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1. Introduction
This paper concerns criteria for assuring that every solution of a real fourth

order nonselfadjoint differential equation

lu = (p2(x)«"-«2(x)iiT-(Pi(x)«'-«iW«)' + Po(x)« = 0 (p2(x)>0) (1.1)
is oscillatory at x = oo. Our technique is a generalisation of that used by
Whyburn (1) for the study of the selfadjoint equation,

L»s(P2(x)iO'-(fi(x)«') ' + ̂ oW» = 0 (P2(x)>0) (1.2)
combined with the theory of //-oscillation of vector equations as introduced
by Domslak (2) and studied by Noussair and Swanson (3). Whyburn's technique
consists of representing (1.2) as a dynamical system of the form

z (b(x)>0)

z" = c(x)y + a(x)z
and then studying (1.3) in terms of polar coordinates in the y, z-plane. In
Section 2 below we show how to represent (1.1) as a dynamical system of the
form

(6(x)>0) ( J 4 )

z"= c(x)y + d(x)z.
This system is studied in terms of polar coordinates in Section 3, and in Section 4
a comparison theorem for the //-oscillation of solutions of (1.4) is established.
This comparison theorem yields oscillation criteria for (1.1) which are presented
in Section 5, and non-oscillation criteria are discussed briefly in Section 6.

It is assumed throughout that the coefficients pk(x) and qk(x) are real, of
class Ck, and that p2(x)>0 in an interval./ = [a, oo).

2. A representation of nonselfadjoint equations
The representation of (1.1) in the form (1.4) will be accomplished in two

steps.
Lemma 2.1. If I is defined by (1.1) and

-f 2p2(0
(2.1)
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then

lu = \p2(x) exp | - 2 ^ . dt U") + (terms of order ^ 2).
\ U« 2Pi0) J /

Proof. If u(x) = i?(x)t/(x), then

p2u"-g2u ' = p2RU" + (2p2R'-q2R)U' + (p2R'-q2R')U-
Choosing

2p2«)
yields

lu = Q>2Rl/")" + (terms of order ^ 2)
as was to be shown.

Since the transformation (2.1) is oscillation preserving, we are justified in
restricting our attention to nonselfadjoint equations of the form

lu EE (p2(x)u")"-(p1(x)u')' + g1(^)M'+p0(x)u = 0. (2.2)

Theorem 2.2. The equation (2.2) can be represented in the form

z ( 2 3 )

z" = c() d()
with

a-- 2p2

Pz
(2.4)

c _ ,„„ . Pi—Qi

f
Proof. Setting >>(x) = u(x), y'{x) = u'(x) i t follows that z= - u " - - u and

tha t b b

z = I -

The choice b — l/p2 implies that
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so that

I - 1 = p i - <Choosing 2 I - 1 = pi - <h yields

2p2
so that

Making use of the fact that u" = / ' = ay+bz we get

Pi \

which completes the proof.
Since the equations (2.4) can be inverted to yield

1

a + d

b (2.5)

ad

it also follows that every dynamical system of the form (1.4), with b(x)>0,
can be represented in the form (2.2) withp2{x)>0.

3. The dynamical system
In this section the system

y" = a(x)y+b(x)z

z" = () d()

will be studied in terms of the polar coordinates

(3.2)
9 = arctan yjz.
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It is assumed that the coefficients of (3.1) are continuous and that b(x)>0 in
J = [a, oo). The polar representation of (3.1) is easily shown to be

r" = r(0 ')2+-QiO',z) (3.3)
r

(r2ej = Q2(y, z) (3.4)

where Qt and Q2 are quadratic forms defined by

Qt(y, z) = ay2 + (b+c)yz + dz2

Q2(y, z) = -cy2+(a-d)yz + bz2.

Equations (3.3), (3.4) are equivalent to (3.1) on any interval J on which
y2(x) + z2(x)>0. The singularities which occur at the zeros of y2+z2 can be
eliminated by means of the following device used by Taam (4) in the special
case a(x) = d{x), c(x) = —b(x). Let {xk} denote the zeros of y2+z2 in J,
and define r(x) by

r(x) = r(x) if x2k^x£x2k + 1

= -r(x) if x2k_l ^x^x2k
and <p(x) by

<j)(x) = 6'(x) if x # x t

= 0 if x = xt.

