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On the Hyperinvariant
Subspace Problem. IV

H. Bercovici, C. Foias, and C. Pearcy

Abstract. This paper is a continuation of three recent articles concerning the structure of hyperinvari-

ant subspace lattices of operators on a (separable, infinite dimensional) Hilbert space H. We show

herein, in particular, that there exists a “universal” fixed block-diagonal operator B on H such that if

ε > 0 is given and T is an arbitrary nonalgebraic operator on H, then there exists a compact operator

K of norm less than ε such that (i) Hlat(T) is isomorphic as a complete lattice to Hlat(B + K) and (ii)

B + K is a quasidiagonal, C00, (BCP)-operator with spectrum and left essential spectrum the unit disc.

In the last four sections of the paper, we investigate the possible structures of the hyperlattice of an

arbitrary algebraic operator. Contrary to existing conjectures, Hlat(T) need not be generated by the

ranges and kernels of the powers of T in the nilpotent case. In fact, this lattice can be infinite.

1 Introduction

As the title indicates, this paper is a continuation of our study, begun in [15] and
continued in [13, 17], of properties of the hyperinvariant subspace lattices (usually
called hyperlattices in the literature) of operators on Hilbert space. Let us begin by

reviewing some rather standard notation and terminology that will be used below
and is entirely consistent with that employed in [13, 15, 17].

Throughout this paper H will denote a separable, infinite dimensional, complex,
Hilbert space and L(H) the algebra of all bounded linear operators on H. The ideal

of compact operators in L(H) will be denoted by K or K(H), and π will denote
the quotient map of L(H) onto the Calkin algebra L(H)/K. The symbols N, C,
D, T, will designate the sets of positive integers, complex numbers, ζ ∈ C such that
|ζ| < 1, and ∂D, respectively. The spectrum of an operator T in L(H) will be written

as σ(T), and the left and right essential (i.e., Calkin) spectrum of T by σle(T) and
σre(T). Moreover σe(T) = σle(T) ∪ σre(T). The (complete) lattices of invariant and
hyperinvariant subspaces of an operator T will be denoted, respectively by Lat(T)
and Hlat(T). Furthermore, if L1 and L2 are complete lattices, we write L1 ≡ L2 to

signify that there is a (complete) lattice isomorphism of one onto the other.
Recall that, by definition, a (BCP)-operator is a completely nonunitary contrac-

tion T in L(H) such that σe(T) ∩ D is a dominating set for T (meaning that almost

every point of T (with respect to arclength measure) is a nontangential limit of a se-
quence of points from σe(T) ∩ D). The class of (BCP)-operators played a significant
role in the theory of dual algebras (see [9] for more information about this theory),
and (BCP)-operators have several nice properties. In the first place, the class (BCP)

is a subset of the larger class Aℵ0
which also plays a central role in the theory of dual
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algebras (See [9] for the definition of and more information about this class.) Thus
the lattice Lat (T) of an arbitrary (BCP)-operator T contains a sublattice isomorphic

to the lattice Lat(H) of all subspaces of H. Moreover (BCP)-operators are “universal
dilations” in the sense that any direct sum of strict contractions can be realized, up
to unitary equivalence, as the compression of every (BCP)-operator to some semi-
invariant subspace [9]. Furthermore it is known [6] that every (BCP)-operator T

in L(H) has the property that there exists a sequence {Mn}n∈N of cyclic invariant
subspaces for T such that

M j ∩
( ∨

n 6= j

Mn

)
= {0}, j ∈ N.

Thus it is fair to say that a reasonable amount of information is known about prop-
erties of Lat(T) when T is a (BCP)-operator. On the other hand, at present precisely
nothing can be said about the hyperlattice of a general (BCP)-operator.

One of the main, and perhaps unexpected, results of this paper is that if T is an ar-

bitrary nonalgebraic operator in L(H), then there is a (BCP)-operator T̂ with several

additional nice properties such that Hlat(T) ≡ Hlat(T̂). Perhaps, in time, this result
will be useful in settling the (open) hyperinvariant subspace problem for operators
on Hilbert space.

After making some elementary observations and reductions in Section 2, we re-

view briefly in Section 3 the definitions and results from the earlier papers [13, 17]
that we shall need. Section 4 is devoted to obtaining the “universality” of hyperlat-
tices of (BCP)-operators mentioned above, and in Sections 5–7 we study the hyper-
lattices of algebraic operators, which trivially reduces to the study of the hyperlattices

of nilpotent operators (see Proposition 3.3). Section 5 contains general remarks, as
well as the classification of Hlat(T) when T is nilpotent of order at most two. In
Section 6 we focus on nilpotents of order three. We answer, in the negative, some
long-standing conjectures concerning those hyperlattices. Thus, the hyperlattice of

such an operator is not generally generated by the kernels and ranges of T and T2. In
fact we find that many such operators have infinite hyperlattices, some of them totally
(even well-) ordered. We conclude in Sections 7 and 8 with results on general nilpo-
tents, though some of the results yield insights into the structure of the hyperlattice

of an arbitrary operator.

2 Preliminaries

In this section we present some preliminary remarks. First, we make some observa-
tions pertaining to the general question: what can be said about (the structure of)
Hlat(T) for various T in L(H)? As usual, for T in L(H) we write

{T} ′
= {S ∈ L(H) : ST = TS}

for the commutant of T, W ∗(T) for the (unital) von Neumann algebra generated by

T, and PM for the (orthogonal) projection in L(H) whose range is the subspace M

of H. (Recall that a subspace (0) 6= M $ H is a nontrivial hyperinvariant subspace
for an operator T in L(H) if SM ⊂ M for every S in {T} ′.) The following results are
well known, but since their proofs are short, we give them.
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Proposition 2.1 For every T in L(H) and for every M ∈ Hlat(T), PM belongs to

W ∗(T).

Proof By the double commutant theorem, it suffices to show that if

Q = Q2
= Q∗ ∈ W ∗(T) ′ = {T} ′ ∩ {T∗} ′,

then PMQ = QPM or, equivalently, that QM ⊂ M. Since Q ∈ {T} ′ and M ∈
Hlat(T), this is immediate.

Proposition 2.2 Let T be a normal operator in L(H). Then

Hlat(T) = {M ⊂ H : PM ∈ W ∗(T)}.

Proof By Proposition 2.1, if M ∈ Hlat(T), then PM ∈ W ∗(T). On the other hand,
by Fuglede’s theorem, {T} ′

= {T} ′ ∩ {T∗} ′
= W ∗(T) ′. Thus if PM ∈ W ∗(T) ′ ′ =

W ∗(T) and S ∈ {T} ′, then PNS = SPN so SN ⊂ N and N ∈ Hlat(T).

In the following statement we write 2n for the lattice of all subsets of a set with n

elements.

Proposition 2.3 Let T ∈ L(H) be a normal operator with countable spectrum whose

eigenvectors span H, and let n be the cardinal number of the set of distinct eigenvalues

of T (1 ≤ n ≤ ℵ0). Then Hlat(T) ≡ 2n.

Proof Let {λi}0≤i<n be the distinct eigenvalues of T and let T̂ be a normal oper-
ator with the same set of eigenvalues, each having multiplicity 1. Then, as is well

known, the abelian von Neumann algebras W ∗(T) and W ∗(T̂) are isomorphic as

C∗-algebras, so by Proposition 2.2, Hlat(T) ≡ Hlat(T̂). Since the lattice of projec-

tions in W ∗(T̂) is lattice isomorphic to the lattice of subsets of the initial segment of

N containing n elements, the proof is complete.

Proposition 2.4 If T ∈ L(H) has countably infinite spectrum, then T is similar to a

direct sum T1 ⊕T2 ∈ L(H⊕H), where σ(T1) has exactly one accumulation point and

σ(T1) ∩ σ(T2) = ∅.

Proof Observe first that σ(T) must have at least one accumulation point λ0 which is
isolated in σ(T)d, the derived set of σ(T), for otherwise σ(T)d would be a nonempty

countable perfect set in C. Let U be a bounded open set in C such that σ(T)d ∩ U =

{λ0} and card(σ(T) ∩ U) = ℵ0. Let E be the Riesz idempotent corresponding to
the separated subset σ(T) ∩ U of σ(T), and set T1 = T|EH and T2 = T|(1−E)H.
Then T = T1 ∔ T2 and one knows that T1 ∔ T2 is similar to T1 ⊕ T2 and that

σ(T1) ∩ σ(T2) = ∅.

3 A Review

For the reader’s convenience, we now review some pertinent definitions and results.
For any ordinal number n satisfying 1 ≤ n ≤ ω, we denote by H(n) the direct sum
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of n copies of H indexed by the appropriate initial segment of N, and for T in L(H)
we write T(n) for the direct sum (ampliation) of n copies of T acting on H(n) in the

obvious fashion.
A new equivalence relation on L(H), called hyperquasisimilarity (notation:

h
∼)

was introduced in [13], which is strictly stronger than quasisimilarity and has the

property that if T1
h
∼ T2, then Hlat(T1) ≡ Hlat(T2). More precisely, the operators

T1 and T2 are said to be hyperquasisimilar if there exist quasiaffinities X,Y satis-
fying XT1 = T2X, T1Y = Y T2, and the additional conditions that (Y XM1)− =

M1, (XYM2)− = M2 for every M1 ∈ Hlat(T1) and M2 ∈ Hlat(T2). If X and Y

are such quasiaffinities, the maps M1 7→ (XM1)−, M2 7→ (YM2)− are bijections

between Hlat(T1) and Hlat(T2), and they are inverse to each other. Concerning this
equivalence relation, we will also need the following [13, Theorem 2.8] .

Lemma 3.1 Suppose that {Sn}n∈N and {Tn}n∈N are bounded sequences of operators

in L(H), and Ŝ :=
⊕

n∈N
Sn and T̂ :=

⊕
n∈N

Tn. Suppose, moreover, that {Xn}n∈N is

a sequence of invertible operators such that X−1
n SnXn = Tn, n ∈ N. Then Ŝ

h
∼ T̂ and

consequently Hlat(Ŝ) ≡ Hlat(T̂).

We next review briefly another of the main concepts and results from [13]. If
T ∈ L(H) and λ is an isolated point of σ(T) then, consistently throughout what

follows, we denote by Mλ = Mλ(T) the range of the Riesz idempotent associated
with the separated subset {λ} of σ(T). An operator T in L(H) such that σ(T) is
either uncountable or contains an isolated point µ such that (T − µ1H)|Mµ

is not
nilpotent is said to have property (AHV). The following is a condensed version of

[13, Theorem 4.4].

