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We develop a weakly nonlinear theory to revisit the water hammer phenomenon resulting
from slow valve manoeuvres. The hydraulic head at the valve is known to be nonlinearly
coupled with the flow velocity via a relation derived from Bernoulli’s principle, so that
solutions have been so far obtained only via numerical models. The governing equations
and boundary conditions indeed yield a nonlinear boundary-value problem, which is here
solved using a perturbation approach, Laplace transform and complex analysis. We obtain
space- and time-dependent analytical solutions in all of the pipe and validate our results
by comparison with standard numerical methods (i.e. Allievi’s method) for determining
the exact behaviour of the hydraulic head at the valve. Additionally, we derive algebraic
practically relevant closed form expressions for predicting the maximum and minimum
hydraulic head values during both valve closure and opening manoeuvres.
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1. Introduction

The water hammer in pipes is a well-known phenomenon that has been studied by
numerous authors for over a century (Michaud 1878; Allievi 1903). Water hammer occurs
when pipe flow is abruptly altered due to the opening or closing of valves. In such
cases, the boundary condition at the valve couples velocity and hydraulic head through
a nonlinear relation based on Bernoulli’s principle. Owing to this complexity, to the best
of our knowledge, no analytical solutions are currently available. Depending on whether
the valve closing or opening time is shorter or longer than the critical time, the closure
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is classified as sudden or slow. While for sudden closure the maximum pressure surge
reaches the well-known Joukowsky maximum value (Joukowsky 1898), for more realistic
slow manoeuvres the maximum surge is smaller and needs to be determined numerically.

In his pioneering work, Allievi developed a method for determining the exact time-
dependent behaviour of the hydraulic head at the valve for both sudden and slow
closures. This technique remains widely used in the design of piping systems and is
taught in standard hydraulics courses. Another well-established approach is the method
of characteristics for solving parabolic systems (Mei 1997). However, these techniques
rely on the numerical solution of equations that couple hydraulic head and velocity, and
therefore do not yield practical, explicit expressions.

Due to the inherent complexity of the governing equations, some authors have focused
on solving the water hammer problem by prescribing the velocity at the valve — a
reasonable assumption only in the case of sudden closures (Di Nucci et al. 2025). In
such cases, a linearised, space-dependent solution can be readily obtained via modal
expansions. Further extensions include the analysis of the effects such as frictional
damping (Urbanowicz et al. 2023b,c), accelerating pipe flow (Urbanowicz et al. 2023a),
pipe viscoelasticity (Bergant et al. 2008a; Mei et al. 2021), leakage (Bergant et al. 2008b),
column separation (Bergant, Simpson & Tijsseling 2006), turbulence (Di Nucci, Michele
& Di Risio 2024), polymer pipes (Yao, Kember & Hansen 2016) and two-dimensional
geometries (Ghidaui et al. 2005).

In this paper, we address the water hammer problem under slow valve manoeuvres by
applying a perturbation scheme, where the small parameter is the ratio of the critical
time to the valve closing or opening time. This enables us to decompose the nonlinear
problem into a sequence of linearised boundary-value problems, which we solve using
the Laplace transform. We extend the expansion to second order and obtain very good
agreement between the exact numerical solution derived from Allievi’s coupled equations
and the analytical results developed herein. Furthermore, we derive explicit space- and
time-dependent expressions for the hydraulic head at each order. These expressions enable
the estimation of maximum and minimum hydraulic head values as a function of Allievi’s
number and could likely be incorporated into design standards for engineering of pipe
systems.