Then by means of several applications of L'Hospital's rule at the {xk} it can
be shown that r(x) and <j)(x) satisfy

2 k ) (3.3)'

{r2<f>)' = Q2(y, z) (3.4)'
in J.

Another means of dealing with the zeros of y2(x)+z2(x) is to make further
assumptions on the coefficients of (3.1) which assure the existence of an interval
£ = [a, oo) in which r2{x) = y2(x) + z2(x)>0.

Theorem 3.1. If the quadratic form Q1 is nonnegative definite in [a, oo),
then for any nontrivial solution y, z of (3.1), rr' can have at most one zero in
[a, oo).

Proof. For r(x) > 0 we have

dx dx

If lim (rr')(x) = 0 and lim (TT')(X) =0, then
i l v i t s

0 = rr' \> ^ V Q^y,
Jy
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with equality if and only if y(x) = 0 and z(x) = 0 in [y, <5]. The nonnegative
definiteness of Q1 provides the desired contradiction.

Theorem 3.2. If the quadratic form Q2(y, z) is positive definite {negative
definite) in [a, oo), then r2d' can have at most one zero in [a, oo).

Proof. Starting with (3.4), the proof is analogous to that of Theorem 3.1.

In the special case where a(x) = d{x) and b(x) s —c(x), (3.1) is equivalent
to the single complex equation

w" = (a-ib)w (3.5)

and has a dynamical interpretation in terms of a particle of unit mass moving
in the y, z-plane under the influence of a central force ar and a transverse force
br acting perpendicular to the radius vector. In this case Theorems 3.1 and
3.2 follow from the Green's transform used by Hille (5) to study the behaviour
of solutions of (3.5) in the complex plane. In terms of (3.5) they reduce to the
statement that

(i) if a(x) ^ 0 in [a, oo) then for any nontrivial solution w(x) of (3.5)
Re [ w ' ] has at most one zero in [a, oo).

(ii) if b(x)>0 (b(x)<0) in [a, oo) then for any nontrivial solution w(x)
of (3.5) Im [VVH>'J has at most one zero in [a, oo).

In (1) Whyburn studies special cases of (3.1) such as

a = d = 0 and bc<0
or

a = d>0, a'>0 and bc<0

which assure that Q2 is positive definite. In order to apply these techniques^to
nonselfadjoint problems, it is important to be able to replace these conditions
with the more general condition on Q2.

Using Taam's transformation and the equation (3.3)', Theorem 3.1 can
be strengthened. Let k(x) be the smallest eigenvalue of the matrix

b + c\

so that

^r rj

Then (3.3)' becomes
rf" ̂  X(x)f2 (3.3)"

and leads to the following

Theorem 3.3. If the equation u" = X(x)u is disconjugate in [a, oo) then for
any nontrivial solution y, z of (3.1) y2(x) + z2(x) has at most one zero in [a, oo).

E.M.S.—19/1—F
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Proof. Suppose to the contrary that r(y) = r(<5) = 0 for a 5J y<5<co
and some nontrivial solution r(x) of (3.3)". Since u" = X(x)u is disconjugate
on [a, oo), we can choose a solution u(x) which is positive in (a, d"]. Then
for y<x ^ d

dx\_ u
the right side being identically zero if and only if f is a constant multiple of u.
Using an appropriate limiting procedure at x = y (in case y = a), an integration
from y to <5 yields the desired contradiction,

[ f 2u'~[*= ' C5V ru'~2

rr'- -— ^ \ \f' I dx.

« J* = y Jy L « J
We have shown that there is a variety of criteria for assuring that

in an interval of the form [a, oo). However, the criteria of Theorem 3.2 will
be especially important in the present paper because of the following additional
consequence of the definiteness of the quadratic form Q2.

Theorem 3.4. If the quadratic form Q2 is positive definite (negative definite)
in [a, oo), then for any nontrivial solution (y, z) of (3.1), 6(x) is monotone in
an interval of the form [a, oo).

Proof. By Theorem 3.2 y2(x) + z2(x) has at most one zero in [a, oo), and
we may therefore assume that r2(x) is positive. If O'(x) were oscillatory near
oo, then r2d' would be oscillatory, contradicting (3.4). Therefore O'(x) is of
constant sign in an interval of the form [a, oo) as was to be shown.

