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A ROBUST EFFECT SIZE INDEX
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Effect size indices are useful tools in study design and reporting because they are unitless measures
of association strength that do not depend on sample size. Existing effect size indices are developed for
particular parametric models or population parameters. Here, we propose a robust effect size index based
on M-estimators. This approach yields an index that is very generalizable because it is unitless across a
wide range of models. We demonstrate that the new index is a function of Cohen’s d, R2, and standardized
log odds ratio when each of the parametric models is correctly specified. We show that existing effect size
estimators are biased when the parametric models are incorrect (e.g., under unknown heteroskedasticity).
We provide simple formulas to compute power and sample size and use simulations to assess the bias
and standard error of the effect size estimator in finite samples. Because the new index is invariant across
models, it has the potential to make communication and comprehension of effect size uniform across the
behavioral sciences.
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1. Introduction

Effect sizes are unitless indices quantifying the association strength between dependent and
independent variables. These indices are critical in study design when estimates of power are
desired, but the exact scale of newmeasurement is unknown (Cohen, 1988), and in meta-analysis,
where results are compiled across studieswithmeasurements taken on different scales or outcomes
modeled differently (Chinn, 2000; Morris and DeShon, 2002). With increasing skepticism of sig-
nificance testing approaches (Trafimow and Earp, 2017; Wasserstein and Lazar, 2016; Harshman
et al., 2016; Wasserstein et al., 2019), effect size indices are valuable in study reporting (Fritz et
al., 2012) because they are minimally affected by sample size.

Effect sizes are also important in large open source datasets because inference procedures
are not designed to estimate error rates of a single dataset that is used to address many different
questions across tens to hundreds of studies. While effect sizes can have similar bias to p-values
when choosing among multiple hypotheses, obtaining effect size estimates for parameters speci-
fied a priori may be more useful to guide future studies than hypothesis testing because, in large
datasets, p-values can be small for clinically meaningless effect sizes.

There is extensive literature in the behavioral and psychological sciences describing effect
size indices and conversion formulas between different indices (see e.g., Cohen, 1988; Borenstein
et al., 2009; Hedges and Olkin, 1985; Ferguson, 2009; Rosenthal, 1994; Long and Freese, 2006).
Cohen 1988 defined at least eight effect size indices for different models, different types of
dependent and independent variables, and provided formulas to convert between the indices. For
example, Cohen’s d is defined for mean differences, R2 is used for simple linear regression, and
standardized log odds ratio is used in logistic regression. Conversion formulas for some of these
parametric indices are given in Table 1 and are widely used in research and software (Cohen,
1988; Borenstein et al., 2009; Lenhard and Lenhard, 2017).
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Table 1.
Effect size conversion formulas based on derivations from the robust index under homoskedasticity.
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Each row denotes the input argument and the column denotes the desired output value. Robust versions of
classical values can be obtained by computing them as a function of Sβ . π1 and π0 denote the population

proportions of each group for a two sample comparison. d is Cohen’s d , f 2β is Cohen’s effect size for

multiple regression, R2
β is the partial coefficient of determination, Sβ is the robust index. The variables

without subscripts denote the value for the full model including covariates. Conversion formulas derived
by the robust index match classical formulas (Cohen, 1988; Borenstein et al., 2009; Lenhard and Lenhard,
2017)

Several authors have proposed robust effect size indices based on sample quantiles (Zhang
and Schoeps, 1997; Hedges and Olkin, 1984). These are robust in the sense that they do not
assume a particular probability model; however, they are defined as parameters in the sense that
they are a specific functional of the underlying distribution.

Despite the array of effect sizes, there are several limitations to the available indices: 1) there
is no single unifying theory that links effect size indices; 2) as defined, many effect size indices
do not accommodate nuisance covariates or multivariate outcomes; and 3) each index is specific
to a particular population parameter. For example, Cohen’s d is designed for mean differences in
the absence of covariates, correlation is specific to linear regression, and existing semiparametric
indices are quantile estimators. For these reasons, these classical effect size indices are not widely
generalizable because their scale is dependent on the type of parameter.

