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ANZAI AND FURSTENBERG TRANSFORMATIONS 
ON THE 2-TORUS 

AND TOPOLOGICALLY QUASI-DISCRETE SPECTRUM 

KAZUNORI KODAKA 

ABSTRACT. Let </>o be an Anzai transformation on the 2-torus T2 defined by (f)o(x,y) 
= (e2ni0x,xy) and fy a Furstenberg transformation on T2 defined by <j>f(x,y) = 
(e27[iex,e27Tif(x)xy) where 6 is an irrational number and / is a real valued continuous 
function on the 1-torus T. In the present note we will show that <f>f has topologically 
quasi-discrete spectrum if and only if ty is topologically conjugate to <J>Q. Furthermore 
we will show that for any irrational number 9 there is a real valued continuous function 
/ on T such that <j>f does not have topologically quasi-discrete spectrum but is uniquely 
ergodic. 

1. Introduction. Let 0 be a homeomorphism on a compact topological space X. 
We say that <j> is minimal if for any x G X the orbit {<t>n(x)}nez is dense in X. Hence it 
follows that iff: X —> C is a continuous function and X is connected and iff o <j> — / , 
then/ is constant. Two homeomorphisms <f>\ and 02 on X are said to be topologically 
conjugate if there is a homeomorphism ijj on X such that t/; o <j>\ — 02 o -0. 

Let C(X) be the C*-algebra of all complex valued continuous functions on X. For each 
homeomorphism <j> on X we consider the following sets: 

GTJWO = {A G C : A is an eigenvalue of </> and |A| = 1}, 

Gx{(j>) = {fe C(X) :fo(/) = Xffor some A G G0((/>) and |/| = 1}, 

Gj{<t>) = {geC(X):go$ =fg for some/ G G,--i(0) and |^| = 1}, 

f o r y > l . 
Their union U7>o G/W is known as the set of quasi-eigenfunctions of </>. The homeo­

morphism <j> is said to have topologically quasi-discrete spectrum if the C*-algebra gen­
erated by its quasi-eigenfunctions is C(X). It is easy to see that the property of having a 
topologically quasi-discrete spectrum is invariant under topological conjugation. 

Let 9 be an irrational number in (0,1) and/ a real valued continuous function on the 
1 -torus T. Let </>o be an Anzai transformation on the 2-torus T2 defined by 

<h0c9y) = (eMex9xy) 
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for any I J G T . And let fa be a Furstenberg transformation on T2 defined by 

fa(x,y) = (e2iri9x,e27rif(x)xy) 

for any x,y G T. By Rouhani [10] fa and fa are minimal and fa has a topologically 
quasi-discrete spectrum. 

In [10] Rouhani proposed the following question: For anyj = 1,2 let fa be a Fursten­
berg transformation on T2 and A(fa) the associated crossed product C* -algebra C(T2) x ̂  
Z. If A((j>\) is isomorphic to A(fa) and if </>i has topologically quasi-discrete spectrum, 
does it necessarily follow that fa has topologically quasi-discrete spectrum? 

In this note we attempt to shed some light on this question. 

2. Topological conjugation. Let/ and fa, fa be as in Section 1. 

LEMMA 1. We suppose that there is a real valued continuous function g onT such 
that 

g(x)-g(e2"l9x)=f(x)-JrTf(z)dz 

for any x G T . Then fa is topologically conjugate to fa. 

PROOF. Let ^ be a homeomorphism on T2 defined by 

^(x,y) = (e2ni71x,e27rig(x)y) 

for any x, y G T where 77 = Sjf(z) dz. Then by an easy computation we see that fa o ip = 
xp o fa. m 

LEMMA 2. We suppose that fa is topologically conjugate to fa. Then there is a real 
valued continuous function g on T such that 

g(x) - g(e2"iex) =/(x) - JTf(z)dz 

for any x G l 

PROOF. Since fa is topologically conjugate to fa, there is a homeomorphism 1/; on 
T2 such that fa o i/j = i/j o fa. By the Homotopy Lifting Theorem we can write ip as 

^(x,y) = ^y^e2niF](x,y)^m2yn2e27riF2(x,y)) 

for any x,y G T where ray, nj (j = 1,2) are integers and Fj (j = 1,2) are real valued 
continuous functions on T2. By a routine computation 