Theorem 3.2 Let 0 ≤ θ < 1 be arbitrarily given, set Aθ = {ζ ∈ C : θ ≤ |ζ| ≤ 1},

and let T be an arbitrary operator in L(H) with property (AHV). Then there exists a

(BCP)-operator T̂ ∈ C00 (i.e., T̂n → 0 and T̂∗n → 0 in the strong operator topology

such that:

(i) there exist δ, γ ∈ C such that T̃ := δ(T + γ1H) satisfies T̃(ω) h
∼ T̂; so, in

particular, Hlat(T) ≡ Hlat(T̂);

(ii) ‖T̂−1‖ = 1/θ provided that θ > 0;

(iii) σ(T̂) = σle(T̂) = Aθ.

Note that the operators in L(H) to which Theorem 3.2 does not apply either have

countably infinite spectrum or are algebraic. (Recall that an operator T ∈ L(H) is
said to be algebraic if p(T) = 0 for some nonzero polynomial p and that, if T is
algebraic, there exists a unique monic polynomial mT of minimal degree such that
mT(T) = 0.) In what follows, the set of all algebraic operators in L(H) will be

denoted by (A). The following fact is well known and needs no proof.

Proposition 3.3 If T ∈ (A) and λ1, . . . , λk are the distinct roots of mT , then T is

similar to T|Mλ1
⊕ · · · ⊕ T|Mλk

. Moreover,

Hlat(T) ≡ Hlat
(

(T − λ11H)|Mλ1

)
⊕ · · · ⊕ Hlat

(
(T − λk1H)|Mλk

)
,

and for each i = 1, . . . , k, (T − λi1H)|Mλi
is a nilpotent operator.
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Thus it is obvious that for any T ∈ (A), the structure of Hlat(T) is determined
by the properties of Hlat( J) where J runs through a finite set of nilpotent operators

(some of which may act on finite dimensional spaces).
The case of operators with countably infinite spectrum is treated in Section 4,

while a study of hyperlattices of nilpotent operators will be undertaken in Section 5.
Finally, we shall need in Section 4 two theorems from the deep theory of Apostol–

Herrero–Voiculescu [2,19] which characterizes the (norm) closure S(T)− of the sim-
ilarity orbit S(T) = {X−1TX : X is invertible in L(H)} of an (almost) arbitrary
T ∈ L(H). The first is [19, Proposition 5.13].

Theorem 3.4 (Herrero) Let M, T ∈ L(H) with M normal and σ(M) = σ(T).

Suppose, moreover, that for every isolated point µ ∈ σ(T), dim Mµ(T) = dim Mµ(M).

Then M ∈ S(T)−.

The next is a very special case of the main theorem of [4].

Theorem 3.5 (Barria–Herrero) Suppose M and N are normal operators in L(H)

such that

(i) σe(M) = σ(M) ⊂ σ(N),

(ii) σ(M) is infinite,

(iii) σ(N) is perfect and connected (so σ(N) = σe(N) and σ(N) is the connected

component of each of its points).

Then N ∈ S(M)−.

We also record here for future use the easily proved fact that if T2 ∈ S(T1)− and
T3 ∈ S(T2)−, then T3 ∈ S(T1)−. This allows us in Section 4 to combine Theorems

3.4 and 3.5, and thus to begin with an operator T1 and proceed from T1 to T3.

4 Nonalgebraic Operators

In this section, by utilizing the results of Section 3 and the constructions from [13,
15], we will first establish the following theorem which improves [13, Theorem 4.4].

Theorem 4.1 Fix θ ∈ [0, 1), and suppose T ∈ L(H)\(A). Then there exists a C00,

(BCP)-operator T̂ = T̂(θ, T) such that

(i) there exist δ, γ ∈ C such that T̃ = δ(T + γ1H) satisfies T̃(ω) h
∼ T̂, and thus

Hlat(T̂) ≡ Hlat(T),

(ii) θT̂−1 is a C00 (BCP)-operator whenever θ > 0,

(iii) σ(T̂) = σle(T̂) = Aθ.

Proof If T has property (AHV), then the desired conclusions are all given by [13,

Theorem 4.4], except for the fact that θT̂−1 belongs to C00. But a close look at
[15, (8), (10)] shows that θ‖SnT−1S−1

n ‖ < 1 for each n ∈ N and that θT−1 is a

C00-contraction follows immediately. Thus we may suppose that σ(T) is either finite
or countably infinite and that for every isolated point λ ∈ σ(T), (T − λ1H)|Mλ

is
nilpotent. Clearly then, if σ(T) were a finite set, T would be an algebraic operator,
contrary to hypothesis, so σ(T) must be countably infinite.
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We consider first the case in which σ(T) has exactly one accumulation point, say
µ. We observe first that the normalization carried out in [13, Theorem 4.4] consisting

of replacing T by T̃ = δ(T + γ1H) so that δ(µ + γ) = (1 + θ)/2 and

σ(T̃) ⊂ D := D 1+θ
2

, 1−θ
4

can still be done and, of course, Hlat(T(ω)) ≡ Hlat(T) ≡ Hlat(T̃) ≡ Hlat(T̃(ω)).
Next, let M be a diagonal normal operator in L(H) (relative to some orthonormal
basis for H) whose eigenvalues are exactly the (isolated) points

α ∈ σ(T̃)\{(1 + θ)/2},

each having multiplicity dim Mα(T). Then, by Theorem 3.5, M ∈ S(T̃)−, and con-

sequently, M(ω) ∈ S(T̃(ω))−. Note next that since M(ω) is normal and has uniform

infinite multiplicity, we have σ(M(ω)) = σe(M(ω))(= σ(T̃)). A casual perusal of the
proof of [15, Theorem 1.1] now shows that every member of the sequence {Nn} of

normal operators constructed there is such that σ(Nn) = σe(Nn) is a perfect, con-
nected set containing σ(M(ω)). Thus Theorem 3.5 can be applied to show that for

n ∈ N, Nn ∈ S(M(ω))− and thus, by what was already proved, that Nn ∈ S(T̃(ω))−.

With T̂ defined as in the proof of [15, Theorem 1.1] (with T̃(ω) replacing T̃), the
remainder of that proof goes through unchanged, and gives (via Lemma 3.1) that

(
T̃(ω)

) (ω) h
∼ T̂

and, since
(

T̃(ω)
) (ω)

is unitarily equivalent to T̃(ω), that T̂ has all the required prop-
erties follows as above.

To complete the proof, we need to consider the case in which σ(T) is an arbitrary
countably infinite set (with more than one point of accumulation by virtue of the
discussion above). By Proposition 2.4 we may suppose that T = T1 ⊕ T2, where
σ(T1) has exactly one accumulation point, say µ, and σ(T1) ∩ σ(T2) = ∅. We

apply the normalization procedure (to T) as before, replacing T by T̃ = T̃1 ⊕ T̃2 =

δ(T + γ1H⊕H) in such a way that (1 + θ)/2 = δ(µ + γ) and

σ(T̃) ⊂ D 1+θ
2

, 1−θ
4

.

As seen above, there exists a C00, (BCP)-operator T̂1 such that σ(T̂1) = σle(T̂1) = Aθ ,

‖T̂−1
1 ‖ = 1/θ, and T̂1

h
∼ T̃(ω)

1 . Moreover, since σ(T̃2) ⊂ D 1+θ
2

, 1−θ
4

⊂ A
◦
θ , it follows

from [21, Theorem 8.13] that T̃2 is similar to an operator T̂2 satisfying ‖T̂2‖ < 1 and

‖T̂−1
2 ‖ < 1/θ. Thus T̂ := T̂1 ⊕ T̂2

h
∼ T̃1 ⊕ T̃2 = T̃, and since T̂ clearly has all the

desired properties as above, the proof is complete.

We now generalize [13, Theorem 5.3], and for this purpose we recall the def-
inition of a “universal” block diagonal operator B which is given as follows. For

each n ∈ N choose a dense sequence {B(n)
j }∞j=1 in open unit ball of L(C

n), and set

Bθ =
⊕∞

n=1

⊕∞
j=1 B(n)

j . It follows easily that B is a C00, (BCP)-contraction satisfying

σ(B) = σle(B) = D
−.
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Theorem 4.2 Let B be a fixed universal block diagonal operator as defined above, let

T be an arbitrary operator in L(H) \ (A), and let ε be an arbitrary positive number.

Then there exists a compact operator K = K(T, ε) such that:

(i) ‖K‖ < ε,

(ii) B + K is quasidiagonal,

(iii) B + K is a C00, (BCP)-operator,

(iv) σ(B + K) = σle(B + K) = D
−,

(v) Hlat(T) ≡ Hlat(B + K).

Proof If T has property (AHV), the result is [13, Theorem 5.3]. Moreover, a careful
reading of that proof shows that if we employ Theorem 4.1 in place of [13, Theorem
4.4] at the beginning of the proof to yield an operator T1 ∈ C00 ∩ (BCP) such that

σ(T1) = σle(T1) = D
− and [δ(T + γ1H)](ω) h

∼ T1, then the remainder of that proof

goes through unchanged, so nothing more need be said.

Remark 4.3 Since θ in Theorem 4.1 can be chosen arbitrarily near to 1, a careful
reading of the construction involved in the proof of this theorem (and in the proofs
of its predecessors in [13, 15, 17]), together with some (BDF)-theory, shows that the

folowing peculiar result is also valid.

Corollary 4.4 Let B be an unweighted bilateral shift of multiplicity one, and let ε > 0
be given arbitrarily. Then for every T ∈ L(H) \ (A), Hlat(T) is isomorphic to an

element of the set of hyperlattices {Hlat(B + P) : ‖P‖ < ε}.

Remark 4.5 Another careful examination of the construction used in the proof of
Theorem 4.1 shows that the annuli Aθ appearing there are somewhat arbitrary, and
could be replaced by many different dominating open subsets of D suitable for other
purposes.

Remark 4.6 While Theorems 4.1 and 4.2 show that the hyperlattices of certain
(BCP)-operators serve as universal models for hyperlattices of nonalgebraic opera-
tors, the analogous statement for invariant subspace lattices fails miserably. For ex-
ample, it follows from well-known facts in the theory of (BCP)-operators that no

linearly ordered lattice can be the invariant subspace lattice of any (BCP)-operator.
What special class of operators would be a good candidate for producing all (or
almost all) invariant subspace lattices of operators in L(H)? In this connection
see [13].

5 Nilpotent Operators: Preliminaries

In this section we will collect most of the known facts about the hyperinvariant sub-

spaces of operators in the class (A) considered before, that is, algebraic operators. As
already noted earlier, this case reduces immediately to studying the lattice Hlat(T),
where T ∈ L(H) satisfies Tn

= 0 for some integer n ≥ 1.