In this paper, we define a new robust effect size index based on M-estimators. M-estimators
are parameter estimators that can be defined as the maximizer of an estimating equation. This
approach has several advantages over commonly used indices: a) The generality of M-estimators
makes the index widely applicable across many types of models that satisfy mild regularity
conditions, including mean and quantile estimators, so this framework serves as a canonical
unifying theory to link common indices; b) the sandwich covariance estimate of M-estimators
is consistent under model misspecification (MacKinnon and White, 1985; White, 1980), so the
index can accommodate unknown complex relationships between second moments of multiple
dependent variables and the independent variable; c) the robust effect size index is directly related
to the Wald-style sandwich chi-squared statistic and is formulaically related to common indices.

Here, we describe sufficient conditions for the new effect size index to exist, describe how it
relates to other indices, and show that other estimators can be biased undermodelmisspecification.
In three examples, we show that the new index can be written as a function of Cohen’s d, R2, and
standardized log odds ratio, demonstrating that it is related to indices that were developed using
intuition for specific models. In addition, we describe how to obtain a simple estimate of the index
and provide functions to compute power or sample size given an effect size index and degrees of
freedom of the target parameter. Finally, we use simulations to assess the bias and standard error
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of the proposed index estimator. An R package to estimate the index is in development; the latest
release is available at https://github.com/simonvandekar/RESI.

2. Notation

Unless otherwise noted, capital letters denote vectors or scalars and boldface letters denote
matrices; lower and upper case greek letters denote vector andmatrix parameters, respectively. Let
W1 = {Y1, X1}, . . . ,Wn = {Yn, Xn} be a sample of independent observations fromW ⊂ R

p with
associated probability measure G and let H denote the conditional distribution of Yi given Xi .
Here,Wi denotes a combination of a potentiallymultivariate outcome vector Yi with amultivariate
covariate vector Xi .

Let W = {W1, . . . ,Wn} denote the full dataset and θ∗ �→ �(θ∗;W ) ∈ R, θ∗ ∈ R
m be an

estimating equation,

�(θ∗;W ) = n−1
n∑

i=1

ψ(θ∗;Wi ), (1)

where ψ is a known function. � is a scalar-valued function that can be maximized to obtain the
M-estimator θ̂ . We define the parameter θ as themaximizer of the expected value of the estimating
equation � under the true distribution G,

θ = arg max
θ∗∈�

EG�(θ∗;W ) (2)

and the estimator θ̂ is
θ̂ = arg max

θ∗∈�
�(θ∗;W ).

Assume,
θ = (α, β), (3)

where α ∈ R
m0 denotes a nuisance parameter, β ∈ R

m1 is the target parameter, andm0+m1 = m.
We define the m × m matrices with j, kth elements

J jk(θ) = −EG
∂2�(θ∗;W )

∂θ∗
j ∂θ∗

k

∣∣∣
θ

K jk(θ) = EG
∂�(θ∗;W )

∂θ∗
j

∂�(θ∗;W )

∂θ∗
k

∣∣∣
θ
,

which are components of the asymptotic robust covariance matrix of
√
n(θ̂ − θ).

3. A New Effect Size Index

3.1. Definition

Here, we define a robust effect size that is based on the test statistic for

H0 : β = β0. (4)
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β0 is a reference value used to define the index. Larger distances from β0 represent larger effect
sizes. Under the regularity conditions in the Appendix,

√
n(θ̂ − θ) ∼ N

{
0, J(θ)−1K(θ)J(θ)−1

}
. (5)

This implies that the typical robust Wald-style statistic for the test of (4) is approximately chi-
squared on m1 degrees of freedom,

Tm1(θ̂)2 = n(β̂ − β0)
T
β(θ̂)−1(β̂ − β0) ∼ χ2

m1

{
n(β − β0)

T
β(θ)−1(β − β0)
}

, (6)

with noncentrality parameter n(β−β0)
T
β(θ)−1(β−β0), where
β(θ) is the asymptotic covari-

ance matrix of β̂, and can be derived from the covariance of (5) (Boos and Stefanski, 2013; Van
der Vaart, 2000). We define the square of the effect size index as the component of the chi-squared
statistic that is due to the deviation of β from the reference value:

