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Abstract

A linear programming model for optimally assigning diameters to a gas
pipeline network is discussed. Computational results for a real life situation
are presented, and certain properties that have to be satisfied by an optimal
assignment are derived.

1. Introduction

This paper is concerned with a gas pipeline network that transports gas from a set
of wells to a factory prior to dispatch along a main trunk line. In designing such a
network several stages can be distinguished. Firstly, one has to determine the
configuration of the network; in other words, one has to decide how the wells
and the plant will be connected up and which junction nodes, where pipes are
jointed together, have to be inserted, as junctions do not necessarily occur at the
wells. This is called the configuration problem. Then the exact position of the
junction nodes has to be established: the junction location problem. Finally, the
diameter of each of the links has to be determined: the diameter assignment
problem. This last problem is the subject of this paper. In another forthcoming
paper [2] by the same authors the first two problems are addressed, however in a
slightly less general context than that adopted here.

The problem considered here is thus: given a number of wells, for each of which
a forecast of the output gas flow is available over a number of years, and given
the configuration and position of the pipeline network, how does one select the
diameters of each of the links such that the total cost of the network is minimized.
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The pipeline diameters will determine the pressure drops between the plant and
each of the wells. The constraints on the diameters are caused by the restriction
that these pressure drops are not allowed to exceed a certain limit: the gas has to
arrive at the plant at a certain pressure and there is a maximum for the pressure
at which the gas can be delivered at the wells. The diameters are selected from a
finite set of possible diameters, for each of which the cost per mile is given. But
it is possible for a link to consist of sections of different diameters connected in
series.

It will be assumed throughout this paper that the network under consideration
is a tree; in other words, that it contains no meshes. The justification for this
restriction can be found in [2], where it is proved that under certain reasonable
conditions the optimal configuration is a tree network.

This study was initiated by an investigation of the Moomba gasfield in the desert
centre of Australia; the Delhi Corporation provided us with the necessary data.

The paper presents a linear programming model for the diameter assignment
problem which results in an efficient algorithm for finding the optimal diameters;
computer time for handling a real world situation is a few seconds. In addition
some properties of optimal diameter assignments are derived.

(i) At most two pipe sizes are used for one link.

(ii) Under fairly general conditions the following result holds: if for any link
two pipe sizes are used, then they must be of consecutive sizes.

(iii) If the specific gravity of gas is the same for all wells then there exists an
optimal diameter assignment in which diameters do not decrease in the direction
of flow.

Papers that deal with pipeline construction are Rothfarb e al. [S] and Zadeh [7].
They, however, consider an offshore pipeline system, for which junctions other
than at existing well rigs are not possible and only one time period. Both Rothfarb
et al. and Zadeh use for the optimal assignment of diameters a dynamic program-
ming approach and Zadeh has also used a minimum cost flow approach.

2. Basic concepts and definitions

Flow formula

In the design of gas pipeline networks the formula used to describe the flow of
gas through pipelines is of vital importance. There exist empirical formulae giving

the pressure square drop per unit length of pipe as a function of flow, specific
gravity and diameter:

B =1asa), M
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where
q = rate of gas flow,
s = specific gravity of flowing gas,
! = length of the pipe,
d = internal diameter of the pipe,
pp = pressure square drop between the ends of the pipe.
All variables ¢, s, d, pp and | are nonnegative.
We are not going into the experimental details of deriving the formula /. We
assume that fis a given monomial:

.5, d) = M" s® @)

where M, oy, ap oy are positive constants. The value of M depends upon the units
of measurement used.

Of the existing empirical formulae, we have used, for our numerical compu-
tations, the Weymouth formula which is popular for the range of pressures we
have to deal with,

2
Weymouth formula: =f(q.s,d) = dm/a Q)

The value of M, for the units we use, is given with the computational results.
To maintain generality, we will, where possible, use the general form (2) of the
monomial f instead of the specific formula (3).