We first review the finite-dimensional situation, in which case T is similar to an
operator of the form Jn1

⊕ Jn2
⊕ · · · ⊕ Jnk

, where n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 are
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integers, and Jn denotes the standard n × n nilpotent Jordan cell, satisfying Jne1 = 0,
Jne j = e j−1, 1 < j ≤ n, in the usual basis of C

n. Any hyperinvariant subspace

of an operator of this form has the form M = M1 ⊕ M2 ⊕ · · · ⊕ Mk, where each
M j is invariant for Jn j

. Since the invariant subspaces of Jn are totally ordered by
inclusion, M j is determined by its dimension m j , which is an arbitrary integer such

that 0 ≤ m j ≤ n j . More precisely, M j = ker J
m j
n j = ran J

n j−m j
n j . The space M is

hyperinvariant if and only if mi ≥ m j and ni − mi ≥ n j − m j whenever i ≤ j.
Observe in particular that we must have mi = m j whenever ni = n j so that (spatial)
multiplicity does not affect the labeling of the hyperinvariant subspaces. This result

was proved in [11]; a related result about characteristic subgroups in p-groups was
proved by Kaplansky [20] (see also [16, Theorem 67.1] and the pertinent remarks in
[10]).

It may be worth noting for future reference that this description of hyperinvariant

subspaces is a particular case of the following easily verified result.

Lemma 5.1 Let (Ti)i∈I be a norm-bounded family of operators acting on Hilbert

spaces, and let (Mi)i∈I be a family of closed spaces such that Mi is invariant for Ti

for i ∈ I. Then the space
⊕

i∈I Mi is hyperinvariant for
⊕

i∈I Ti if and only if Mi ⊕M j

is hyperinvariant for Ti ⊕ T j for all i, j ∈ I.

The lattice Hlat(T) can also be described completely for operators of class C0 with
finite multiplicity, and we will have more to say about this later.

The hyperinvariant subspace M associated with the integers m j ≤ n j can also be

written as

M =

k∨
j=1

(ker Tm j ∩ ran Tn j−m j ) =

k⋂
j=1

(ker Tm j ∨ ran Tn j−m j ).

This fact, also noted in [11], shows that Hlat(T) is generated as a lattice by the spaces
ker Tm and ran Tm, m = 0, 1, . . . , n. The above formula also implies that

ran Tn1−m1 ⊂ M ⊂ ker Tm1 .

In particular, ran Tn−1 (resp., ker Tn−1) is the smallest (resp., largest) nontrivial hy-

perinvariant subspace for T, where n = n1 is the order of nilpotency of T. When
n = 1, we have T = 0, and the only hyperinvariant subspaces are the trivial ones.
When n = 2, there are two possible lattices

• T = J2 : {0} ⊂ ker T = ran T ⊂ H,
• T = J2 ⊕ J1: {0} ⊂ ker T ⊂ ran T ⊂ H;

while for n = 3 there are four possibilities:

• T = J3: {0} ⊂ ran T2
= ker T ⊂ ran T = ker T2 ⊂ H,

• T = J3 ⊕ J2: {0} ⊂ ran T2 ⊂ ker T ⊂ ran T ⊂ ker T2 ⊂ H,

• T = J3 ⊕ J1: {0} ⊂ ran T2
= ran T ∩ ker T ⊂ ran T,

ker T ⊂ ran T ∨ ker T = ker T2 ⊂ H,
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• T = J3 ⊕ J2 ⊕ J1: {0} ⊂ ran T2 ⊂ ran T ∩ ker T ⊂ ran T,

ker T ⊂ ran T ∨ ker T ⊂ ker T2 ⊂ H.

Thus we have two totally ordered lattices with four and six elements, respectively, and
two which are not totally ordered with six and eight elements. When n = 4, there

are eight possible lattices. We will illustrate just the largest one, corresponding with
T = J4 ⊕ J3 ⊕ J2 ⊕ J1. In the diagram below, and in all later diagrams, the smaller
spaces are on the left, and the larger ones on the right.

In general, the operator Jn ⊕ Jn−1 ⊕ · · · ⊕ J1 has 2n hyperinvariant subspaces.

Nilpotent operators on infinite-dimensional Hilbert spaces were completely clas-
sified up to quasisimilarity in [1]. In the separable case, the result states that ev-
ery nilpotent operator is quasisimilar to a direct sum of the form Jn1

⊕ Jn2
⊕ · · · ,

where n1 ≥ n2 ≥ · · · ; operators of this form will be referred to as Jordan nilpo-

tent operators. The decreasing sequence n j must, of course, be stationary, so that
nk = nk+1 = · · · for sufficiently large k. The hyperlattice of a Jordan operator is then
isomorphic to the lattice of the finite-dimensional operator Jn1

⊕ Jn2
⊕ · · · ⊕ Jnk

, and
is therefore completely understood.

It is sometimes useful to deal with more general sums of Jordan cells. A generalized

Jordan operator is an operator of the form

( J1 ⊗ IN1
) ⊕ ( J2 ⊗ IN2

) ⊕ · · · ⊕ ( Jn ⊗ INn
),

where IN denotes the identity operator on a Hilbert space of dimension N , with
0 ≤ N ≤ ℵ0. Unlike Jordan operators, generalized Jordan operators are allowed

to have more than one cell of infinite multiplicity. While it is possible to have distinct
quasisimilar generalized Jordan operators, the situation is different for hyperqua-
sisimilarity.

Proposition 5.2 If two generalized Jordan operators are hyperquasisimilar, then they

are unitarily equivalent.

Proof Consider two generalized Jordan operators

T = ( J1 ⊗ IN1
) ⊕ ( J2 ⊕ IN2

) ⊕ · · · ⊕ ( Jn ⊗ INn
)

T ′
= ( J1 ⊗ IN ′

1
) ⊕ ( J2 ⊕ IN ′

2
) ⊕ · · · ⊕ ( Jn ⊗ IN ′

n
),

and quasiaffinities X,Y as in the definition of hyperquasisimilarity. We will show first
that

(X(ker T ∩ ran Tm))− = (ker T ′ ∩ ran T ′m)−
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for every positive integer m. Indeed, it is clear that Y ((ker T ′∩ran T ′m))− ⊂ ((ker T∩
ran Tm))−, and therefore

(ker T ′ ∩ ran T ′m)− = (XY (ker T ′ ∩ ran T ′m)−)−

⊂ (X(ker T ∩ ran Tm))−

⊂ (ker T ′ ∩ ran T ′m)−,

where we used the basic property of hyperquasisimilarity. Since X also maps Mm+1 =

(ker T ∩ ran Tm+1)− into M ′
m+1 = (ker T ′∩ ran T ′m+1)−, X induces an operator with

dense range from Mm⊖Mm+1 to M ′
m⊖M ′

m+1. The space Mm⊖Mm+1 has dimension

precisely Nm, so that necessarily Nm ≥ N ′
m for every m. The proposition follows by

symmetry.

D. Herrero [18] showed that the structure of the hyperlattice is not preserved un-
der quasisimilarity. He exhibited an operator T such that T3

= 0 and Hlat(T) con-
sists of five elements. This provides an example, since the hyperlattices of all Jordan
nilpotent operators of order three have 4, 6, or 8 elements. Actually, the simplest

example of non-invariance under quasisimilarity is obtained by considering the qua-
sisimilar operators

T = J1 ⊕ J2 ⊕ J2 ⊕ · · · , T ′
= J2 ⊕ J2 ⊕ · · · .

In this case, Hlat(T) has four elements and Hlat(T ′) has three elements. Note that

T is not a Jordan operator according to the definition adopted above, but it is a gen-
eralized Jordan operator. However, Herrero’s example actually exhibits a hyperlattice
which is not realized by a finite-dimensional nilpotent operator of order three. We
will see other such lattices later.

The hyperlattice of Herrero’s operator is still generated by the subspaces ker Tm

and (ran Tm)− for m = 0, 1, 2, 3. In fact Herrero conjectured (see especially his
review of [3]) that Hlat(T) is always generated by ker Tm and (ran Tm)− if T is nilpo-
tent and therefore T has a smallest and a largest nontrivial hyperinvariant subspace.

The latter statement is in fact true, as shown by the following result of Barraa [3].

Proposition 5.3 (Barraa) Let T ∈ L(H) be a nilpotent operator of order n, and M

a hyperinvariant subspace for T. There exists a unique integer k, 0 ≤ k ≤ n, such that

(ran Tn−k)− ⊂ M ⊂ ker Tk.

More precisely, assume that T and M are as above, and choose for each i =

1, 2, . . . , n an integer mi such that T i−1
M ⊂ (ran Tmi )− and T i−1

M 6⊂ (ran Tmi +1)−.
Then Barraa proved the following result.

Theorem 5.4 (Barraa) With the preceding notation, we have

n∨
i=1

(ker T i ∩ ran Tmi−i+1) ⊂ M.

Moreover, the inclusion is an equality in case ran T i is a closed space for all i = 1, 2, . . . ,
n − 1.
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The last assertion of the preceding theorem can also be deduced from the follow-
ing result of Williams [25]. Note however that Barraa’s result is actually proved for

nilpotent operators on a Banach space, while Williams’s result applies only to Hilbert
space.

Theorem 5.5 (Williams) Let T ∈ L(H) be a nilpotent operator such that Tm has

closed range for every m. Then T is similar to an orthogonal sum of Jordan cells (which

need not be a Jordan operator).

Corollary 5.6 (Williams) Under the hypotheses of Theorem 5.5, Hlat(T) is isomor-

phic to the hyperlattice of a finite-dimensional nilpotent operator.

Thus Herrero’s full conjecture is verified for operators whose powers have closed
ranges. Alas, we will soon see that this conjecture is not generally true, though the
following result verifies it when the degree of nilpotency is two.

Theorem 5.7 Let T ∈ L(H) be a nilpotent operator of order two. The only nontrivial

hyperinvariant subspaces of T are (ran T)− and ker T.

Proof Using the decomposition

H = (ran T)− ⊕ [ker T ⊖ (ran T)−] ⊕ [H ⊖ ker T],

we can write

T =




0 0 A

0 0 0
0 0 0




where A is one-to-one and has dense range. Every operator X ∈ {T} ′ then has the
form

X =




X11 X12 X13

0 X22 X23

0 0 X33




relative to this decomposition, where the entries X12, X13, X22 and X23 are arbitrary
bounded operators and AX33 = X11A.

Consider a nontrivial invariant subspace M for T. By Proposition 5.3, we have

(ran T)− ⊂ M ⊂ ker T.