2. Governing equations

Referring to figure 1, we consider a straight cylindrical pipe of length L and constant cross-
sectional area £2, connected to a reservoir of constant fluid depth. Let ¢ denote time and x
be the spatial coordinate oriented along the axis of the pipe, such that x = 0 corresponds
to the pipe inlet, while x = L marks the location of a nozzle. The nozzle terminates with
a cross-sectional area w (t), where w () < £2, and its length is assumed negligible relative
to L. A valve located at the end of the nozzle regulates w(¢), thus controlling the cross-
sectional average velocity U (x, t) within the pipe, which is defined as positive in the
rightward direction. The horizontal reference plane z =0 is set at the valve elevation,
while the free surface elevation within the reservoir is fixed at z = H. We assume that
the pipe diameter is small compared with its length L, that damping effects due to fluid
viscosity, turbulence and pipe-wall viscoelasticity are negligible, and that U < ¢, where
c is the constant wave speed in the pipe. The latter assumption is equivalent to assuming
small Mach numbers, Ma <« 1 (White 1991). Under these conditions, the continuity and
momentum equations can be expressed as
ou , oh

U oh
— 4 e—=0, — — =0, 2.1
or Sax axC T 1)
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Figure 1. Sketch representing the reservoir—pipe system.

where the hydraulic head h(x, t) is defined as h(x,t) =z(x) + p(x, t)/(pg), with g
denoting the acceleration due to gravity, z(x) the elevation of the pipe axis, p the fluid
density and p(x, t) the pressure.

By combining (2.1), we obtain the classical wave equations governing U and h

U U 3?%h  3%h
2 2
_ =0, - — —— =0. 2.2
oz a2 oz a2 (&=
At the inlet (x = 0), a constant hydraulic head & = H is imposed. Therefore
oh(x,t U (x, t
O, 1) = H Ol Wl o @3
at  |,—p 0x  |,—p

In this work, we address both valve opening and closure problems, and thus the initial
conditions differ based on the scenario considered. For the valve closure problem, we
assume a steady-state flow condition prior to closure, leading to the initial conditions
aU(x, 1) dh(x, 1)
at |y ot

=0, (2.4)

Ux,0)=Up= 2 /2gH, h(x,0)=H,
2 t=0

where Uy is constant and wy is the value of the cross-sectional area when the valve is fully
open. For the valve opening problem, we instead assume

aU(x, 1)
at

 dh(x, 1)

Ux,0=0, h(x,00=H,
=0 ot

=0, (2.5)
t=0

i.e. a zero initial velocity and a hydraulic head equal to the free surface elevation in the
reservoir. We now turn to the boundary condition at x = L. It is worth noting that most
classical models of water hammer phenomena assume valve closures or openings, where
the outlet velocity is directly prescribed. This modelling approach permits a complete
analytical solution, as presented in Di Nucci et al. (2025), and enables the recovery
of the well-known Joukowsky value as the maximum attainable pressure in the pipe
(Joukowsky 1898). However, this assumption is often unrealistic for two main reasons:
(i) in practice, valve operations occur over a finite time interval; (ii) the outlet velocity is
nonlinearly related to the local hydraulic head i (L, t) according to Bernoulli’s principle.
To this end, we assume that the cross-sectional area of the nozzle, w(t), evolves over time
according to

w()=awon(), te(,T], (2.6)
w)=won(T), t>T, 2.7
1021 A36-3
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where n represents the time sequence of the manoeuvre and 7T is the duration of valve
closure or opening manoeuvre, i.e. the opening ratio, and is defined by

nt)=a+pf(), te,T], (2.8)

where @ = 1, B = —1 for the valve closure problem and & = 0, 8 = 1 for the valve opening
problem, whereas f € [0; 1] is a positive function of time.
By applying Bernoulli’s principle, the boundary condition at the outlet x = L is given by

UL, )2 =w(t)/2gh(L,t), — U(é’ 2 =n(t) h(llil’ t). (2.9
0

Equation (2.9) is nonlinear and couples the variables U and h. The solution to (2.2),
subject to the initial and boundary conditions (2.3)—(2.9), can be obtained through the
method of characteristics (Mei 1997). The pioneering numerical Allievi method enables
the determination of velocity and pressure at the valve x = L (Allievi 1903). However,
these approaches typically require the implementation of a numerical scheme to resolve U
and & at each time step, thus losing physical insights into the parametric dependence.
Furthermore, to the best of the authors’ knowledge, a fully analytical solution to the
aforementioned problem has not yet been reported in the literature.