Sβ(θ)2 = (β − β0)
T
β(θ)−1(β − β0). (7)

As we demonstrate in the examples below, the covariance 
β(θ) serves to standardize the param-
eter β so that it is unitless. The regularity conditions given in Appendix are sufficient for the index

to exist. The robust index, Sβ(θ) :=
√
Sβ(θ)2, is defined as the square root of Sβ(θ)2 so that the

scale is proportional to that used for Cohen’s d (see Example 1).
This index has several advantages: it is widely applicable because it is constructed from M-

estimators; it relies on a robust covariance estimate; it is directly related to the robust chi-squared
statistic; it is related to classical indices, and induces several classical transformation formulas
(Cohen, 1988; Borenstein et al., 2009; Lenhard and Lenhard, 2017).

3.2. An Estimator

Sβ(θ) is defined in terms of parameter values and so must be estimated from data when
reported in a study. Let Tm1(θ̂)2 be as defined in (6), then

Ŝβ(θ) =
{
max

[
0, (Tm1(θ̂)2 − m)/(n − m)

]}1/2
(8)

is consistent for Sβ(θ), which follows by the consistency of the components that make up Tm1(θ̂)2

(Van der Vaart, 2000; White, 1980). We use the factor (n −m) to account for the estimation of m
parameters.

Ŝβ(θ) is the square root of an estimator for the noncentrality parameters of chisquared statistic.
There is a small body of literature on this topic (Saxena and Alam, 1982; Chow, 1987; Neff and
Strawderman, 1976; Kubokawa et al., 1993; Shao and Strawderman, 1995; López-Blázquez,
2000). While the estimator (8) is inadmissable (Chow, 1987), it has smaller risk than the usual
unbiased maximum likelihood estimator (MLE), S2 = (Tm1(θ̂)2−m)/(n−m), because theMLE
is not bounded by zero. We assess estimator bias in Sect. 7.
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4. Examples

In this section, we show that the robust index yields several classical effect size indices when
the models are correctly specified. We demonstrate the interpretability of the effect size index
through a series of examples. The following example shows that the robust index for a difference
in means is proportional to Cohen’s d, provided that the parametric model is correctly specified;
that is, the solution to the M-estimator is equal to the MLE.

Example 1. (Difference in means) In this example, we consider a two mean model, where Wi =
{Yi , Xi } and the conditional mean of Yi ∈ R given Xi converges. That is,

n−1
x

nx∑
i :Xi=x

E(Yi | Xi = x)
p−→ μx ∈ R, (9)

for independent observations i = 1, . . . , n, where x, Xi ∈ {0, 1}, nx = ∑n
i=1 I (Xi = x), and we

assume the limit (9) exists. In addition, we assume P(Xi = 1) = π1 = 1− π0 is known and that

n−1
x

nx∑
i :Xi=x

Var(Yi | Xi = x)
p−→ σ 2

x < ∞.

Let ∂�(θ;W )/∂θ = n−1 ∑n
i=1{(2Xi − 1)π−1

Xi
Yi − θ}, then

θ̂ = n1
n

π−1
1 μ̂1 − n0

n
π−1
0 μ̂0

Eθ̂ = μ1 − μ0

J (θ) = 1

K (θ) = lim
n→∞ n−1

∑
i, j

EH

{
(2Xi − 1)π−1

Xi
Yi − θ

} {
(2X j − 1)π−1

X j
Y j − θ

}
,

where μ̂x = n−1
x

∑nx
i :Xi=x Yi .When (9) holds, then K (θ) = limn→∞ n−1 ∑n

i=1 π−2
Xi

Var(Yi | Xi ).
Note that � in this example is not defined as the derivative of a log-likelihood: It defines a single
parameter that is a difference in means and does not require each observation to have the same
distribution. Despite this general approach, we are still able to determine the asymptotic variance
of n1/2θ̂ ,

J (θ)K (θ)−1 J (θ) = lim
n→∞ n−1

n∑
i=1

π−2
Xi

Var(Yi | Xi )

= lim
n→∞ n−1

{
n1π

−2
1 σ 2

1 + n0π
−2
0 σ 2

0

}

= π−1
1 σ 2

1 + π−1
0 σ 2

0 .