Thus we can write M = (ran T)− ⊕ (M⊖ (ran T)−). If the second summand in this
orthogonal sum contains a nonzero vector, by applying to this vector operators of the
form 


0 0 0
0 X22 0
0 0 0


 ∈ {T} ′,

we obtain all vectors in ker T ⊖ (ran T)−. It follows that M⊖ (ran T)− is either zero,
or ker T ⊖ (ran T)−, as desired.
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6 Nilpotents of Order Three

Let T ∈ L(H) be a nilpotent operator of order three. Herrero [18] conjectured
that Hlat(T) consists of the eight subspaces {0}, (ran T2)−, ker T ∩ (ran T)−, ker T,

(ran T)−, ker T ∨ ran T, ker T2, and H. When these spaces are distinct, this lattice
has the diagram below, with ker T and (ran T)− not comparable.

Observe that the space (ker T∩ ran T)− does not appear on this list, and neither
does its dual version (ker T∗∩ran T∗)⊥. The following result indicates that these two

subspaces can in fact be different from the other eight.

Theorem 6.1 Let T ∈ L(H) be an operator such that T3
= 0. Define spaces

H1 = (ran T2)−, H2 = (ker T∩ ran T)− ⊖ (ran T2)−,

H3 = (ker T ∩ (ran T)−) ⊖ (ker T∩ ran T)−, H4 = ker T ⊖ (ker T ∩ (ran T)−),

H5 = (ker T ∨ ran T) ⊖ ker T, H6 = (ker T∗ ∩ ran T∗)⊥ ⊖ (ker T ∨ ran T,

H7 = ker T2 ⊖ (ker T∗ ∩ ran T∗)⊥, H8 = H ⊖ ker T2

The matrix of the operator T relative to the decomposition H = H1 ⊕ H2 ⊕ · · · ⊕ H8

has the form

T =




0 0 0 0 T15 T16 T17 T18

0 0 0 0 0 0 T27 T28

0 0 0 0 0 0 0 T38

0 0 0 0 0 0 0 T48

0 0 0 0 0 0 0 T58

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,

where T15, T58 and T27 are quasiaffinities,

T−1
16 (ran T15) = {0}, T∗−1

38 (ran T∗
58 + ran T∗

48) = {0},

and T∗−1
48 (ran T∗

58) is dense in H4.

Conversely, assume that H1, H2, . . . , H8 are Hilbert spaces, and Ti j : H j → Hi are

bounded linear operators satisfying these conditions. Then the 8 × 8 matrix T written
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above satisfies T3
= 0, and

(ran T2)− = H1, (ker T∩ ran T)− = H1 ⊕ H2,

ker T ∩ (ran T)− = H1 ⊕ H2 ⊕ H3, ker T = H1 ⊕ H2 ⊕ H3 ⊕ H4,

ker T ∨ ran T = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5,

(ker T∗ ∩ ran T∗)⊥ = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5 ⊕ H6,

ker T2
= H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5 ⊕ H6 ⊕ H7.

When T is given by such a matrix, we have

(ran T)− = H1 ⊕ H2 ⊕ H3 ⊕

(
ran

[
T48

T58

])−

⊕ {0} ⊕ {0} ⊕ {0}.

Proof The first four columns of the matrix of T are clearly zero as they correspond
with the restriction of T to its kernel. Similarly, the last three rows are zero because
the range of T is contained in H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5. Next we see that

TH5 ⊂ T((ran T)−) ⊂ (ran T2)− = H1,

so that Ti5 = 0 for i ≥ 2. We also have T∗(ker T∗2) ⊂ ker T∗∩ran T∗, and by passing
to orthogonal complements we see that

T((ker T∗ ∩ ran T∗)⊥) ⊂ (ker T∗2)⊥ = (ran T2)− = H1.

Since H6 ⊂ (ker T∗ ∩ ran T∗)⊥, we must have Ti6 = 0 for i ≥ 2 as well. Similarly,

TH7 ⊂ T(ker T2) ⊂ ker T ∩ ran T ⊂ H1 ⊕ H2,

and thus Ti7 = 0 for i ≥ 2.
We have established that the required 55 entries in the matrix of T are equal to

zero, and we now focus on the remaining nine entries. To begin, we note that any
vector h5 ∈ H5 such that T15h5 = 0 will belong to ker T = H1 ⊕ H2 ⊕ H3 ⊕ H4,

and must therefore be zero. Also, note that T2 has only one nonzero entry, namely

T15T58 = T2|(H ⊖ ker T2) → (ran T2)−,

which must be one-to-one with dense range. We conclude that T15 has dense range
and T58 is one-to-one. To see that T58 is a quasiaffinity as well, observe that

ran T ⊂ H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ ran T58,

so that

H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5 = ker T ∨ ran T ⊂ H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ (ran T58)−.
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Let us note at this point that every matrix of the given form, with T15 and T58

quasiaffinities, represents an operator T such that T3
= 0, (ran T2)− = H1, and

ker T2
= H

⊥
8 . To complete the proof, we will assume from this point on just that

T is such a matrix, with T15, T58 quasiaffinities, and we will derive necessary and
sufficient conditions on the matrix entries so that the remaining five hyperinvariant
subspaces are given by the correct formulas.

We begin with (ker T ∩ ran T)−. Consider a vector h = Tk ∈ ker T. Thus we have
the following equations:

h1 = T15k5 + T16k6 + T17k7 + T18k8, h2 = T27k7 + T28k8,

h3 = T38k8, h4 = T48k8, h5 = T58k8,

h6 = 0, h7 = 0, h8 = 0,

and

T15h5 + T16h6 + T17h7 + T18h8 = 0, T27h7 + T28h8 = 0,

T38h8 = 0, T48h8 = 0, T58h8 = 0.

The last five equations reduce to T15h5 = 0, so that h5 = 0 as well. Then T58k8 =

h5 = 0 implies k8 = 0, and the formulas now give

h1 = T15k5 + T16k6 + T17k7, h2 = T27k7,

h3 = 0, h4 = 0, h5 = 0 h6 = 0, h7 = 0, h8 = 0,

where k5, k6, k7 are now arbitrary. Since T15 has dense range, we see that

(ker T ∩ ran T)− = H1 ⊕ (ran T27)−.

We conclude that the equality (ker T ∩ ran T)− = H1 ⊕ H2 holds if and only if T27

has dense range. We next focus on ker T, which consists of vectors h satisfying

T15h5 + T16h6 + T17h7 + T18h8 = 0, T27h7 + T28h8 = 0,

T38h8 = 0, T48h8 = 0, T58h8 = 0.

Since T58 is one-to-one, these equations reduce to

T15h5 + T16h6 + T17h7 = 0, T27h7 = 0, h8 = 0.

Thus the equality ker T = H1 ⊕ H2 ⊕ H3 ⊕ H4 occurs if and only if the operator

[
T15 T16 T17

0 0 T27

]
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is one-to-one. From this point on we shall assume that this matrix is one-to-one, and
that T27 has dense range. Under these additional assumptions it is clear that

(ran T)− = H1 ⊕ H2 ⊕


ran




T38

T48

T58







−

,

so that

ker T ∩ (ran T)− = H1 ⊕ H2 ⊕


(H3 ⊕ H4 ⊕ {0}) ∩


ran




T38

T48

T58







−
 .

We conclude that the equality ker T ∩ (ran T)− = H1 ⊕ H2 ⊕ H3 is equivalent to

(H3 ⊕ H4 ⊕ {0}) ∩


ran




T38

T48

T58







−

= H3 ⊕ {0} ⊕ {0}.

Taking orthogonal complements, this condition is equivalent to saying that the space
ker[T∗

38, T∗
48, T∗

58]+{0}⊕{0}⊕H5 is a dense subspace of {0}⊕H4⊕H5. This amounts

to two conditions. First, ker[T∗
38, T∗

48, T∗
58] must be contained in {0}⊕H4 ⊕H5, and

this means precisely that T∗−1
38 (ran T∗

48 + ran T∗
58) = {0}. Second, the collection of

vectors of the form h4 ⊕ h5 such that T∗
48h4 + T∗

58h5 = 0 must be dense in H4 ⊕ H5

modulo {0} ⊕ H5, and this means precisely that T∗−1
48 (ran T∗

58) is dense in H4.

From this point on we also assume that these last two conditions are satisfied.
Note that we can calculate (ran T)− at this point. Indeed, we already know that this
space contains H1⊕H2⊕H3, so that the formula in the statement becomes obvious.
It now follows easily that

ker T ∨ ran T = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ (ran T58)− = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5.

To finish the job, we must find equivalent conditions for the equality

(ker T∗ ∩ ran T∗)⊥ = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ H5 ⊕ H6,

which is the same as (ker T∗ ∩ ran T∗)− = H7 ⊕ H8. Consider then a vector h =

T∗k ∈ ker T∗. Thus we have

h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = T∗
15k1, h6 = T∗

16k1,

h7 = T∗
17k1 + T∗

27k2, h8 = T∗
18k1 + T∗

28k2 + T∗
38k3 + T∗

48k4 + T∗
58k5,

and

T∗
15h1 = 0, T∗

16h1 = 0, T∗
17h1 + T∗

27h2 = 0,

T∗
18h1 + T∗

28h2 + T∗
38h3 + T∗

48h4 + T∗
58h5 = 0.
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Since h1, h2, h3, h4 are zero, the last equation yields T∗
58h5 = 0, so that h5 = 0 as well.

Therefore T∗
15k1 = h5 = 0, and we deduce that k1 = 0. Thus the general form of a

vector h ∈ ker T∗ ∩ ran T∗ is

0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ (T∗
27k2) ⊕ (T∗

28k2 + T∗
38k3 + T∗

48k4 + T∗
58k5),

with k2, k3, k4, k5 arbitrary. Now, T∗
58 has dense range, and therefore

(ker T∗ ∩ ran T∗)− = (ran T∗
27)− ⊕ H8.

Thus the condition (ker T∗ ∩ ran T∗)− = H7 ⊕ H8 is equivalent to the fact that T27

is one-to-one.

Finally, we need to to remark that, when T27 is one-to-one, the operator

[
T15 T16 T17

0 0 T27

]

is one-to-one if and only if [T15, T16] is one-to-one. This last condition is the same

as T−1
16 (ran T15) = {0} because T15 is also one-to-one.

The preceding statement takes a more symmetric form if we use a shorter chain

of hyperinvariant subspaces, excluding the space ker T. This amounts to regarding
H3⊕H4 as a single space. The interested reader should have no difficulty formulating
this result.

It is easy to see that operators Ti j as above can always be constructed if H1, H5,
H8 have the same infinite dimension, H2, H7 have the same dimension (finite or in-
finite), and H3, H6 have smaller dimension than H1 (and H8). If one takes T48 = 0,
then

(ran T)− = H1 ⊕ H2 ⊕ H3 ⊕ {0} ⊕ H5 ⊕ {0} ⊕ {0} ⊕ {0}.