To find the analytical solution, we first introduce the following non-dimensional
quantities:

2t ct , X , U , h

t =—, =—, U=—, h=—, 2.10
o L 7L Us H (2.10)
where 6 =2L /c denotes the time required for a pressure wave to travel along the pipe
and return, commonly referred to as the critical time (‘durata di fase’ in Allievi 1903).
Assuming that f(¢) varies slowly with time, we introduce the small parameter

_9 «1 (2.11)

€=—=— , .

2 T
where St denotes the Strouhal number (White 1991). The assumption (2.11) implies a
slow valve manoeuvre, a situation of practical interest in many engineering applications.
Substituting (2.10) into (2.1) we get continuity and momentum equations in non-
dimensional form

au’  an au’  an’
+—=0, 2AIl + — =0, (2.12)

2A1
ot’ ox’ ox’ ot’

where Al = cUy/(2gH) is the Allievi number (Allievi 1903). To provide a clearer physical
interpretation of the Allievi number, we rewrite Al as
B ,ocUg _F
"~ 2pgHUy  2F;’

(2.13)

where F, = ,oUgc and Fy; = pgHUj denote the energy flux densities of the pressure waves
(Landau & Lifshitz 1989, Chapter 8) and of the base flow, respectively. Large values of Al
therefore are expected to give rise to substantial hydraulic head oscillations, a result that
will be confirmed mathematically later in this section.

1021 A36-4
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Equations (2.12) allow us to write the following boundary-value problem for A’

azh/ 82h/
— — —— =0, x'€(,1),¢ >0, (2.14)
ax’? 9r”?
h=1, x'€(,1),t=0, (2.15)
h =1, x'=0,t >0, (2.16)
an n oh 1 oK
sV S mer Taalaw =% Y =hIE0 @0

where the boundary condition (2.17) is obtained by combining the first of (2.12) and the
time derivative of (2.9). Since f is a slowly varying function of time we can write

n=a+pf'(t)e, te(0,2/el, (2.18)
where f = f’e. We are now in a condition to adopt a weakly nonlinear approach based on
a perturbation expansion in €. Specifically, we expand 4’ as

B =hy+eh) + €2l + 0(e). (2.19)

Substituting the expansion (2.19) into the governing equation and boundary conditions
(2.14)—(2.17), and Taylor expanding (2.17) about € = 0, we obtain a sequence of linearised
boundary-value problems up to order O (€2).

We now focus on the analytical solution of the hydraulic head 4’ at each order.

2.1. Leading-order problem
The boundary-value problem at the leading-order is given by

2 2
02h,  9%hy

A =0 X' €0, 1),7 >0, (2.20)
X
(=1, x'e(0,1),1=0, 2.21)
o=1, x'=0,t >0, (2.22)
an, 1 oh
@ oy - T0_g Y =1.¢>0. (2.23)

2y 01 2419

Since there is no forcing at this order, we obtain the straightforward solution ;= 1, which
corresponds to the steady-state hydraulic head in the absence of wave-like perturbations.

2.2. First-order problem
At the first order we obtain

82”1 82h/1 =0 "e (0 >0 2.24
ax/Z - at/z — Y% X e( 91)’t >V, ( . )
hll =0, x €0, 1),t =0, (2.25)
hll =0, x'=0,1>0, (2.26)

on, 1 M of’
— =2 o /:1’[/ 0. 2.27
o Ao = P g ~ 227

The boundary-value problem (2.24)—(2.27) is forced by the known time-dependent term
df’/dt’, which is the operator imposed speed at which the cross-sectional area changes
at the valve. We expect the first-order solution to be significantly different between the

1021 A36-5
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valve opening and closing cases because the term « is null or equal to unity, respectively.
The time-dependent solution of (2.24)—(2.27) can be found by first applying the Laplace
transform and its inverse (Mei 1997)

_ 00 , 1 atico
By (x',s) :/ eTh dd, h 1) =— / e’ k| ds, (2.28)
0 271 Ja—ico

where a is a positive constant, s is a complex variable and the path of integration is a
vertical line parallel and to the right of the imaginary axis in the complex s plane. Applying
(2.28) to the boundary-value problem (2.24)—(2.27), we obtain