Then the robust effect size (7) is

Sβ(θ) =
√

(μ1 − μ0)2

π−1
1 σ 2

1 + π−1
0 σ 2

0

. (10)
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For fixed sample proportions π0 and π1, when σ 2
0 = σ 2

1 , Sβ(θ) is proportional to the classical
index of effect size for the comparison of two means, Cohen’s d (Cohen, 1988). However, Sβ(θ)

is more flexible: It can accommodate unequal variance among groups and accounts for the effect
that unequal sample proportions has on the power of the test statistic. Thus, S is an index that
accounts for all features of the study design that will affect the power to detect a difference. The
robust index is proportional to the absolute value of the large sample z-statistic that does not rely
on the equal variance assumption. This is what we expect in large samples when the equal variance
assumption is not necessary for “correct” inference. In this example, we did not explicitly assume
an identical distribution for all Xi , only that the mean of the variance of Yi given Xi converges in
probability to a constant.

The following example derives the robust effect size for simple linear regression. This is the
continuous independent variable version of Cohen’s d and is related to R2.

Example 2. (Simple linear regression) Consider the simple linear regression model

Yi = α + Xiβ + εi

where α and β are unknown parameters, Yi ∈ R, Xi ∈ R and εi follows an unknown distribution
with zero mean and conditional variance that can depend on Xi , Var(Yi | Xi ) = σ 2(Xi ). Let
�(θ;Wi ) = n−1 ∑n

i=1(Yi − α − Xiβ)2/2. In this model

J(θ)−1 = σ−2
x

[
σ 2
x + μ2

x −μx

−μx 1

]

K(θ) =
[

σ 2 μxy

μxy σ 2
xy + 2μxμxy − μ2

xσ
2

] (11)

where
μx = EG Xi

σ 2
x = EG(Xi − μx )

2

σ 2 = EG(Yi − α − Xiβ)2

μxy = EG Xi (Yi − α − Xiβ)2

σ 2
xy = EG(Xi − μx )

2(Yi − α − Xiβ)2.

(12)

After some algebra, combining the formulas (11) and (12) gives


β = σ−4
x σ 2

xy .

Then (7) is

Sβ(θ)2 = σ 4
x

σ 2
xy

β2. (13)

The intuition of (13) is best understood by considering the homoskedastic case where EH (Yi −
α − Xiβ)2 = σ 2 for all i = 1, . . . , n. Then, σ 4

x /σ 2
xyβ

2 = σ 2
x /σ 2β2. This is similar to R2, except

that the denominator is the variance of Yi conditional on Xi instead of the marginal variance of
Yi . The denominator of (13) accounts for the possible dependence between Xi and Var(Yi | Xi ).
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In the following example, we introduce two levels of complexity by considering logistic
regression with multidimensional nuisance and target parameters.

Example 3. (Logistic regression with covariates) For logistic regression, we utilize the model

E(Yi | Xi ) = expit(Xi0α + Xi1β) = expit(Xiθ), (14)

where Yi is a Bernoulli random variable, Xi = [Xi0, Xi1] ∈ R
p−1 is a row vector, and α and β

are as defined in (3). Let X = [XT
1 . . . XT

n ]T ∈ R
n×(p−1) and similarly define X0 and X1. Let

P ∈ R
n×n be the matrix with Pi i = expit(Xiθ) {1 − expit(Xiθ)} and Pi j = 0 for i 
= j . Let

Q ∈ R
n×n be the matrix withQi i = {Yi −expit(Xiθ)}2 andQi j = 0 for i 
= j . If (14) is correctly

specified then EH (Pi i | Xi ) = EH (Qi i | Xi ) = Var(Yi | Xi ). If this equality does not hold, then
there is under or over dispersion.