The quantity r2O' may be interpreted as the rate at which area is being swept
out by the radius vector in the y, z-plane in a counterclockwise direction. The
definiteness of Q2 assures that this quantity is eventually nonzero and of
constant sign; for (3.1) Q2 is positive definite if

Z»0; c<0 ( 3 6 )

4bc+(a-d)2<:0.

Clearly the condition of definiteness in Theorem 3.4 may be relaxed to semi-
definiteness in part of J.

4. A rotation criterion
A solution y, z of (3.1) will be called rotary at x = oo if r{x) > 0 for sufficiently

large x and lim | 6(x)\ = oo. If the quadratic form Q2 is definite near x = oo,
X-*CO

then according to Theorems 3.2 and 3.4, lim 0(x) exists for any non-rotary
x-»co

solution y, z of (3.1). For this reason it will be assumed throughout this section
that Q2 is positive definite in J = [a, oo).
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In order to establish specific rotation criteria we shall employ the concept
of //-oscillation introduced by Domslak (2) and studied by Swanson and
Noussair (3). Our technique is closely related to that of (3), but the application
of this technique is different.

Writing (3.1) in the form
Y" = A(x)Y (4.1)

where

we shall say that a nontrivial solution Y(x) of (4.1) is H-oscillatory if <//, Y(x)y
is oscillatory at x = oo. Here H is to be a real nonzero constant vector,
H = (hu h2), and <//, Y(x))} = hly(x) + h2z(x). In view of Theorem 3.4, if a
solution Y(x) of (4.1) is not //-oscillatory for some (every) H, then lim 6(x)

exists. Denoting this limit by 90, we shall obtain rotation criteria for (4.1)
by choosing H = (cos 60, sin 90), i.e. H will be a unit vector in the direction
of0o-

Our rotation criteria will be formulated in terms of a continuous function
?.{x) satisfying

l(x) ^ sup <//, A(x)H>.
<H, H> = 1

Theorem 4.1. //" A(x) is continuous and there exists an e>0 such that
u" = (A(x) + e)M w oscillatory at x = oo, ?/?e« ey^rj' solution of (4.1) w rotary
at x — oo.

Proof. If y(x) is a non-rotary solution, then the vector col (Xx),
tends to a limiting direction 60 = lim 0(JC). Choosing H = (cos 0o, sin 90)

JC-»OO

it follows that we can choose a sufficiently large so that <//, Y(x)y is positive

a n d <H, A(x)Y(x)} ^ i ( . ^ + ^e i n [-a) oo) Letting u(x) be an oscillatory solution
(H, Y(x)>

of u" + (X(x)+e)u = 0, we can also choose x2>xt ^ a such that

«(*,) = u(x2) = 0.

Then for xt g x :g x2 we have

d\ , 2<H, y>l ., , 2 2<H,AY} f, <tf, r>T
I UU — U = (A + E)U — U \r \ U —U

dx{_ <H, y>J <//, y> |_ <H,Y}]
Integrating from xt to x2 yields

0 = MM' — « 2 -—'- ^ I I A + e— \r[ ^r/ \u2dx,

so that the positivity of the integrand above provides the desired contradiction.
In the special case a(x) = d(x), a different technique can be used to establish

Theorem 4.1 with e = 0 (1, Theorem IV).
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5. Oscillation criteria
It is a direct consequence of Theorem 2.2 that if every nontrivial solution

y, zof
y" = a z

z" =c(x)y + d(x)z

is rotary at x — oo, then every solution of

lu s (P2(x)u")"-(pl(x)uy-ql(x)u' + po(x)u = 0 (5.2)

has arbitrarily large zeros. Thus the transformation of Theorem 2.2 allows
one to translate Theorem 4.1 into oscillation criteria for solutions of (5.2).

The requirement that Q2(x) be positive definite is satisfied if

b= — >0
Pi

4/>2

and

Abe + (a — d)2 = I — I — 2 ——— — < 0.
XPiJ PI PI

These conditions are all satisfied if/>2>0 and

(5.3)> 0 .
2 4p2

In the special case of constant coefficients and qt = 0, (5.3) implies that
the roots of

p2x*-plx
2 + p0 = 0

are complex, and this is also sufficient to assure that all solutions of (5.2) be
oscillatory a t x = co.