3Py
5 = — 571} =0, x' € (0, 1), (2.29)
X
hy =0, X' =0, (2.30)
— 1 oW _
ash) + 8x1 =—2Bsf, x'=1, (2.31)

where we applied Laplace transform properties to time derivatives and resorted to the
initial condition h/1 (x,0)=0, f/(0) =0. Solution of (2.29)—(2.31) yields

, Al fatio fest sinh(sx’)
hy=—-B— - ds. (2.32)
i Ji—ico cosh(s) + a Al sinh(s)

The complex integral (2.32) can be solved once f’ is determined. We consider a linear
variation in the valve complete closure/opening manoeuvre and obtain

=t Lot LT 1/009,—”’/(1#— : (233)
T 2 2 Jo 2527 '

Substituting the latter into (2.32) yields
h/] _ _IBA_I /a+ioo est’ Sinh(sx’)' i
a—ico 82 [cosh(s) + oAl sinh(s)]

2mi
Let us first assume Al # 1. We find that there is a pole at the origin, s = 0, and a series of
poles at

(2.34)

1 .
sp =Re{s,} +ilm{s,} = 1log ()ﬂb +irx{2 tn, ifedl<l, nez,
2 I+ oAl n, if Al >1,

(2.35)
which are the complex roots of cosh(s) + a¢ Al sinh(s) =0. In the case of valve closure
(¢ =1), we have Re{s, } < 0, indicating that each pole corresponds to an oscillatory and
damped mode; the s, lie to the left of the imaginary axis. For the valve opening problem
(o =0), we obtain undamped oscillatory modes since Re{s, } = 0. Moreover, we note that
Im{s, } depends on the product o A/, which has important implications for the behaviour of
the solution, as will be shown later. To solve (2.34), we introduce a large semicircle to the
left of the integration path and apply both Jordan’s lemma and Cauchy’s residue theorem
to obtain

Ky =—BAl | x"+ i e sinh(s,x) 2.36)
= — X . '
: = s7 [sinh(sy) + oAl cosh(s,)]

1021 A36-6
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We note that this leading-order solution comprises two components: a series of oscillatory
modes with sinusoidal shape, and a time-independent term representing the contribution
from s = 0, obtained by expanding the integrand of (2.34) as a Laurent series. In addition,
from (2.35) it follows that, as Al — 0, the damping of the oscillatory modes decreases.
However, in this limit the hydraulic head oscillations are also reduced, since the solution
(2.36) scales with Al.

In the case of valve closure (o« = 1) with Al = 1, a different approach is required because
the poles s, shift towards Re{s} — —oo (see (2.35)). Therefore, we rewrite (2.34) as

1 a+ioco es(t/+x/—1) a+ioco es(z/—x’—l)
h/l = — / —— ds — / —— ds | . (2.37)
4\ Ja—ioo s a—ioo s

Since there is a single pole at s =0, we apply Jordan’s lemma and obtain the following
solution:

Ry==["+x' = DHE +x'—1) — (¢ —x' = DHE —x" = D], (2.38)

N =

where H denotes the Heaviside step function. Interestingly, when Allievi’s number is
exactly equal to unity, oscillatory modes are absent, and the hydraulic head increases
linearly with time and then remains constant for ¢’ > 2.

The first-order solution, given by (2.36) and (2.38), is now complete. To better
understand its behaviour, we examine the values of h/1 at the valve location, x’ = 1, and at
integer times ¢’ = 1, 2, 3, . . .. This analysis also enables us to derive an explicit expression
for (2.36) via series expansions of the hyperbolic functions (Gradshteyn & Ryzhik 2007).

For the valve closure problem, we obtain:

A1[1—AZ(A1—1)’z‘(Al+1)—’z“], '=1,3.5,....

/ AN /

W1, 1) = Y , (2.39)
AL = (S , /=246, .. ..