Tree networks

The elements of a tree network are:
A: The nodes of the tree, which can be classified as follows:
(1) the set N; = {0, 1, ..., m} which includes the plant (0) and the wells;
(2) the set N, of extra junction nodes where different pipe sections are
joined together.
We define N = N;uN and N = N\{0}.
The positions (x(i), ¥(i)), i€ N, are given.
B: The links of the tree which can be specified by defining a predecessor function

a: N> N.
The set of links is thus
A, = {(a(),i)]ieN}.

The function @ must be such that the graph [N, 4,] contains no meshes.
The set of successor nodes of node i is defined by

B(i)={jeN|a(j) =i} for all ieN,
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and
6 = {jeN|B()) = 0}

denotes the set of extremal nodes of the tree. Note that §< N,: all extremal
nodes are wells.
The diameters of each link of the network are selected from a finite set:

D ={dy,dy,...,d,)}.

For each de D a cost per unit length C(d) is specified. C(d) is always a
monotonically increasing function of d.
Finally, we define

1) = [(x() — x(a()))?+ () — W@,

the length of link i. The values of /(i) can be calculated directly from the
given data.

Flows and pressures

The following values are given:

Py—a fixed pressure at which the gas must be delivered at the plant, and

P,—the maximum pressure at which gas can be provided at the wells.

Let a period of T years be considered. For year ¢, t = 1,2, ..., T, we define:

Q(i, t)—rate of flow of gas produced at well i in year ¢, where i€ N,\ {0},

S(i, t)—specific gravity of gas produced at well i in year ¢, where i€ N,\{0},

q(i, t)—rate of flow of gas in link (a({), ) in year ¢, where i N,

s(i, t)—specific gravity of gas in link (a(i), {) in year 1, where ie N,

p(i,ty—pressure at node i in year ¢, where i€ N,

pp(i, t)—pressure square drop on link (a(i), i) in year ¢, where i€ N.

Thus, pp(i, t) = p*(i, t) — p*(a(i), 1).

For each link (a(i),i) € A,, for every year t = 1,2, ..., T, the flow rates are given
by

q(i,t) = Q(,t), for extreme nodes i€,

g, )= % q(j,1)+0QG,1), ifi¢d
je B(1)
and the specific gravities are
s@, 1) = S@,t), ifieh,
s ) =1 X (09U, )+SE ) QG X q(j, )+ Q3 0)), if i¢.
je B(i) je B{1)

The pressure constraints the network has to satisfy are the upper bound on
pressure square drop. By (1), the pressure square drop on link (a(i), i), in year ¢,
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is given by
pp(i, 1) = 1()) f(q(i, 1), (i, 1), (i)

As lengths, flows and specific gravities are given quantities, the diameter of a link
determines the pressure square drop. The diameters have to be chosen such that
for every extreme node i€ 6,

I.‘
> pp(i,t)SP}—P2, fort=1,..,T, 4
j=1

where 0 = iy, iy, ..., i, = i is the path linking i with 0. Because the network is a
tree with the plant i = 0 at its origin, each of the other nodes can be reached from
0 by exactly one path.

3. Linear programming model

Instead of requiring the entire length of a link to be of the same diameter, we
can assign to a link sections of different pipe sizes connected in series. The model
we now present has the facility to do this.

The decision variables are defined as

8(d, i): proportion of length of link (a(i), i) that has diameter de D.
These variables must satisfy

S, 8(d,i)=1, forallieN,
deD (5)
8(d,i) =0, forallid.

For every extreme node i€ 6, let
0 = igyigy iy =i

be the path linking i with 0. Using (1) and (2) we can express the pressure square
drop on link (i;_y, ;) in terms of the variables 8(d, i;) as follows:

pp(ij9 t) = r(ija t) Z (8(d’ ij)/das)’
de D

where
r(i;, 1) = Mg™(iy, t) s°2(iy, £) 1(3;).