We see thus that it is possible for the lattice of T to contain these ten distinct, canon-
ically defined, hyperinvariant subspaces. The lattice they form is pictured below.

One may ask whether a weaker form of Herrero’s conjecture is true: are these ten
spaces the only hyperinvariant subspaces of an operator T such that T3

= 0? We
will see that the answer to this question is also negative. This general 8 × 8 matrix is,

however, not suitable for determining the commutant of T. We will instead focus on
a simpler class of operators. Consider two operators A, B ∈ L(H) such that

(i) A and B are one-to-one;
(ii) AB has dense range;
(iii) H ⊖ BH has dimension one.
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One possible choice is A = I + S∗, B = S, where S is a unilateral shift of multiplicity
one. The operator T0 ∈ L(H ⊕ H ⊕ H) defined by the matrix

T0 =




0 A 0

0 0 B

0 0 0




is nilpotent of order three. To identify the 8 × 8 matrix for T0, one should note that
A plays the role of [T15, T16], and B plays the role of

[
T48

T58

]
, with T48 = 0, and several

of the spaces H j are equal to zero.

Lemma 6.2 The only nontrivial hyperinvariant subspaces of T0 are

ker T0 = (ran T2
0 )− = H ⊕ {0} ⊕ {0},

(ran T0)− = H ⊕ (BH)− ⊕ {0}, ker T2
0 = H ⊕ H ⊕ {0}.

Proof Let M be a nontrivial hyperinvariant subspace for T0. By Proposition 5.3 we
have either (ran T0)− ⊂ M ⊂ ker T2

0 , or (ran T2
0 )− ⊂ M ⊂ ker T0. In the first case

we have either M = ker T2
0 , or M = (ran T0)−, because these are the only linear

spaces satisfying these inclusions. In the second case we have M = (ran T2
0 )− =

ker T0.

It may be worth noting at this point that a finite-dimensional operator

T = Jn1
⊕ Jn2

⊕ · · · ⊕ Jnk

such that n1 ≥ n2 ≥ · · · ≥ nk, satisfying an equation of the form ran Tm
= ker Tn1−m

with 1 ≤ m ≤ n1 − 1 is quite special. Indeed, in this case one sees immediately
that n1 = n2 = · · · = nk, so the hyperlattice of T consists of the n1 + 1 elements
{0}, ker Tn1−1, ker Tn1−2, . . . , ker T, H.

Our operator T0 exhibits another interesting property.

Lemma 6.3 An operator X : H ⊕ H ⊕ H → C
2

= C ⊕ C satisfies the equation

XT0 = J2X if and only if

X =

[
0 X12 X13

0 0 X23

]
,

with X12B = X23.

Proof If we write

X =

[
X11 X12 X13

X21 X22 X23

]
,

the commutation relation in the statement amounts to
[

0 X11A X12B

0 X21A X22B

]
=

[
X21 X22 X23

0 0 0

]
.

Clearly then X21 = 0 and X11AB = X22B = 0. Since AB has dense range, X11 = 0,
and then X22 = X11A = 0 as well.
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In the following result we denote by e1, e2 the standard basis in C
2, so that J2e1 = 0

and J2e2 = e1.

Proposition 6.4 The only nontrivial hyperinvariant subspaces of the operator T1 =

T0 ⊕ J2 are, in increasing order,

(ran T2
1 )− = (H ⊕ {0} ⊕ {0}) ⊕ {0},

ker T1 = (H ⊕ {0} ⊕ {0}) ⊕ Ce1,

(ran T1)− = (H ⊕ (BH)− ⊕ {0}) ⊕ Ce1, (H ⊕ H ⊕ {0}) ⊕ Ce1,

ker T2
1 = (H ⊕ H ⊕ {0}) ⊕ C

2.

In particular, Hlat(T1) contains one space which is not among the ten canonical hyper-

invariant ones.

Proof Let M be a nontrivial hyperinvariant subspace for T1, so that either

(ran T2
1 )− ⊂ M ⊂ ker T1, or (ran T1)− ⊂ M ⊂ ker T2

1 .

The first possibility yields only two subspaces because ker T1 ⊖ (ran T2
1 )− has dimen-

sion one. In the second case we must have M = M1 ⊕M2 with H⊕ (BH)−⊕{0} ⊂
M1 ⊂ H⊕H⊕{0} and Ce1 ⊂ M2 ⊂ C

2, which gives the following four possibilities
for M:

(ran T1)− = (H ⊕ (BH)− ⊕ {0}) ⊕ Ce1,

(H ⊕ (BH)− ⊕ {0}) ⊕ C
2,

(H ⊕ H ⊕ {0}) ⊕ Ce1,

ker T2
1 = (H ⊕ H ⊕ {0}) ⊕ C

2.

It is easy to see that (H ⊕ (BH)− ⊕ {0}) ⊕ C
2 is not hyperinvariant by noting that

operators of the form

Y =




AY22 0

0 Y22

0 0


 : C

2 → H ⊕ H ⊕ H

satisfy the equation Y J2 = T0Y . On the other hand, (H⊕H⊕{0})⊕Ce1 is hyperin-
variant. Indeed, any operator X such that XT0 = J2X satisfies X(H⊕H⊕{0}) ⊂ Ce1

by the preceding lemma, and any operator Y such that Y J2 = T0Y satisfies

Ye1 ∈ Y ker J2 ⊂ ker T0 ⊂ H ⊕ H ⊕ {0}.

As we noted earlier, a finite-dimensional nilpotent operator of order three has at
most eight hyperinvariant subspaces.
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Proposition 6.5 The operator T2 = T0 ⊕ J2 ⊕ J1 has exactly nine hyperinvariant

subspaces, and Hlat(T2) is not self-dual.

Proof The hyperinvariant subspaces of T2 are of the form M = M1 ⊕ M2, with
M1 ∈ Hlat(T1) and M2 ∈ {{0}, C}. We must also have either

(H ⊕ {0} ⊕ {0}) ⊕ {0} ⊕ {0} = (ran T2
2 )− ⊂ M ⊂ ker T2

= (H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ C,

or

(H ⊕ (BH)− ⊕ {0}) ⊕ Ce1 ⊕ {0} = (ran T2)− ⊂ M ⊂ ker T2
2

= (H ⊕ H ⊕ {0}) ⊕ C
2 ⊕ C.

Besides the two extremes (ran T2
2 )− and ker T2, the first set of inclusions is also satis-

fied by

(H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ {0} = (ran T2)− ∩ ker T2,

and (H⊕{0}⊕ {0})⊕ C which is not hyperinvariant because {0}⊕ C is not hyper-
invariant for J2 ⊕ J1. The second set of inclusions yields the four possibilities

(ran T2)−, ker T2
2 ,

(H ⊕ (BH)− ⊕ 0) ⊕ Ce1 ⊕ C = (ker T2) ∨ (ran T2)−,

(H ⊕ H ⊕ {0}) ⊕ Ce1 ⊕ C.

It is easy to see that this last space is in fact hyperinvariant.

Little effort is now required to exhibit one more lattice in our collection.

Proposition 6.6 The operator T3 = T∗
0 ⊕T0 ⊕ J2 ⊕ J1 has exactly ten hyperinvariant

subspaces, and Hlat(T3) is self-dual.

Proof We use, as before, the fact that a nontrivial hyperinvariant subspace M for T3

satisfies either (ran T2
3 )− ⊂ M ⊂ ker T3, or (ran T3)− ⊂ M ⊂ ker T2

3 , and it must
also be a sum M1 ⊕M2, with M1 ∈ Hlat(T∗

0 ) and M2 ∈ Hlat(T2). Thus M1 must be
one of the five spaces

{0}⊕{0}⊕{0} ⊂ {0}⊕{0}⊕H ⊂ {0}⊕(BH)⊥⊕H ⊂ {0}⊕H⊕H ⊂ H⊕H⊕H,

while M2 must be among the nine subspaces described in the preceding proposition.
Now,

(ran T2
3 )− = ({0} ⊕ {0} ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ {0} ⊕ {0},

ker T3 = ({0} ⊕ (BH)⊥ ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ C,
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leaving the following four possibilities for the intermediate spaces:

({0} ⊕ (BH)⊥ ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ {0} = (ker T3) ∨ ran T3,

({0} ⊕ {0} ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ {0},

({0} ⊕ {0} ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1 ⊕ C,

({0} ⊕ (BH)⊥ ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ {0} ⊕ {0}.

The third of these two spaces is not hyperinvariant because there is an operator Z so

that Z J1 = T∗
0 J and the range of Z generates {0} ⊕ (BH)⊥ ⊕ {0}. The fourth is not

hyperinvariant because there is W such that W T∗
0 = J2W and the range of W is Ce1.

A similar analysis (or an appeal to the self-duality of Hlat(T3)) yields the remaining
four nontrivial hyperinvariant subspaces

(ran T3)− = ({0} ⊕ H ⊕ H) ⊕ (H ⊕ (BH)− ⊕ {0}) ⊕ Ce1 ⊕ {0},

ker T3 ∨ ran T3 = ({0} ⊕ H ⊕ H) ⊕ (H ⊕ (BH)− ⊕ {0}) ⊕ Ce1 ⊕ C,

({0} ⊕ H ⊕ H) ⊕ (H ⊕ H ⊕ {0}) ⊕ Ce1 ⊕ C,

ker T2
3 = ({0} ⊕ H ⊕ H) ⊕ (H ⊕ H ⊕ {0}) ⊕ C

2 ⊕ C.

The hyperlattice is obviously self-dual because T3 and T∗
3 are unitarily equivalent.

Let us note here that the hyperlattice of T3 contains two noncanonical spaces.
Also, the interested reader may verify that Hlat(T∗

0 ⊕ T0 ⊕ J2) is a totally ordered

lattice of eight elements: {0},

(ran(T∗
0 ⊕ T0 ⊕ J2)2)− = ({0} ⊕ {0} ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ {0},

({0} ⊕ {0} ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1,

ker(T∗
0 ⊕ T0 ⊕ J2) = ({0} ⊕ (BH)⊥ ⊕ H) ⊕ (H ⊕ {0} ⊕ {0}) ⊕ Ce1,

(ran(T∗
0 ⊕ T0 ⊕ J2))− = ({0} ⊕ H ⊕ H) ⊕ (H ⊕ (BH)− ⊕ {0}) ⊕ Ce1,

({0} ⊕ H ⊕ H) ⊕ (H ⊕ H ⊕ {0}) ⊕ Ce1,

ker(T∗
0 ⊕ T0 ⊕ J2)2

= ({0} ⊕ H ⊕ H) ⊕ (H ⊕ H ⊕ {0}) ⊕ C
2,

and the whole space (H ⊕ H ⊕ H) ⊕ (H ⊕ H ⊕ H) ⊕ C
2.