For Al < 1, expression (2.39) indicates that the maximum hydraulic head occurs at ' =
2 (i.e. t =0), when the first pressure wave reflects back to the valve. In this case, we find
h’1 (1,2) =2Al/(Al + 1). Conversely, for Al > 1, the expression shows that the maximum
value increases with each subsequent wave reflection at x” = 1, asymptotically approaching
the limiting value /] = Al. When Al = 1, the hydraulic head reaches its maximum value
h’l = Al at ¢ =2 and remains constant thereafter, consistent with the behaviour described
above.

A similar procedure, applied to the valve opening problem, yields

Al, '=1,3,5,....
hy(1,t) = ! 2.40
(1) —Al[l—(—l)Z], 1'=2,4,6,.... (240
Expression (2.40) shows that the hydraulic head reaches its minimum value, 7| = —2Al,
att'=2,6,..., while at t' =4, 8§, ... it returns to h/1 =0, which corresponds to a local

maximum.

1021 A36-7
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2.3. Second-order problem
The second-order boundary-value problem reads

3%h,  9%h) , ,
32 =0 e 1)1 >0, (24
hy =0, e 1), =0, (2.42)
hy =0, ¥=0,1>0,  (243)
on, 1 on, Coff LR\« O
g @ oM =1,/ >0, 2.44
o T A = ﬁ( Fras 8t’>+218t’ * g (244)

Given the time dependence of the forcing term in (2.44), we proceed as in § 2.2 and apply
the Laplace transform to 4. The solution for the second-order hydraulic head in integral
form is expressed as

, Al a+ioo F’ e sinh(sx’)
27 27 a—ico S [cosh(s) + a Al sinh(s)]

ds, (2.45)

where the transformed forcing term is given by

- /oo . MR CANR XA I 046
=), € - lat’ fat’ a2 at’ '

and is known from the first-order solution obtained previously. For the moment, we assume
Al # 1. The integrand in (2.45) can be rewritten as the product of two functions

1 at+ico
hy = — F'Fd 2.47
2= 271 i 247
where
—_ Al e’ sinh(sx'/) Y Z S’ sinh(s,x’)
s [cosh(s) + a Al sinh(s)] ‘ Sn [sinh(s,) + a Al cosh(s,)]’
(2.48)

Applying the convolution theorem (Mei 1997) leads to
t/
= / F'(t'—tHF'(z")dr’
0

Y i /t/ esn(t’_r/) sinh(s,x") s y a_f/ N f/ah/l N ah/ ah/ i
= Jo sn [sinh(s,) + a Al cosh(sy)] L7/ at’ 2 ot/

(2.49)

Expression (2.49) represents the generalised second-order solution of the hydraulic head.
An explicit solution of this integral can be derived by considering the linear variation of

1021 A36-8
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f with time (2.33). By substituting (2.36) in (2.49) we obtain

Alz = e 7 esnt, ¢
h Ay ! A — 8, e
n=—oo j_foo
es,,t/ _ esj-t/ st —st —1 E‘Y”t/t/z
(sj —sn) 2
aAls; | eSith — gsnt’ , eitst _ gsnt’
+— ey |+ Apb——— |1 (>
> |:x ( S; —5n nj T € Vnj Z Sk+5; —Sn
k=—o00
(2.50)
where
_ sinh(s,x") Snj=1, ynj =0, if n#£j. 2.51)
52 (sinh(s,) + a Al cosh(s,))’ 8nj =0, yuj =1, if n=j. :
If the Allievi number is equal to unity and the valve is closing (¢« =1, 8 = —1), the

convolution integral (2.49) modifies into

/

, 1t ., ., ,of’ ah 'y on .
hzzzfo [H(t—r)—H(t—r—2)]|:< F+f >+23 ]d , (2.52)

where we used a similar approach for the solution of (2.37) because the only pole is s = 0.
Substituting (2.38) into (2.52), we obtain the second-order hydraulic head for A/ =1 and
linear valve closure

hly = % [5#2 + (' =45 —HE —4) —2(t' —2)(5¢ — HH( — 2)] . (2.53)

Given the second-order solutions (2.50) and (2.53), we proceed as in the previous
section by evaluating the hydraulic head at x” = 1. Let us first consider the case of a closing
valve. Since h’2 represents the second-order correction, we evaluate (2.50) and (2.53) at
t' =2 and t’ — oo. Using series expansion formulas for hyperbolic functions (Gradshteyn
& Ryzhik 2007), and after some algebraic manipulation, we obtain

A2+ 3A0) . Al?

hy(1,2) =
2(1,2) >

For the opening valve case, we can proceed similarly to obtain
B5(1,2) =2AP, (2.55)

showing that the second-order contribution invariably leads to an increase in the hydraulic
head since expressions (2.54) and (2.55) are always positive.