(fa o ^)(x,y) = (/>o(xmi/^27r/F,(^),JCm2/^27r/'F2(^v)) 

_ / 2m9^n\ n\ 2mF\{x,y) mi+m2 n{+n2 2m{Fx{x,y)+F2{x,y)}\ 

(I/J o fa){x,y) = V(e27n'*jc, é>27n/(x)xy) 

= ( v m | + m 2 v " i ^27r/{m|^+n1/U)+F](0fU,>'))} yn2+W2v«2^27r/{m2ô+«2/"(j!:)+F2(^/-U,>'))}\ 
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Since </>o o if; = ijj o fy, we obtain 

n \ xm\ n\ e27ri{9+Fi(x,y)} _ J(m]+n\ n, e2m{m]e+nlf(x)+F]((f)f(x,y))} 

(2) ymx+mi n]+n2e2ni{F](x,y)+F2(x,y)} _ ^n2+n2 n2 e2m{m29+n2f(x)+F2((l)f(x,y))} 

By (1) we see that n\ — 0 and that 

0 + Fl(x,y) = ml6 + Fl($f(x,y))+kl(x,y) 

where k\ is a Z-valued continuous function on T2. But since T2 is connected, k\ is a 
constant number. Hence we obtain that 

6 + Fi(x,y) = m{6 + F{ (</y(jt, v)) + k\. 

Furthermore since <j>f is measure-preserving, 

jf 2 Fx (x, v) dy dx = j ^ Fx ((f)f(x, v)) dy dx. 

Hence 0 = m\6 + k\. Since 0 is irrational, k\ = 0 and mi = 1. Thus we obtain that 

Fi(x,y) = Fi ((/>/(*, v)) 

for any x, y G T. Since <j>f is minimal and F\ is continuous, Fj = c, a real constant 
number. Since mi = 1, m = 0 and F\ = c, by (2) we see that ri2 = m\ — 1 and that 

(3) c + F2(x,y) = m26 +f(x) + F2(<f>f(x,y)) + k2 

where k2 is a constant integer. Since </y is measure-preserving, 

J^2 F2(x,y)dydx = j ^ 2 F2 (</>/(*, y )) dxdy. 

Thus 
c = m29 + / f(x) dx + k2 = m26 + r] + k2 

where r\ — JTf(x)dx. Let g(x) — JT F2(x,y)dy. Then g is a real valued continuous 
function on T, and 

/T F2(<f>f(x, yj) dy = JT F2(e
Mex, e^xy) dy 

= jTF2(e
2"iex,y)dy = g{e2mex) 

since d(e2*if{x)xy) = dy. Therefore by (3) we obtain that 

c + g(x) = m2e +f(x) + g(e2lrif>x) + k2. 

Furthermore since c = m29 + r] + k2, we see that 

Thus 

r) + g(x)=f(x)+g(e2*iex). 

g(x)-g(eMex)=f(x)-V 

for any x G T. 
Combining Lemmas 1 and 2 we obtain the following theorem; 
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THEOREM 3. Letf and </>o, </)/ be as above. Then <j)f is topologically conjugate to c/>o 
if and only if there is a real valued continuous function g onT such that 

g(x) - g(eMex) =f(x) - jrf(z)dz 

for any x Ç l 

3. Topologically quasi-discrete spectrum. In this section we will show that <j>f has 
topologically quasi-discrete spectrum if and only if </>/• is topologically conjugate to </>o. 

LEMMA 4. Let ty and </>Q be homeomorphisms on T2 defined in Section 1. We suppose 
that (j)f is not topologically conjugate to ()>Q. Then <j>f does not have topologically quasi-
discrete spectrum. 

PROOF. By the proof of Rouhani [10, Theorem 2.1 ], 

G[((j)f) = {au : k G Z \a\ = 1} 

where u(x, y) = x for any i j G l 
Since the C*-algebra generated by u is not all of C(T2), to show </>y does not have 

topologically quasi-discrete spectrum it will suffice to check that there is no h G C(T2) 
with \h\ = 1 satisfying that hoty = auhh, where \a\ — 1 and k is a non-zero integer. (If 
k = 0, then h is just an eigenfunction.) 