As the quantities r(i;, t) are known, the pressure constraints can be expressed as
linear constraints in the 8’s:

3 3 8(d,i)) (G 1)/d*) < P2— P, ©)
§=1 de D

We get one such constraint for each i€ 8 and for each re{l,...,T}.
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The total cost of the network can also be expressed linearly in the 8's:
cost= 3, ¥ C(d)I{)8(d,i). 0]
ieN deD

An optimal diameter assignment is therefore found by solving the linear program:
Minimize (7) under the constraints (5) and (6). We will call this linear program LP.
The number of variables in this program is the number of links multiplicd by the
number of possible diameters. The number of constraints is the number of extreme
nodes multiplied by the number of years considered.

If each link is required to have one diameter over its whole length then we must
add the constraint:

8(d,i)=0o0r1

and the problem turns into a 0-1 program. We call this integer program IP.

4. Moomba gas field: computations

The models have been tested on data from the Moomba gas field in the South
Cooper Basin in the desert of Australia. This gas field, consisting of 13 gas wells,
is being developed and is spread over an area of about 4000 square miles. A map
of the gas wells is given in Fig. 1. A network of pipes has to be constructed to

1.2-Moorari
11-Fly Lake
[ ]

°
10—-Tirrawarra

[
9 - Merrimelia

0—MOOMBA 2—-Della L/Dullingcri
®  PLANT ¢ P 7-Epsilon
5 .
1-Big Lake ~Burke  3_poseneath
[ J

13—Daralingi
P arafingte 3—Toolachee

L] ®
6 —Brumby

Fig. 1. Moomba gas field: location of the wells.
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transport gas from the wells to the factory prior to entry into a trunk main for
onward transmission. The critical gas wells which are now under active consider-
ation are the wells numbered 0 to 8. We restrict our computational results to this
section of the gas field.

The data relating to the Moomba field are given in Tables 1, 2 and 3. The units
used are: flow in cu. ft per 24 hours, pressure in Ib per sq. inch absolute, length
of links in miles, diameter of pipes in inches. An estimated rate of raw gas
production during the years 1975-89 is given in Table 1. The full well stream

TABLE 3

Pipeline dimensions and costs

Internal diameter Pipe cost

Pipe size (inches) ($/mile)
1 4.000 28 200
2 6.125 40 500
3 8.001 50 080
4 10.136 59,200
5 12.062 73 680
6 13.250 100 800
7 15.250 135 680
8 17.250 176 220
9 19.188 222 000
10 21.124 250 800
11 23.062 281 760
12 25.062 314 600
13 27.000 339 000
14 28.876 364 000
15 30.876 388 000
16 32.876 411 000
17 34.750 431 000
18 36.750 451 000
19 38.750 470 000

gas compositions for the various wells and the specific gravities of the components
are given in Table 2. The specific gravity of emerging gas is the weighted specific
gravity of the components.

The pressure limits P, and P; are given to be 1115 and 1185 1b/sq. inch respec-
tively. There are 19 pipe sizes, each size being characterized by its internal diameter
and the associated cost per mile. This is given in Table 3.

The Weymouth formula is

p g°s
T =flg,5,d) = MW*'
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The constant M is given by

M= i)

where

T is absolute temperature of flowing gas (°F + 460),

T, is standard absolute temperature,

P, is standard pressure (Ib per sq. inch absolute).
These constants are in our case T, = 520, T = 560 and P, = 14.65. The computer
we use is a C.D.C. Cyber 173.

Results for linear and integer programming models

To solve the linear program LP and the integer program IP, we used APEX III,
a large Control Data Corporation Linear Programming package at the University
of Adelaide. APEX III has mixed integer facilities and uses a branch-and-bound
technique for integer programming. We solved both LP and IP, for a wide variety
of trees, both for T'= 1 (the year 1986) and also for T = 10 (the period 1980-89).

We would like to mention here that for all optimal diameter assignments we
obtained by solving LP, diameters never decreased in the direction of flow.