2.4. Maximum and minimum values of hydraulic head at the valve

Let us now add the leading-order solution 2o = H, the first-order solutions (2.39)—(2.40)
and the second-order solutions (2.54)—(2.55) and evaluate corresponding maxima and
minima of A(L, t) for the closure and opening valve cases, respectively. We obtain in

1021 A36-9
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dimensional variables

h h(L,6 0AIl 0AI(2 +3Al
max _ (L,9) =1+ 2 Al2+34) , valve closure, Al €[0, A],
H H T(1+ Al) T(1+ Al)?
(2.56)
h h(L, 0Al 0AIl
max _ (L, ) =14+ —114+—1, valve closure, Al > A,
H H T 2T
(2.57)
hmin  h(L,0) 0Al 20 Al .
= =]1-—(2—-—/, valve opening, (2.58)
H H T T

where A is the Allievi number satisfying the condition 2 (L, 6) = h(L, oo) approximately
given by
8T +70
Al~ A= 3T 1350 (2.59)
which is slightly greater than unity and increases monotonically with 6/ 7. In other words,
if the valve is closing, maximum of hydraulic head occurs at t ~ 0 if Al € [0, A] and at
t — ooif Al > A.

Note that (2.56)—(2.58) are multiplied by 6/ T = € = St/2; hence, the larger the Strouhal
number, the greater the hydraulic head fluctuations, provided that St < 1. A similar
result was recently reported by Kurihara, Kiyama & Tagawa (2025), who conducted an
experimental campaign to investigate the pressure fluctuations of liquids in a column
subjected to short-time acceleration as a function of St.

Expressions (2.56)—(2.58) are of practical relevance and can be used to estimate the
maximum and minimum hydraulic heads and pressures at the valve in pipes subject to
slow valve manoeuvres. These results are novel and exhibit notable differences compared
with existing expressions found in the literature. For instance, (2.56) and (2.57) are much
more accurate than the widely known Allievi-Michaud approximation for a closing valve
(Michaud 1878; Allievi 1903; Marchi & Rubatta 2004)

Rimax 260 Al

=14+ —", 2.60
o +— (2.60)
which is extensively used in civil engineering design standards to obtain a first estimate of
the maximum hydraulic head in pipes in presence of water hammer effects caused by slow

valve closure.

3. Results and discussion

In this section, we first investigate the behaviour of the non-dimensional hydraulic head
h/H=1+ eh/l + ezh/z evaluated at x = L in the case of valve closure and a linear time-
dependent valve manoeuvre. Figure 2(a) shows the evolution of i#(L, t)/H versus non-
dimensional time 2z /6 for e =6 /T = 0.1 and three Allievi numbers Al =[0.5, 1, 1.5]. In
the same figure, we compare the analytical solution with numerical results obtained using
the scheme developed by Allievi (Allievi 1903), which gives the exact value of h/H at
the valve. The agreement between the curves is excellent, with almost complete overlap,
demonstrating the reliability of our analytical model and the correctness of (2.56)—(2.57).
The same figure shows that, when Al < 1, the hydraulic head reaches its maximum at t =
0, i.e. when the first shock wave returns to the valve. Using the theoretical approximation
(2.56), we estimate the corresponding value to be h,,,,/H ~ 1.069, which agrees well
with Allievi’s approach. The curve then oscillates about a value that can be approximated

1021 A36-10
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Figure 2. Non-dimensional hydraulic head at the valve versus non-dimensional time for e =60/7 = 0.1 and
various Allievi numbers Al =[0.5, 1, 1.5]: (a) valve closure and (b) valve opening cases.