The record number of hyperinvariant subspaces for a nilpotent of order three is
ten so far. In order to surpass this record we need to be more specific about the oper-
ators A and B used in the construction of T0. Assume therefore that the Hilbert space

H is ℓ2, (e j)
∞
j=0 denotes the standard orthonormal basis of ℓ2, and α ∈ (1, 2). We

define operators Aα, B on ℓ2 by requiring that Be j = e j+1 for all j, Aαe j = (1/2 j)e j−1

for j ≥ 1, and Aαe0 = xα, where xα = (1, α−1, α−2, . . . ) =
∑∞

j=0 α− je j . It is
easy to verify that Aα, B are one-to-one, AαB has dense range, and B has range of
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codimension one. Therefore the operator

Tα =




0 Aα 0

0 0 B

0 0 0




has just five hyperinvariant subspaces:

{0}, (ran T2
α)− = ker Tα,

K0 = (ran Tα)− = ℓ2 ⊕ Bℓ2 ⊕ {0},

K1 = ker T2
α = ℓ2 ⊕ ℓ2 ⊕ {0},

and the whole space ℓ2 ⊕ ℓ2 ⊕ ℓ2.

In order to study the hyperlattices of direct sums of operators of the form Tα, we
need an interpolation result. For each α ∈ (1, 2] denote by Hα the dense linear

manifold in ℓ2 consisting of those sequences (ξ j)
∞
j=0 such that

∑∞
j=0 α2 j |ξ j |

2 < ∞.
More generally, assume that ϕ : [0, 1] → [0,∞) is a continuous, increasing, concave
function such that ϕ(0) = 0. We denote by Hϕ the collection of those sequences
(ξ j)

∞
j=0 such that

∑∞
j=1 ϕ(2−2 j)−1|ξ j |

2 < ∞. The linear manifold Hα corresponds

with the concave function ϕα(t) = t log2 α. The following result was proved by Peetre

[22, 23] (see also[12, 14] for related results and norm estimates).

Lemma 6.7 Let X ∈ L(ℓ2) be an operator such that XH2 ⊂ H2. Then we also have

XHϕ ⊂ Hϕ for all continuous, increasing, concave functions ϕ : [0, 1] → [0,∞) such

that ϕ(0) = 0. In particular, XHα ⊂ Hα for α ∈ (1, 2].

Proposition 6.8 Fix two numbers α, α ′ ∈ (1, 2) such that α < α ′. The nontriv-

ial hyperinvariant subspaces of the operator T = Tα ⊕ Tα ′ are, in increasing order,

(ran T2)− = ker T, (ran T)− = K0 ⊕ K0, K0 ⊕ K1, and ker T2
= K1 ⊕ K1.

Proof Since (ran T2)− = ker T, there are no other nontrivial hyperinvariant sub-
spaces contained in ker T. The remaining nontrivial spaces M in Hlat(T) must satisfy

(ran T)− = K0 ⊕ K0 ⊂ M ⊂ ker T2
= K1 ⊕ K1,

which yields the two possibilities K0 ⊕ K1 and K1 ⊕ K0. To show that the second
of these is not hyperinvariant it suffices to construct an operator X such that XTα =

Tα ′X and XK1 6⊂ K0. One such operator is given by

X =




X11 0 0
0 X22 0
0 0 X33


 ,

where X11e j = X33e j = (α/α ′) je j , for all j ≥ 0, and X22e j = (α/α ′) j−1e j for
j ≥ 1, and X22e0 = e0. (Observe that X11xα = xα ′ .) Finally, to show that K0 ⊕ K1
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is hyperinvariant, it suffices to show that XK1 ⊂ K0 for any bounded operator X

satisfying XTα ′ = TαX. The operators X satisfying this equation have the form

X =




X11 X12 X13

0 X22 X23

0 0 X33


 ,

where X11Aα ′ = AαX22, X22B = BX33, X12B = BX23, and X13 is an arbitrary bounded
operator on ℓ2. These equations imply that X11Aα ′B = AαX22B = AαBX33, so that
X11 must leave invariant the common range of AαB and Aα ′B; this range is precisely
the space H2 considered above. Since α ′ > α, the vector xα ′ belongs to Hα, and the

preceding lemma implies that X11xα ′ belongs to Hα as well. On the other hand, the
equality X11xα ′ = X11Aα ′e0 = AαX11e0 shows that X11xα ′ belongs to the range of Aα,
and this range is the linear space generated by H2 and the vector xα. In other words,
we can write X11xα ′ = v1 +λxα with v1 ∈ H2 and λ ∈ C. If the scalar λ were not zero,

we would conclude that xα itself belongs to Hα, and this is clearly not the case. We
conclude that X11xα ′ belongs to H2, and therefore X11xα ′ = AαBy for some y ∈ ℓ2.
Thus AαX22e0 = X11Aα ′e0 = X11xα ′ = AαBy, showing that X22e0 = By belongs to
the range of B. Now, ℓ2 is the linear span of Bℓ2 and e0, and the equation X22B = BX33

shows that X22 leaves the range of B invariant. We conclude that X22ℓ
2 is contained

in Bℓ2. This implies immediately the desired conclusion that XK1 ⊂ K0.

We can now construct nilpotent operators of order three with rather large hyper-
lattices. Consider indeed an arbitrary set S ⊂ (1.5, 2), and construct the operator

TS =
⊕

α∈S Tα. Observe that the norms of the direct summands are bounded since
α does not come too close to 1. Given a function f : S → {0, 1}, we will consider the
space K f =

⊕
α∈S K f (α), where the spaces K0, K1 are the hyperinvariant subspaces

of Tα considered above. Observe that K f = (ran TS)− if f = 0, and K f = ker T2
S if

f = 1. We can now state the following result, whose proof is an immediate conse-
quence of the preceding proposition and of Lemma 5.1.

Theorem 6.9 Let S ⊂ (1.5, 2) be an arbitrary set, and define TS =
⊕

α∈S Tα. The

only nontrivial hyperinvariant subspaces of TS are (ran T2
S )− = ker TS and the spaces

K f , where f : S → {0, 1} is a nondecreasing function. The lattice Hlat(T) is totally

ordered.

One can now get many examples of lattices by choosing various sets S. If S is a
finite set with n elements, there are precisely n + 1 nondecreasing functions f : S →
{0, 1}, so that Hlat(T) will have precisely n + 4 elements (counting the trivial ones).

If S is well-ordered, we obtain countably many hyperinvariant subspaces. Since every
countable well-ordering type can be realized as a subset of (1.5, 1), it follows that
we obtain ℵ1 mutually nonisomorphic lattices of this type. We obtain another ℵ1

lattices by considering sets S which are well-ordered relative to reverse inequality.

If S is dense in (1.5, 2), we obtain a continuum of hyperinvariant subspaces. Still
more lattices can be obtained by considering direct sums of operators of the form
TS, T∗

S , J2, and J1. The interested reader will be able to determine these lattices using
techniques illustrated earlier in this section.
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We will explore a few more examples which yield hyperlattices with more compli-
cated structure. We start by constructing a family of concave functions.

Lemma 6.10 Construct a function ϕ : [0, 1/2] → [0,∞) such that ϕ(0) = 0, t1/2 ≤
ϕ(t) ≤ t1/4 for t = 2−4n

, n = 0, 1, 2 . . . , and ϕ is obtained by linear interpolation at

all other points. Then ϕ is concave.

Proof Setting tn = 2−4n

, it suffices to verify the inequalities

t
1/4
n − t

1/2
n+1

tn − tn+1
≤

t
1/2
n+1 − t

1/4
n+2

tn+1 − tn+2
,

and this is easily done.

Now we construct a sequence of functions ϕn in the following way. Consider a

sequence of pairwise disjoint infinite sets Sn of natural numbers, and set ϕn(tk) = t
1/2
k

for k ∈ Sn, ϕn(tk) = t
1/4
k for k /∈ Sn. Extend ϕn by linear interpolation to [0, 1/2], and

extend it as a concave function on [0, 1] making it, for instance, constant on [1/2, 1].

Also define vectors xn = (ξ(n)
j )∞j=1 ∈ ℓ2 by setting ξ(n)

j = ϕn(2−2 j) if 2 j = 24n

for
some n ∈ Sn, and ξ(n)

j = 0 for all other values of j. The important property of these
vectors is that xn belongs to Hϕm

if and only if n = m.

Now define operators An, B on ℓ2 by requiring that Be j = e j+1 for all j, Ane j =

2− je j for j ≥ 1, and Ane0 = xn. As seen before, the only nontrivial hyperinvariant
subspaces of the operator

Tn =




0 An 0

0 0 B

0 0 0




are ker Tn, K0 = ℓ2⊕Bℓ2⊕{0}, and K1 = ℓ2⊕ℓ2⊕{0}. The techniques used earlier

will easily yield the following result.

Theorem 6.11 Given a subset S of the natural numbers, consider the operator

TS =
⊕
n∈S

Tn.

The only nontrivial hyperinvariant subspaces of TS are ker TS and the subspaces

K f =
⊕
n∈S

K f (n),

where f : S → {0, 1} is an arbitrary function.

Thus, if S contains a finite number n of elements, the hyperlattice of TS contains
precisely 2n + 3 spaces. If S is infinite, there is a continuum of hyperinvariant sub-
spaces. The following diagram represents the case n = 4.
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As mentioned earlier in this section, it was conjectured that the lattice Hlat(T) of
a nilpotent operator is generated by all the spaces ker T j and (ran Tk)−. In particu-
lar, such lattices would be finite. The preceding results reveal a completely different
reality, which we summarize below.

Theorem 6.12 There exist operators T ∈ L(H) such that T3
= 0 and Hlat(T) is

totally ordered and contains 2ℵ0 elements.

The analysis of canonical hyperinvariant subspaces seems to be much more dif-
ficult for nilpotent operators of order four. To see why, consider the following six
spaces:

(ran T ∩ (ran T2 ∨ ker T))−, (ran T)− ∩ (ran T2 ∨ ker T),

(ran T ∩ (ker T∗2 ∩ ran T∗)⊥)−, (ran T)− ∩ (ker T∗2 ∩ ran T∗)⊥,

(ran T ∩ ker T)− ∨ ran T2, ((ran T)− ∩ ker T) ∨ ran T2.