T o satisfy the other hypotheses of Theorem 4.1, we seek to assure that

for all H # 0. This requires that

for all H ± 0, which is equivalent to the positive definiteness of the matrix

A —a

and requires that

A_fl = ; . _ ^ I i i > 0 > (5.4)
2p2
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X-d = X-?±±l«±>0, (5.5)

and

(±±^>l± Et^L f>0. (5.6)
+

4 p2

These observations can be summarized as follows.

Theorem 5.1. If there exists a continuous k{x) and e>0 such that

u" = (X(x) + e)u = 0

is oscillatory at x = oo and (5.3)-(5.6) are satisfied, then every solution of (5.2)
is oscillatory afx = oo.

Since the hypotheses of Theorem 5.1 are rather complicated, it seems
appropriate to discuss their implications in general terms. The condition that
u" = (X(x) + e)u be oscillatory at x = oo requires that k(x) be " sufficiently
negative " for large values of x. The simplest admissible choice of A(x) is any
negative constant, and the principal restrictions in choosing l{x) are (5.4)
and (5.5). If p^(x) is sufficiently negative, then (5.4) and (5.5) allow for large
negative choices of l(x) and this in turn makes (5.6) easier to satisfy. However
(5.3) imposes limits on the negativeness of Pi(x). The principal restriction

imposed by (5.6) concerns the magnitude of l(b + c)2. Since b(x) = >0
Pi(x)

and (5.3) assures that c(x)<0, there is a range of possible values of the co-
efficients of (5.2) which lead to small values of (b + c)2, and it is within this
range that applications of Theorem 5.1 are most feasible. A special class of

such equations are those for which p[ = q± and p0 = —. In this case Theorem
Pi

5.1 asserts that all solutions of (5.2) are oscillatory if — 2p0 ;S p1 ^ 0.

6. Nonoscillation criteria
It is natural to try to apply the techniques of Section 4 to obtain non-

rotation criteria for (4.1) and thereby to establish nonoscillation criteria for
(5.2). To that end we consider a differential equation

u" = ;.(x)u (6.1)

which has a solution u{x) which is positive in [a, oo). If Y{x) satisfies Y" = AY,
then for any constant vector H,

y>2 -

, y>2+
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in [a, oo). If for all Y ¥= 0

<H>AY> ;» A(x) (6.2)

in [a, oo), then by an argument analogous to that of Section 4, condition (6.2)
precludes the existence of two zeros of <//, Y(x)y in [a, oo).

The difficulty with this procedure is that an inequality such as (6.2) is very
difficult to establish unless one can hypothesize a limiting direction for the
vector Y(x). While conditions such as (6.2) have been used by Noussair and
Swanson (3) as the basis for .//-oscillation criteria, it seems unlikely that they
can be translated into manageable conditions on the coefficients of (5.2).

7. Concluding remarks
It is of interest to compare the oscillation theory studied above with that

when oscillation is defined in terms of conjugate points. The first conjugate
point of a with respect to (1.1) is defined as the smallest /?>oc such that

u(oi) = u'(a) = 0 = u(p) = u'{p)

is satisfied nontrivially by a solution of (1.1), and it is denoted by *h(a). If
f7i(a) does not exist, then (1.1) is said to be disconjugate on [a, oo).

In the case of selfadjoint equations such as (1.2) conjugate points can be
identified with the singularities of conjoined matrix solutions of a related
Hamiltonian system (see for example (6)) and in this way oscillation properties
of (1.2) can readily be studied. However nonself adjoint equations such as
(1.1) and (2.2) lead to matrix systems which do not possess conjoined solutions,
and this fact seems to preclude effective use of this method for establishing
upper bounds for »/i(a) (although lower bounds can still be obtained, (7)-(9)).
In the selfadjoint case ^(a) varies monotonely with the pf(x) (p2(x)>0) (6)
in the sense that an increase in thep^x) increases >;1(a).

When oscillation is defined in terms of oscillatory behaviour of all solutions
of the selfadjoint equation (1.2), there is no simple monotonicity relation
between the size of the coefficients and the rate of oscillation. And now it is
the oscillation criteria which can be extended to the nonself adjoint equation
(1.1), while the techniques of Section 4 seem ineffective in establishing criteria
for nonoscillation.
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