by taking the limit of (2.36) and (2.50) as t — co. We obtain

m 1 ear s AT 31

t/gI;oH_ tedlt 2 7 3.1
which for Al =0.5 gives h/H ~1.051. When Al =1, h/H increases until t =6, then
slightly decreases until # =26 and remains constant afterwards. This behaviour is also
predicted by the explicit solutions (2.38) and (2.53). In this case, the maximum value
1S hyax/H = 1.106, and the asymptotic value is #/H = 1.105, as obtained from (3.1).
For a greater Allievi number, Al = 1.5, the curve increases monotonically and reaches a
maximum at large times. Using the theoretical approximation (2.57), we find A,/ H =
1.161, which is again consistent with figure 2(a).

In the valve opening case shown in figure 2(b), the results for Al =[0.5, 1, 1.5] agree
with the analytical prediction only for # < 26. At later times, the solution diverges owing
to the undamped oscillatory modes arising for &« =0 in the first-order mode solution
(2.36). This indicates that, for valve opening at sufficiently large Al, alternative methods
are required to capture the long-time dynamics. Nevertheless, the minima occurring at
t =6 are very well captured, allowing the minimum hydraulic head to be estimated
using (2.58). We obtain h,,;,/ H = [0.905, 0.820, 0.745] for Al =[0.5, 1, 1.5], values that
closely match those from Allievi’s numerical method.

We now analyse the maximum and minimum hydraulic head at the valve by comparing
the analytical results (2.56)—(2.58) with those obtained via Allievi’s procedure. Figure 3(a)
displays the maximum hydraulic head for the valve closure case using (2.56)—(2.57), for
€e=60/T =10.05,0.1, 0.15, 0.2] and Al € [0, 4]. The agreement between analytical and
numerical curves is excellent, further confirming the validity of the second-order theory.
In the valve opening case, figure 3(b) shows that, within the considered range of A/, the
agreement between the curves (2.58) and Allievi’s method is good only for small € < 0.1.
For 0.2 > € > 0.1, the theoretical model yields accurate results only when Al <2. We
point out that this result is consistent with the perturbation expansion (2.19), which remains
accurate provided that € < O (1) (Mei 1997).

4. Conclusions
We have presented a mathematical model for water hammer induced by slow valve
manoeuvres. The nonlinear governing equations were solved using a perturbation scheme
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Figure 3. (a) Maximum values of non-dimensional hydraulic head versus Allievi number A/ for the closing
valve case and (b) minimum values of hydraulic head versus Al when the valve is opening. The small
parameters are € =6/T =[0.05, 0.1, 0.15, 0.2].

combined with the Laplace transform, leading to explicit space- and time-dependent
solutions for the hydraulic head in the pipe. The leading-order problem corresponds to the
steady-state solution, while the first-order boundary-value problem yields wave-like modes
that are either damped or undamped, depending on whether valve closure or opening is
considered.

The analysis was extended to second order and compared with numerical solutions
obtained from Allievi’s model, which provides the exact solution at the valve. For closure
times larger than the critical time, the agreement between the analytical and numerical
results is excellent, confirming the reliability of the theoretical approach. In contrast,
during valve opening with large A/, the analytical solution remains accurate only at short
time scales owing to the undamped character of the first-order solution.

At this order of approximation, we also derived practical expressions for estimating the
maximum and minimum values of the hydraulic head at the valve. These expressions are
of significant engineering interest and may be adopted in the design of pipeline systems
as they provide improved accuracy over other widely used approximated formulas, such as
the classical Allievi—-Michaud approximation.

The current model assumes no fluid damping or viscoelastic behaviour in the pipes,
both of which are known to attenuate oscillations in the hydraulic head, particularly over
longer time scales. While these limitations are significant, they are not critical for design
purposes, as the first peak surge typically governs the design criteria. Furthermore, system
properties such as pipe cross-section and wave speed are treated as constant, although they
may vary spatially in practice. The impact of these variations will be examined in future
work.
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