These six spaces coincide when T acts on a finite-dimensional space, but are most
likely distinct in general. In addition, one can expect quite a variety of hyperlattices
based on the preceding constructions.

The examples in this section indicate that the classification of the lattices Hlat(T),
for T a nilpotent operator, will be a difficult task.

To conclude this section, let us note that the nilpotent operators studied here are
quasisimilar to J3 ⊗ Iℵ0

, but many of them are not mutually hyperquasisimilar as
they exhibit different lattices of hyperinvariant subspaces. On the other hand, due to

their special structure, these operators generate the same closed similarity orbit by a
fundamental result of Apostol, Fialkow, Herrero, and Voiculescu[2].

7 Coarse Structure for Hyperinvariant Subspaces

We conclude this section with some general remarks on the structure of the lattice of
hyperinvariant subspaces for general nilpotent operators. To start with, consider two
arbitrary operators T, T ′. We can always construct maps

ΦT,T ′ , ΨT,T ′ : Hlat(T) → Hlat(T ′)
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as follows:

ΦT,T ′(M) =
∨
{XM : XT = T ′X}, M ∈ Hlat(T),

ΨT,T ′(M) =
⋂
{Y−1

M : Y T ′
= TY}, M ∈ Hlat(T),

where, of course, X,Y represent bounded linear operators between the relevant
Hilbert spaces. It is easy to verify that

ΦT,T ′(M) ⊂ ΨT,T ′(M), ΨT,T ′(M) = (ΦT∗,T ′∗(M⊥))⊥

and

(†) ΦT ′,T(ΨT,T ′(M)) ⊂ M ⊂ ΨT ′,T(ΦT,T ′(M))

for all M ∈ Hlat(T). When T is an operator of class C0, and T ′ is the Jordan model
of T, it is known [5, 7, see Theorem III.2.8] that ΦT,T ′(ΦT ′,T(M ′)) = M ′ for all
M ′ ∈ Hlat(T ′). It follows that the hyperinvariant subspaces of T can be classi-

fied using Hlat(T ′). More precisely, for every M ∈ Hlat(T) there exists a unique
M ′ ∈ Hlat(T ′) (namely, ΦT,T ′(M)) such that ΦT ′,T(M ′) ⊂ M ⊂ ΨT ′,T(M ′). If
the operator T has finite cyclic multiplicity (or, more generally, if T has the finite-
ness property (P); see [5, 7]), then ΦT,T ′ = ΨT,T ′ , and this map is an isomorphism

between the hyperlattices of T and T ′.
Since nilpotent operators are essentially of class C0 (they may not be contractions,

but we can always multiply them by small scalars to decrease their norm), the same
result applies, thereby providing a classification of the hyperinvariant subspaces. Un-

fortunately, this classification might put in the same class many distinct hyperinvari-
ant subspaces from the lattice generated by the kernels and ranges of the powers of
a nilpotent operator T [1, 7]. To see how this can occur, assume that T = T ′ ⊕ T ′ ′,

with T ′
= Jn⊕ Jn⊕· · · , and T ′ ′ a nilpotent of order at most n on a separable Hilbert

space. In this case T ′ is the Jordan model of T, and Hlat(T ′) consists precisely of the
n + 1 spaces ker T ′m, m = 0, 1, . . . , n. The reader will verify without difficulty that

ΦT ′,T(ker T ′m) = (ran Tn−m)−, ΨT ′,T(ker T ′m) = ker Tm, m = 0, 1, . . . , n,

so that the classification in this case amounts to the statement that every element M ∈
Hlat(T) satisfies (ran Tn−m)− ⊂ M ⊂ ker Tm for a unique m. Note that this also
follows from Proposition 5.2, and one can deduce from the argument above a proof
of that proposition by noting that Hlat(T) is canonically isomorphic to Hlat(T⊕T⊕
· · · ).

Assume for the moment that T is an arbitrary operator. One can still use the maps
Φ and Ψ to compare Hlat(T) with Hlat( Jn) for some integer n.

Proposition 7.1 For every integer m ≤ n, we have

Φ Jn,T(ker Jm
n ) = (ker Tm ∩ ran Tn−m)−

and

Ψ Jn,T(ker Jm
n )⊥ = (ran T∗m ∩ ker T∗n−m)−.
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Proof Observe that the second relation follows from the first upon replacing Jn, T, m

by J∗n , T∗, and n − m, respectively. Therefore we only prove the first equality. The

fact that Φ Jn,T(ker Jm
n ) ⊂ (ker Tm ∩ ran Tn−m)− follows from the equality ker Jm

n =

ran Jn−m
n . To conclude the proof. take a vector x ∈ ran Tm∩ker Tn−m. Since Tmx = 0

and x = Tn−mz for some z, we must have Tnz = 0. An operator X such that X Jn =

TX can now be obtained by setting Xe1 = Tn−1z, Xe2 = Tn−2z, . . . , Xem = x, . . . ,

Xen = z. Thus x does indeed belong to Φ Jn,T(ker Jm
n ).

The preceding result yields an interesting fact even when n = 1.

Corollary 7.2 Given an arbitrary operator T, and a space M ∈ Hlat(T), we either

have M ⊃ ker T, or M ⊂ ran T.

Proof The space ΦT, J1
(M) can be either {0} or C. By virtue of (†), in the first case,

M ⊂ Ψ J1,T({0}) = (ran T)−, while in the second case, M ⊃ Φ J1,T(C) = ker T.

We can apply Proposition 7.1, along with (†), for all values of n to obtain the

following general result.

Theorem 7.3 Let T ∈ L(H) be an arbitrary operator, M ∈ Hlat(T), and define

pn, qn ≤ n by ΦT, Jn
(M) = ker J

pn
n , ΨT, Jn

(M) = ker J
qn
n , n ≥ 1. We then have

∞∨
n=1

(ker Tqn ∩ ran Tn−qn ) ⊂ M ⊂
( ∞∨

n=1

(ran T∗pn ∩ ker T∗n−pn )
)⊥

.

The numbers pn and qn can also be characterized by

T pnM ⊂ (ran Tn)−, T pn−1
M 6⊂ (ran Tn)−,

and

M ⊃ Tn−qn ker Tn, M 6⊃ Tn−qn−1 ker Tn,

respectively. They satisfy the additional relations

0 ≤ pn+1 − pn ≤ 1 and 0 ≤ qn+1 − qn ≤ 1

for every n. If TN
= 0 for some N ≥ 1, we also have pn = pN , qn = qN ,

(ker Tqn ∩ ran Tn−qn )− ⊂ (ker TqN ∩ ran TN−qN )−,

and

(ran T∗pn ∩ ker T∗n−pn )− ⊂ (ran T∗pN ∩ ker T∗N−pN )−

for all n ≥ N. (Thus one only needs to use indices n ≤ N in the above formulas for M.)

Proof The second inclusion in the statement follows from the first upon replacing
T and M by T∗ and M⊥, respectively. The first inclusion follows then immediately
from relation (†) and Proposition 7.1 since

(ker Tqn ∩ ran Tn−qn )− = Φ Jn,T(ΨT, Jn
(M)).
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Next we consider the characterization of the number qn. To do this, we need to
show that, given an integer q ≤ n, the inclusion ΨT, Jn

(M) ⊃ ker J
q
n is equivalent to

Tn−q ker Tn ⊂ M. Indeed, the first inclusion means that Y−1M ⊃ ker J
q
n = ran J

n−q
n

whenever Y Jn = TY . Equivalently,

Tn−q
( ∨

Y Jn=TY

ran Y
)

=
∨

Y Jn=TY

Y ran Jn−q
n ⊂ M,

and clearly the first space above is exactly Tn−q
Φ Jn,T(ker J0

n) = Tn−q ker Tn by Propo-
sition 7.1. The characterization of pn follows analogously by passing to adjoints.

For the other estimates on these numbers, it is easier to check that 0 ≤
pn+1 − pn ≤ 1. This follows from the fact that

ker Jpn
n ⊕ ker J

pn+1

n+1 = ΦT, Jn
(M) ⊕ ΦT, Jn+1

(M) = ΦT, Jn⊕ Jn+1
(M)

is a hyperinvariant subspace for Jn ⊕ Jn+1 by applying the remarks at the beginning
of Section 5 to this operator.

Let us assume now that T is nilpotent of order N and n ≥ N . If Y satisfies Y T =

JnT, we also have JN
n Y = Y TN

= 0, so that the range of Y is always contained in

ker JN
n . Therefore

ker Jpn
n = ΦT, Jn

(M) = ΦT, Jn| ker JN
n

(M) = ker( Jn| ker JN
n )pN = ker JpN

n

because Jn| ker JN
n is unitarily equivalent to JN . This proves the equality pn = pN ,

and qn = qN follows analogously. Finally, passing from Y to Z = Y | ker JN
n , we see

that

(ker Tqn ∩ ran Tn−qn )− =
∨

Y Jn=TY

Y ker Jqn
n

⊂
∨

Z( Jn| ker JN
n )=TZ

Z ker( Jn| ker JN
n )qn =

∨
W JN =TW

W ker J
qn

N ,

and the last space above is (ker TqN ∩ ran TN−qN )− because qn = qN .

The theorem above provides a coarse structure for Hlat(T), especially when this

lattice is infinite. This result also extends the main theorem in [3], and it represents a
slight improvement even in the nilpotent case.

Note that when 0 is not an eigenvalue of T, the first inclusion in the theorem is
simply {0} ⊂ M. The dual inclusion becomes M ⊂ H in case 0 is not an eigenvalue

for T∗. On the other hand, when T is nilpotent, one cannot refine this coarse struc-
ture by considering any Jordan cells with nonzero eigenvalues or, for that matter, any
other operators acting on finite dimensional spaces.

The values of the integers pn, qn in the preceding result may not be obvious from

the structure of the hyperinvariant subspace. Consider, for instance, the space M =

H⊕H⊕{0} = ker T2
0 (with T0 as in Lemma 6.2), and set J = J1 ⊕ J2 ⊕ J3. If we had

to guess what ΦT0, J(M) is, ker J2 would first come to mind; this corresponds with the
indices (p1, p2, p3) = (1, 2, 2). However, Lemma 6.3 shows that the space ΦT0, J(M)
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actually corresponds with (1, 1, 2), so that ΦT0, J(M) = ker J ∨ ran J. The preceding
result produces the inclusions

H ⊕ (BH)− ⊕ {0} = ker T0 ∨ ran T0 ⊂ M ⊂ (ker T∗
0 ∩ ran T∗

0 )⊥ = H ⊕ H ⊕ {0}.

Similarly, all the subspaces K f in Theorems 6.9 and 6.11 are associated with the se-
quence (1, 1, 2).