To find the robust effect size, we first need to find the covariance matrix of β̂. To simplify
notation, we define the matrices

Ak�(P) = EGn
−1XT

k PX�

for k, � = 0, 1. The block matrix of JG(θ)−1 corresponding to the parameter β is

Iβ(θ)−1 =
{
A11(P) − A10(P)A00(P)−1A01(P)

}−1
. (15)

Equation (15) is the asymptotic covariance of β̂, controlling for X0, if model (14) is correctly
specified.

The robust covariance for β can be derived by finding the blockmatrix of J (θ)−1K (θ)J (θ)−1

corresponding to β. In this general case, the asymptotic covariance matrix of β̂ is


β(θ) =Iβ(θ)−1
[
A10(P)A00(P)−1A00(Q)A00(P)−1A01(P)

−A10(P)A00(P)−1A01(Q)
]
Iβ(θ)−1

+ Iβ(θ)−1
[
A11(Q) − A10(Q)A00(P)−1A01(P)

]
Iβ(θ)−1.

If the model is correctly specified, P = Q, 
β(θ) = Iβ(θ)−1, then

Sβ(θ) =
√

βT Iβ(θ)β. (16)

The parameter (16) describes the effect of β controlling for the collinearity of variables of interest
X1, with the nuisance variables, X0. If the collinearity is high, then the diagonal of Iβ(θ)−1 will
be large and the effect size will be reduced.

Many suggestions have been made to compute standardized coefficients in the context of
logistic regression (for a review see Menard, 2004, 2011). Whenm1 = 1, the square of the robust
index in this context, under correct model specification, is the square of a fully standardized
coefficient and differs by a factor of

√
n from the earliest proposed standardized index (Goodman,

1972). The index proposed byGoodman (1972) is simply aWald statistic andwas rightly criticized
for its dependence on the sample size (Menard, 2011), despite that it correctly accounts for the
fact that the variance of a binomial random variable is functions of its mean, through the use
of the diagonal matrix P in the matrix Iβ(θ). The robust index remediates the dependence that
Goodman’s standardized coefficient has on the sample size.
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Figure 1.
Graphs of the robust effect size as a function of some common effect size indices (see formulas in Table 1. a Cohen’s d,
when π0 = π1 = 1/2 and σ0 = σ1; b R2.

5. Relation to Other Indices

The new index can be expressed as a function of several common effect size indices for con-
tinuous or dichotomous dependent variables when there is homoskedasticity (Fig. 1; Table 1). The
relations between effect sizes implied by the new index are equivalent to the classical conversion
formulas between effect sizes (Borenstein et al., 2009; Selya et al., 2012). While the index is
related to existing indices under correct model specification, the advantage of the robust index is
that it is defined if the variance model is incorrectly specified. This is the case, for example, in
linear regression when there is heteroskedasticity and the model assumes a single variance term
for all subjects or in logistic regression when there is overdispersion. By using the formulas in
Table 1, we can obtain robust versions of classical indices by writing them as functions of Sβ .

Cohen (1988) defined ranges of meaningful effect sizes for the behavioral sciences (Table
2). These intervals can also be used to define similar regions for the robust index. These recom-
mendations serve as a useful guide, however, ranges of meaningful effect sizes are field specific
and should be based on clinical expertise and the effect an intervention could have if applied to
the population of interest.
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Table 2.
Effect size thresholds suggested by Cohen (1988) on the scale of d and the robust index (Sβ ), using the formula from
Table 1 assuming equal sample proportions.

Effect size d S

None-small [0, 0.2] [0, 0.1]
Small-medium (0.2, 0.5] (0.1, 0.25]
Medium-large (0.5, 0.8] (0.25, 0.4]

5.1. Bias of Existing Indices Under Model Misspecification

To understand the bias of the classical estimators under model misspecification, we compare
the asymptotic value of the classical estimators to the effect size formulas in Table 1. Under model
misspecification, the existing parametric effect size indices can be biased.

The estimator for Cohen’s d using pooled variance converges to

d̂C = μ̂1 − μ̂0

(n1−1)σ̂ 2
1 +(n0−1)σ̂ 2

0
n1+n0−2

p−→ μ1 − μ0

π1σ
2
1 + (1 − π1)σ

2
0

= dC .