So we assume that for some k ^ 0 there is a solution h G C(T2) such that hoty = auhh 
and \h\ — 1. By the Homotopy Lifting Theorem we can write h as 

h(x,y) = xmyne2niSix^ 

where m, n are integers and S is a real valued continuous function on T2. Then since 
ho (j)f = aukh, we see that n = k and that 

e27Ti{S(<f>f(x,y))-S(x,y)+kf(x)} _ ae-2mm9 

Since the right hand side is constant, we obtain that 

S(fy(x,y))-S(x,y) + kf(x) = c 

where c is a real constant number. In the same way as in the proof of Lemma 2, we see 
that 

frf(x)dx=jc. 
Furthermore for any x G T let 

1 r 
£(•*)= -j^JTS(x,y)dy. 

Then g is a real valued continuous function and 

g(e2viex)-g(x)+f(x)=^. 

Since | = Jjf(z) dz, we obtain that 

g(x) - g(e2*ldx) =f(x) - JTf(z)dz. 

By Theorem 3 </>/ is topologically conjugate to fo. This is a contradiction. Therefore <j>f 
does not have topologically quasi-discrete spectrum. • 
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COROLLARY 5. Let f and </>f, </>o be as above. Then <j>f has topologically quasi-
discrete spectrum if and only if(f)f is topologically conjugate to (J)Q. 

PROOF. This is immediate by Lemma 4. • 
For y — 1,2 let <j>j and A(<j>j) be as in Section 1. If (f>\ and <j>2 have topologically quasi-

discrete spectrum, A(</>i) = A(</>2) by Corollary 5. 
It is natural that we consider the following question: Let </>Q and <j>f be as in Section 1. 

LetA((/>0) = C(T2)x^0ZandA(</y) = C(T 2)x^Z be the associated crossed product C*-
algebras. Is there a Furstenberg transformation </y satisfying that A(<j>f) is not isomorphic 

toA(0o)? 
In the next section we will see that many Furstenberg transformations are not conju­

gate to Anzai transformations. 

4. Furstenberg transformations without quasi-discrete spectrum. In [10] Rou-
hani constructed a Furstenberg transformation which does not have topologically quasi-
discrete spectrum but is uniquely ergodic for a Liouville number 9. 

In this section we will construct a Furstenberg transformation <j>f which does not have 
topologically quasi-discrete spectrum but is uniquely ergodic for any irrational number 
9. 

Since 9 is irrational, we can choose a strictly increasing sequence {«/}j2i of positive 
integers such that 

\e2vin'9-l\ < T forj> 1. 

Let {an}%L_OQ be the sequence defined by 
1(1 -e2ninj6^ ft n = n. 

}(1 -e-
2*inJ9) ifn = -nj 

. 0 elsewhere. 

For any x E T let/(jc) = E£L_oo anx
n. Then for n — ±rij. 

\a I - III -e2™A < I 
j r 

Hence the series E£L_oo anXn converges uniformly and / is a real valued continuous 
function on T. We note that Jjf(z) dz — 0 since «o = 0. 

LEMMA 6. Let {w/lj^p {an}%L-oo andf be as above. We consider the equation 

g(x)-g(e2«wx)=f(x) (xeT). 

Then the above equation has a real valued L2(T)-solution g but no real valued C(T)-
solution. 

PROOF. Let {bn}^-^ be the sequence defined by 

bn=lj Xn = ±nj 
{0 otherwise. 
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For any x 6 T let g(x) = T^L-coKx". Then the series E^L_oo^x" converges with 
respect to the L2-norm. Hence g is a real valued function in L2(T). And by a direct com­
putation 

g(x)-g(e27ri9x)=f(x) (a.e.xGT). 

Furthermore in the same way as in the proof of Rouhani [10, Lemma 2.3] the above 
equation has no real valued C(T)-solution. • 

THEOREM 7. Letf be as in Lemma 6. Let </>/ be the homeomorphism on T2 defined 
by 

(t>f(x,y) = (e27Ti9x,e27rif{x)xy) 

for any x,y G T. Then </y does not have topologically quasi-discrete spectrum but is 
uniquely ergo die. 

PROOF. It is clear that </>y is uniquely ergodic by Rouhani [10, Proposition 2.5] and 
Lemma 6. Moreover by Theorem 3, Corollary 5 and Lemma 6, we see that </y does not 
have topologically quasi-discrete spectrum. Therefore we obtain the conclusion. • 
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