Example 1

The tree is given in Fig. 2. Table 4 gives the cost of this tree and the time taken
by the programs when 7 = 1 and when T = 10. The lengths of the links and the
various diameters assigned by the various programs are given in Table 5.

oN
o~
o

3 6

Fig. 2. Tree considered for diameter assignment in example 1.
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Minimum cost of network and time taken to compute optimal assignment of example 1

Number Cost of network Time taken
of years Program (¢)) (CP sec)
T=1 LP 36 118 307 2.1
IP 36 429 252 16.3
T=10 LP 37793435 4.1
P 38 041 214 23.1
TABLE 5

Pipe sizes assigned to links of tree in example 1

Pipe sizes assigned to link or proportion of link

Length T=1 T=10
of link
Link (miles) LP 1P LP IP
©,1) 9.71 13 14 15 (66%;) 16
16 (34%)
©, 2) 25.89 17 (59%) 18 17 (18%) 18
18 (41%) 18 (82%)
1,3) 33.18 11 27%) 12 13 13
12 (73%)
2,4 17.43 13 13 13 13
3, 6) 12.21 6 5 6 6
“,5) 2.84 12 14 11 10
5,7 11.67 10 9 9 (29%) 10
10 (71%)
7, 8) 5.83 4 4 4 4
TABLE 6

Minimum cost of network and time taken to compute optimal assignment of example 2

Number Cost of network Time taken
of years Program ¢)) (CP sec)
T=1 LP 32964110 3.87
1P 33515679 17.73
T=10 LP 34 559 858 10.4
IP 35131750 54.33
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Example 2

Tables 6 and 7 give the corresponding results for the tree in Fig. 3.

Sita Bhaskaran and Franz J. M. Salzborn

[12]

For using APEX III the data have to be in MPS format as required by the

TABLE 7
Pipe sizes assigned to links of tree in example 2

Pipe sizes assigned to link or proportion of link

Length T=1 T=10
of link
Link (miles) LP 1P LP IP
©,9) 4.46 19 19 19 19
®,1 7.51 4(7%) 5 8 (51%) 9
5(93%) 9 (49%)
o, 10) 16.59 19 19 19 19
(10, 2) 7.13 10 (94%) 11 10 (1%) 11
11 (6%) 11 (99%)
(10, 11) 13.36 19 18 19 19
1L 3 12.97 9 (18%) 10 10 (34%) 11
10 (82%) 11 (66%)
(11, 12) 5.26 16 16 15 (35%) 16
16 (65%)
(12, 4) 8.89 9 (35%) 10 10 (78%) 10
10 (65%) 11 (22%)
(12, 13) 7.69 11 12 11 12
4, 5) 2.84 7 7 7 8
(13, 6) 10.30 5 5 5 5
(13,7) 14.09 9 (58%) 10 9 (57%) 9
10 (42%) 10 (43%)
(7, 8) 5.83 4 3 4 5
Om_g 2 L
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system and this involves calculating the various coefficients in the linear program-
ming model. Thus a matrix generator program has to be used to solve LP and IP.
The time taken for matrix generation varies between 1 and 2 sec for T'=1, and
between 3 and 10 sec for T = 10. This time is not included in the execution times
given in the tables.

In example 2, the one with the most variables, we only have 133 variables;
even much larger problems can be solved, when considering the LP only, which is
usually all that is required in practice. Neither storage space required nor compu-
tation time appears to be a difficulty in applying this model to practical situations.

5. Properties of an optimal diameter assignment

Although the computer program described in the previous sections will produce
the optimal set of diameters, it may be useful to gain some insight into the character-
istics of an optimal assignment, In this section we therefore state and prove some
generally valid properties, which seem to us to be of importance.