Taking the ratio of this value to the robust value of Cohen’s d in Table 1 gives

dC/d(S) = (π−1
1 + (1 − π1)

−1)−1/2 ×
(

π−1
1 σ 2

1 + (1 − π1)
−1σ 2

0

π1σ
2
1 + (1 − π1)σ

2
0

)1/2

A plot of this ratio with respect to log2(σ
2
1 /σ 2

0 ) and π1 is given in Fig. 2. When π1 = 1/2 or
σ 2
1 = σ 2

0 then there is no bias. When π1 < 1/2 and σ 2
1 > σ 2

0 Cohen’s d overestimates the effect
size. When π1 < 1/2 is small and σ 2

1 < σ 2
0 Cohen’s d under underestimates the effect size. The

plot is symmetric about the point (0, 1/2).
The classical estimator for R2 converges to

R2
C = σ 2

x β2

σ 2
x β2 + σ 2

y
.

Taking the ratio of this value and the formula for R2(S) given in Table 1 gives,

R2
C/R2(Sβ) = σ 4

x β2 + σ 2
x σ 2

y

σ 4
x β2 + σ 2

xy
,

where variables are as defined in (12). Figure 2 plots the bias as a function of log2{σ 2
xy/(σ

2
x σ 2

y )}.
When the variance is constant across subjects, Var(Yi | Xi ) = σ 2

y , then the bias is zero. If
not, then the direction of the bias of the classical estimator depends on the relationship between
Var(Yi | Xi ) and Xi .
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Figure 2.
Percent bias for Cohen’s d and R2. When π1 = 1/2 or the variances are equal the classical estimator of Cohen’s d is
unbiased, it can be positively or negatively biased when the variances and sampling proportions are not equal. Similarly
for R2, when Var(Yi | Xi ) is constant across subjects, there is no bias (because σ 2

xy = σ 2
x σ 2

y ), but when this is not true, the
classical estimator can be positively or negatively biased depending on the relationship between the variances. Variables
are as defined in (12).

6. Determining Effect Sizes, Sample Sizes, and Power

A convenient aspect of the robust index is that it makes asymptotic power calculations easy.
The formula is the same for every parameter that is a solution to an estimating equation, such
as (2). For a fixed sample size and rejection threshold, power can be determined from the robust
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Figure 3.
Power curves as a function of the sample size for several values of the robust index (S) and degrees of freedom (df), for a
rejection threshold of α = 0.05. The curves are given by formula (17) and are not model dependent.

index and degrees of freedom of the chi-squared test using (6). The explicit formula for power
can be written

1 − t2 = 1 − �df

{
�−1

df (1 − t1; 0); n × Sβ(θ)2
}

, (17)

where t1 and t2 denote the type 1 and type 2 error rates, respectively, df denotes the degrees of
freedom of the test statistic, �(·; λ) denotes the cumulative distribution function of a noncentral
chi-squared distribution with noncentrality parameter λ, and Sβ is as defined in (7). Equation
(17) can be easily solved for sample size, power, error rate, or effect size, using basic statistical
software with fixed values of the other variables (Fig. 3). Because the robust index is not model
dependent, power curves are effectively model-free and applicable for any fixed sample size,
rejection threshold, and degrees of freedom.

7. Simulation Analysis

We used 1,000 simulations to assess finite sample bias and standard errors of the estimator
(8). Covariates of row vectors, Xi , were generated from a multivariate normal distribution Xi ∼
N (0, 
X ), where,
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Figure 4.
Bias and standard error of Ŝ when the data generating distribution has skew=0.63 with two nuisance covariates (m0 = 2).
Ŝ tends to be positively biased across values of S. The standard error is proportional to S and is quite large in small
samples. Rhosq denotes the total squared correlation of nuisance covariates with the target variables. Rhosq does not
affect the bias, standard error, or value of the effect size index because S is defined conditionally on the covariates.


