984)
and Merkin & Needham (1986). One may expand on this by incorporating the realistic
diffusive term proposed by Kranenburg (1992) and taking into account also more recent
results on the dynamics of roll waves in normal fluids, such as those by Balmforth &
Mandre (2004).
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