8 Generalized Jordan Operators as Invariants

There are still other ways to construct maps between hyperlattices. One such con-
struction, which also leads to hyperquasisimilarity invariants for nilpotent operators,
is as follows. Fix an operator X satisfying XT ′

= TX, and define ΦX : Hlat(T ′) →
Hlat(T) by

ΦX(M) =
∨
{AXM : A ∈ {T} ′}, M ∈ Hlat(T ′).

We focus on a particular operator X constructed in [1, Lemma 1], which is also a

quasiaffinity. For the reader’s convenience, we recall how that map is constructed. We
start with a nilpotent operator T ∈ L(H) of order n, and we construct inductively
the spaces

Kn = H ⊖ ker Tn−1, Kn−1 = ker Tn−1 ⊖ (TKn ∨ ker Tn−2), . . . ,

Kn− j = ker Tn− j ⊖ (T j
Kn ∨ T j−1

Kn−1 ∨ · · · ∨ TKn− j+1 ∨ ker Tn− j−1)−, . . . ,

and finally

K1 = ker T ⊖ (Tn−1
Kn ∨ Tn−2

Kn−1 ∨ · · · ∨ TK2)−.

The operator

T ′
=

n⊕
j=1

( J j ⊗ IK j
) ∈ L(H ′), H

′
=

n⊕
j=1

(C
j ⊗ K j)

is nilpotent of order n, and there is a unique operator X : H
′ → H such that XT ′

=

TX and X(e j ⊗ k j) = k j for k j ∈ K j . The operator X is a quasiaffinity, and it is
invertible in case all the powers of T have closed ranges (see also [25]). The map ΦX

may be useful because X is so intimately tied to the structure of T; for instance,

(X ran T ′m)− = (ran Tm)−, (X ker T ′m)− = ker Tm, m = 0, 1, . . . , n.

The reader will have little difficulty verifying these equalities, the first of which is true
for any intertwining quasiaffinity X. Of course, X is unitary if and only if T is already
a generalized Jordan operator.

Proposition 8.1 If T and T ′ are hyperquasisimilar nilpotent operators, then JT (re-

spectively JT∗) and JT ′ (respectively JT ′∗) are unitarily equivalent.

https://doi.org/10.4153/CJM-2008-034-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-034-2


786 H. Bercovici, C. Foias, and C. Pearcy

Proof Let K j , K
′
j be the spaces associated with T, T ′ by the process described above,

and let A, B be quasiaffinities which satisfy the definition of hyperquasisimilarity, and

AT = T ′A, TB = BT ′. As in the proof of Proposition 5.2, we can verify that A

induces an operator with dense range from K j to K ′
j and B induces an operator

with dense range from K ′
j to K j . This follows as in Proposition 5.2 by observing the

following alternative description of the space Kn− j for j ≥ 1:

Kn− j = ker Tn− j ⊖ (ran T j + T j−1 ker Tn−1 + · · · + T ker Tn− j+1 + ker Tn− j−1)−.

We deduce that K j and K ′
j have the same dimension, thus verifying the unitary

equivalence of JT and JT ′ .

In order to deal with JT∗ , let us denote by K
∗
n− j , K

′∗
n− j the spaces analogous to

Kn− j , K
′
n− j , but with T∗, T ′∗ in place of T, T ′. The preceding formula can also be

used to write K∗
n− j as an orthogonal difference of two spaces in Hlat(T). Namely,

K
∗
n− j =

[
ker T j+1 ∩

( j⋂
ℓ=1

(Tℓ−1)−1(ran Tn−ℓ)−
)]

⊖ (ran Tn− j)−, j ≥ 1.

Arguing as in the proof of Proposition 5.2, we conclude that K∗
n− j and K ′∗

n− j have the
same dimension, and this yields the second unitary equivalence in the statement.

The discussion above associates with each nilpotent operator T of order n a canon-
ical model T ′ which we will now denote JT , and which is a hyperquasisimilarity in-

variant for T. Proposition 8.1 also shows that JT∗ is a hyperquasisimilarity invariant.
The following consequence of Proposition 8.1 is immediate.

Corollary 8.2 If a nilpotent operator T is hyperquasisimilar to a generalized Jordan

operator J, then JT and JT∗ are both unitarily equivalent to J.

These two invariants, which are certainly quasisimilar, may not be hyperquasisim-
ilar. As an example, observe that for the operator T0 of Lemma 6.2 we have

JT0
= ( J3 ⊗ IH) ⊕ ( J2 ⊗ IH), JT∗

0
= ( J3 ⊗ IH) ⊕ ( J2 ⊗ IH) ⊕ J1.

These two operators are clearly not hyperquasisimilar. Note however that the leading

summand J3⊗IH is the same for the two operators; this is a general fact which follows
because JT and JT∗ are quasisimilar [1, 7]. Curiously, T0, JT0

, JT∗

0
have 5, 6, and 8

distinct hyperinvariant subspaces, respectively. In particular we deduce that T0 is not
hyperquasisimilar to T∗

0 . This can also be seen by examining Hlat(T0); this lattice

is isomorphic to Hlat(T∗
0 ), but the isomorphism does not respect the description of

hyperinvariant subspaces in terms of kernels and ranges. Indeed, we have ker T0 =

(ran T2
0 )−, but the analogous equality for T∗

0 does not hold. In particular, T0 and T∗
0

are not even hyperquasisimilar. By contrast, it is an easy exercise that any nilpotent

operator of order two is hyperquasisimilar to a generalized Jordan operator.
The reason we needed separate arguments for JT and JT∗ in Proposition 8.1 is that

hyperquasisimilarity may not be preserved by passing to adjoints. We have however
the following result.
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Proposition 8.3 Let T and T ′ be two hyperquasisimilar operators, and let X,Y be

quasiaffinities implementing the hyperquasisimilarity, so that XT = T ′X and TY =

Y T ′. Then

ΦX∗(ΦY∗(N)) = ΦX∗Y∗(N) = N for every N ∈ Hlat(T),

ΦY∗(ΦX∗(N ′)) = ΦY∗X∗(N ′) = N
′ for every N

′ ∈ Hlat(T ′).

Proof For reasons of symmetry, it will suffice to prove the first half of the conclusion.
Fix N ∈ Hlat(T), and observe that the inclusions

ΦX∗Y∗(N) ⊂ ΦX∗(ΦY∗(N)) ⊂ N

are immediate. It is enough then to show that the space M = (ΦX∗Y∗(N))⊥ is con-
tained in N⊥. We have M = {h : Y XAh ∈ N⊥ for every A ∈ {T} ′}, and consid-
ering the case when A is the identity operator, we see that Y XM ⊂ N⊥. However,
(Y XM)− = M because X,Y implement a hyperquasisimilarity. Thus M ⊂ N⊥, as

desired.

A careful examination of the preceding argument shows that a stronger result is
true.

Proposition 8.4 Assume that T and T ′ are two operators on Hilbert spaces and X,Y

intertwine them, i.e., XT = T ′X and TY = Y T ′. If ΦX and ΦY are inverse bijec-

tions between Hlat(T) and Hlat(T ′), then ΦX∗ and ΦY∗ are inverse bijections between

Hlat(T∗) and Hlat(T ′∗).

Proof As in the preceding proof, we fix a space N ∈ Hlat(T∗), and note that
ΦX∗(ΦY∗(N)) ⊂ N. It suffices to show that M = (ΦX∗(ΦY∗(N)))⊥ is contained in
N⊥. We have M = {h : Y BXAh ∈ N⊥ for every A ∈ {T} ′ and B ∈ {T ′} ′}, and by

taking A to be the identity operator, we see that Y BXM ⊂ N
⊥ for every B ∈ {T ′} ′.

In other words, Y (ΦX(M)) ⊂ N⊥. Since N⊥ is hyperinvariant for T, we also have
ΦY (ΦX(M)) ⊂ N⊥, which concludes the proof because ΦY (ΦX(M)) = M.

It is now natural to introduce a new relation between operators, slightly weaker
than hyperquasisimilarity. Let us say that T and T ′ are structurally hyperquasisim-

ilar if there exists quasiaffinities X,Y such that XT = T ′X, TY = Y T ′ and the

maps ΦX, ΦY are inverse bijections of Hlat(T) and Hlat(T ′). The preceding proposi-
tion implies that structural hyperquasisimilarity is preserved by passing to adjoints.
When T is nilpotent, JT will no longer be a structural hyperquasisimilarity invari-
ant. Indeed, let us fix two numbers N, N ′ ≤ ℵ0, and consider the operators T =

( J2 ⊗ Iℵ0
) ⊕ ( J1 ⊗ IN ) ⊕ J1 and T ′

= ( J2 ⊗ Iℵ0
) ⊕ ( J1 ⊗ IN ′) ⊕ J1. These are gener-

alized Jordan operators, and they are not hyperquasisimilar if N 6= N ′. However, T

and T ′ are structurally hyperquasisimilar. Indeed, the operators ( J2⊗ Iℵ0
)⊕( J1⊗ IN )

and ( J2⊗ Iℵ0
)⊕( J1⊗ IN ′) are quasisimilar; fix quasiaffinities X,Y intertwining them.

Then the quasiaffinities A = X ⊕ I1, B = Y ⊕ I1 intertwine T and T ′, and it is easy to
see that they implement the structural hyperquasisimilarity of these operators.

It is however true that structural hyperquasisimilarity preserves some of the struc-
ture of JT .
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Proposition 8.5 Consider two structurally quasisimilar nilpotent operators T and T ′

such that

JT =

n⊕
k=1

( Jk ⊗ INk
), JT ′ =

n⊕
k=1

( Jk ⊗ IN ′

k
).

We have Nk = 0 if and only if N ′
k = 0 for k = 1, 2, . . . , n.

Proof Fix quasiaffinities X,Y implementing the structural hyperquasisimilarity of
T and T ′, so that XT = T ′X and TY = Y T ′. As in the proof of Proposition 5.2,
we can verify that ΦX(ker Tn− j) = ker T ′n− j , and ΦX((Tℓ−1 ker Tn−ℓ)−) =

(T ′ℓ−1 ker T ′n−ℓ)−. With the notation used in the proof of Proposition 8.1, we see
that Kn− j = {0} if and only if K ′

n− j = {0}.

Corollary 8.6 If a nilpotent Jordan operator T is structurally quasisimilar to a gener-

alized Jordan operator J, then the operators JT and JT∗ contain the same Jordan cells as

direct summands (with possibly different multiplicities).

The newly defined relation of structural quasisimilarity is quite obviously sym-
metric and reflexive, but may not be transitive.

The discussion started in Section 5 shows that there is more to hyperinvariant
subspaces of nilpotent operators than meets the eye.
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