We define the average diameter d of a link (a(}), /) by

1/de = 3 (1/d*) 3, j).
de D

Thus, a pipeline with diameter d would give the same pressure square drop on link
(a(j),j) as the combination of pipes with diameter d on a fraction 8(d,;) (for all
de D) of the length of the link.
The cost per unit length, C(d), corresponding to the average diameter d of link
(a(/),J) is given by
Cd)= 3 C(d)8(d,)).
deD

1. In an optimal diameter assignment at most two pipe sizes are used for one link.

Consider the link (a(j),j) and the corresponding optimal diameter selection
{8*(d,))}. We will show that the set

{de D|8*(d,j) +# 0}

contains at most two elements.
The average diameter d of the link is given by

1/d® = 3 (1/d>) §*(d,)).
deD

Therefore, for link (a(y),j), {8*(d,j)} must be a solution of the following linear
program in variables {6(d, )}, de D:

minimize Y, C(d)I(j) 8(d,j)
deD
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subject to
3 (1/d*) 8(d, j) = 1/d°s,
deD
8
% s =1, ®
deD
with

8d,j)>0, deD.

Because the cost row is not proportional to either of the constraint rows, the
minimum cannot occur at a non-basic feasible solution of (8). Hence, the minimum
occurs only at a basic feasible solution of (8). Thus, an optimal solution has at
most two non-zero 8(d,j)’s.

2. If C(x~Y'*3) js a discretely strictly convex function of x, where
xe{dyo,d;o, ..., d;%},

then the following property holds: If for any link, two pipe sizes are used in the
optimal assignment, then they must be of consecutive diameter sizes.

Consider link (a(j),7) and let the corresponding optimal diameter selection have
8%(d,/)#0, 8*(dy,/)#0. Let 8= 8*(d,,j). Then 1—38 = 6*(d,,j). The average
diameter d of the link is given by

1/des = 8/des+(1 — 8)/dp.

Therefore, for link (a(j),j), the diameters d;,d, must be the solution of the
following problem:
minimize 8C(d)+(1 —8)(Cd,),

where 8 is given by 8/d%s+(1— 8)/dgs = 1/d* )

If C(d) is a discretely strictly convex function of d —* {or, equivalently, if C(x~1/%)
is a discretely, strictly convex function of x, where x e{d™, ...,d;*%}) it is obvious
from (9) that it is cheapest to choose d;,d, as the consecutive diameters between
which d lies.

The condition that C(x~1/2) is a discretely, strictly convex function of x is not a
restrictive condition as we now show. This condition is satisfied

(i) if a cost function C(d) = Kd#, where K, u are positive constants, is considered,

or

(ii) if C(d) is a convex increasing function of d.

Finally, we note that for the data we use in Section 4 the condition is also
satisfied.
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3. If the specific gravities are the same for all wells then there exists an optimal
diameter assignment in which diameters do not decrease in the direction of flow.

The proof of this property, which has been omitted to limit the length of the
paper, can be found in [1}.

6. Conclusions

The algorithm presented here provides an efficient method for finding optimal
diameters for a gas pipeline problem and can handle networks of a practical size
with little effort. It can therefore be used repeatedly and one can experiment with
a large number of trial geometries for the network. The algorithm will give the
best diameter and the minimum cost for the geometry considered in a few seconds.

Of course one would like to have a method, other than trial and error, to help in
finding the best geometries. An efficient algorithm to find the optimal location of
junction points is discussed in [2]; however, the configuration problem is still
largely unsolved.

Pipelines are not usually built all at the same time, but over a period of time,
as the wells come on stream. The approach used in this paper, to consider the
whole pipeline system simultaneously, is therefore a bit unrealistic. Some of the
costs are incurred in the future, and one may think of discounting them; it may be
cheaper to install two parallel pipes at different times instead of one broader pipe
right in the beginning; in general, the whole question of timing the construction
of the network has then to be considered. It might also then be economical to
install compressors at strategic points in the network to boost the pressure of
gas. This gives rise to problems that need quite different models and solution
methods to those presented here. But it may well be that the complexity then
becomes such that any attempts to apply mathematical optimization techniques
will produce few practical, meaningful results.
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