X =
[

Im0 ρ2/(m0m1) × 1m01
T
m1

ρ2/(m0m1) × 1m11
T
m0

Im1

]

with ρ2 ∈ {0, 0.6}, m0 ∈ {2, 5}, and m1 ∈ {1, 3, 5}. Here, Im0 and 1m0 denote the m0 × m0
identity matrix and a vector of ones in R

m0 , respectively. This distribution implies that the total
correlation between the nuisance covariates and target covariates is equal to ρ2. Samples of Yi ,
for i = 1, . . . , n of size n ∈ {25, 50, 100, 250, 500, 1000} were generated with mean

EYi = βXi11m1 ,
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where β was determined such that S ∈ {0, 0.1, 0.25, 0.4, 0.6}. We used a gamma distribution

with shape parameter a ∈ {0.5, 10} and rate equal to
√
a/X2

i,m0+1 to generate heteroskedastic

errors for Yi . For each simulation, we compute bias of the estimator (8). Only a subset of the
results are reported here; however, code to run the simulations and the saved simulation results
are published with this paper.

Bias and standard error of the estimator is presented for ρ2 ∈ {0, 0.6}, for m0 = 2 , and all
values of S considered in the simulations (Fig. 4). Results demonstrate the effect size estimator is
biased upwards in small samples, but the bias is close to zero for sample sizes over 500. Because
the effect size is defined conditional on covariates, the existence of covariates does not affect
estimation bias. The standard error of the estimator is larger in small samples and for larger values
of S. When the sample size is small, n = 25, the standard error can be larger than the value of Sβ .

8. Discussion

We proposed a robust effect size index that utilizes an M-estimator framework to define an
index that is generalizable across a wide range of models. The robust index provides a unifying
framework for formulaically relating effect sizes across different models. The proposed index is
robust to model misspecification, has an easily computable estimator, and is related to classical
effect size indices. We showed that classical estimators can be asymptotically biased when the
covariance model is misspecified.

The relationship between the robust index and indices based on correctly specified models
(such as Cohen’s d and R2) is appealing because it follows intuition from other areas of robust
covariance estimation. That is, when the estimating equation is proportional to the log-likelihood,
then the robust index is a function of classical definitions derived from likelihood-based models.
The new framework also generalizes classical indices by easily accommodating nuisance covari-
ates and sandwich covariance estimators that are robust to heteroskedasticity. The robust index
puts effect sizes for all models on the same scale so that asymptotically accurate power analyses
can be performed for model parameters using a single framework.

One important feature of the proposed index is that it is defined conditional on covariates.
While the effect size lies on a standardized scale that is related directly to the power of the test, the
inclusion of covariates affects the interpretation of the index because it is defined conditional on the
covariates. For this reason, careful consideration of the target parameter is necessary for accurate
interpretation and comparison across studies that present the robust index. Marginal estimators
(without conditioning on covariates) should be considered if the investigator is interested in the
general effect across a given population.

Several limitations may inspire future research topics: Like p-values, estimates of effect size
indices can be subject to bias by data dredging. Also, the estimator can be biased in small samples
because the index is based on asymptotic results. Thus, methods for bias adjustment or low mean
squared error estimators could be considered to adjust the effects of data dredging or small sample
sizes. Here, we considered an M-estimator framework, but a semiparametric or robust likelihood
framework may have useful properties as well (Royall and Tsou, 2003; Blume et al., 2007). We
believe this index serves as a first step in constructing a class of general robust effect size estimators
that can make communication of effect sizes uniform across models in the behavioral sciences.
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9. Appendix

The following regularity conditions are required for the asymptotic normality of
√
n(θ̂ − θ) (Van

der Vaart, 2000)

(a) The function θ∗ �→ �(θ∗;w) is almost surely differentiable at θ with respect to G,
where objects are as defined in (1) and (2).

(b) For every θ1 and θ2 in a neighborhood of θ and measurable function m(w) such that
EGm(W )2 < ∞, |�(θ1;w) − �(θ2;w)| ≤ m(w)‖θ1 − θ2‖.

(c) The function θ∗ �→ EG�(θ∗;W ) admits a second-order Taylor expansion at θ with a
non-singular second derivative matrix J(θ).

(d) �(θ̂,W ) ≥ supθ∗ �(θ∗,W ) − op(n−1) and θ̂
p−→ θ .
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