
SPINOR SPACE AND LINE GEOMETRY 

VACLAV HLAVATY 

Synopsis. This is the first of two papers dealing with the projective theory of spinors. I t 
contains the algebraic introduction to the projective spinor analysis which will be dealt with 
in the second paper. 

The leading idea may be roughly described as follows: L e t Q be the ideal quadric of the 
isotropic cone of a four dimensional centered vector space R*. The ideal space L% of R4 may 
be looked upon as a non-euclidean space with the absolute quadric Q . Using the Cartan 
matrix1 (0,12) one obtains a "representation" of Lz by a linear complex V in the spinor space Si 
(Theorem (2,2)) with a linear congruence K as an "absolute" (Theorem CI,3)). In particular 
the biaxial involution (2,1) which leads toT is closely connected with Dirac equations (dealt with 
in the second paper). On the other h a n d Q as a two parametric point set is mapped on K, 
while Q as a three parameter set of lineal elements (Definition (5,1)) is mapped on S3: A 
lineal element is mapped on a couple of spinors (Theorem (5,2)) and vice versa a spinor is a 
map of a lineal element (Theorem (6,3)). Finally the map in S3 of any "orthogonal" transfor­
mation in Lz is found (Theorem (7,2)) and vice versa the map in L3 of the biaxial involution 
(2,1) is given (Theorem (8,1)). 

The second paper based on these results and on equation (6,5b) will deal with the analysis 
of the spinor space S3. 

Introduction. Consider a centered four dimensional space R\ with the 
isotropic cone2 

(0,1) Q = xJxu + xlllxlv = 0. 

The ideal point of the direction defined by a vector x(xx, x11, xUI
1 xIV) will be 

denoted also by x. It is obviously determined by its homogeneous coordinates 
IV. Hence the ideal space Lz of R4 may be looked upon as a non-

euclidean three space with the absolute Q. A point3 x will be termed isotropic 
(anisotropic) if it is (is not) on Q. The group of all projective transformations 
in Lz which reproduce the form xlxu + xulxlv (up to a factor of proportionality) 
will be denoted by (T). 

The group (T) splits in a group (67) of all transformations from (2") which 
reproduce each of both reguli of Q and a family (F) of all transformations from 
(T) which interchange these reguli. The "dot product" x . y of two points 

(0,2) x . y s i(*yi + xuyl + xmylv + xîvylu), 

Received June 7, 1950. 
LCartan [1], cf. also Veblen-von Neumann-Givens [5]. 
2If we put 

x1 = x + iy, x11 — x — iy, xlu ~ z + ct, xlv = z — ct, 
we have 

Q == X2 + y2 _j_ S2 _ C2t2 = 0 > 

which is the usual form in the special theory of relativity. 
3From now on we understand by point or line a point or line in L%. 

442 

https://doi.org/10.4153/CJM-1951-046-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-046-5


SPINOR SPACE AND LINE GEOMETRY 443 

is obviously (T)-invariant (up to a factor of proportionality). 
Assuming Q in parametric form 

(0,3) x = x(uv, u2') 

and introducing the symbol4 xx = — we obtain the conformai metric tensor 
du* 

ofQ 

(0,4a) aXM = xx. x„f 

which transforms under 

(0,5) *x = p(u)x 

according to 

(0,4b) *ax„ = P2 ax,. 

The rulings iRAB of the reguli iR of Q may be expressed as follows:5 

2RAB ( JL _ JL , 0, 0, - ^ - , — ^ , 
(xIV)2 

provided 

(0,7) * W ^ 0. 

Throughout this paper we assume that the condition (0,7) is satisfied. If we 
put 

(0,8) PX
AB = x^AxxB] 

then the vectors (on Q) 
4Vx = *RABP\AB 

e.g. 
/ rk n N , XUX\T + X n I X\ I V „ X*X\U + XH IX\ I V 

(0,9) ^x = e\ = — 
x111 xIV 

are the null vectors of axM, where 
(0,10) 2aXM s igx »*„ + iefl ^ . 

By (0,5) they transform according to 

(0,11) ***x = P Vx. 
4 4 , 5 , C,Z> I, II , I II , IV 

a, 6, c, d have the range 1, 2, 3, 4 
œ,n,\,v l',2' 
hj 1,2 

6The homogeneous Pliicker point coordinates RAB — —RBA are written in (0,6) in the 
following order: Rl n , # m I v , Ru m , Rl l v , Rul \ Rn I v . The same order will be kept for 
the homogeneous Pliicker plane coordinates RAB= — RBA- These are related to RAB by 

Ri H - Rul IV , Rm iv = Rl n , # n in = tf1 IV , Ri iv = # n IIT, Rm i = # n I V , Rn rv = # m T. 
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Starting with a generic point x, we consider the matrix6 

(0.12) 

'0 0 X1 xlu 

0 0 X I V -xn 

X1 1 x m 0 0 
xIV —x1 0 0 

Al A2 Ad 

It is well known from the spinor algebra that a transformation from (T) 
induces on the elements E&a a transformation 

Ab — A c A& Ad , (,AC A a — 0C ) 

where the coefficients A depend on (T). Hence Sba rnay be looked upon 
as the homogeneous components of a mixed tensor in a three dimensional 
projective space which we shall denote by 5 3 and call a spinor space. Any 
object in S3 will be termed a spinor object (spinor point, spinor plane and so 
on) and denoted by a Greek letter. Sometimes we say briefly "a spinor £a" 
instead of "a spinor point £a". For H&a we have from (0,12) 

(0,13) 3baAcb = x . x S A 
det (Zb

a - Xô6
a) s (x . x - X2)2. 

The scope of this paper is the investigation of the relationship between L* 
and ^3. The correspondence between an object OL3 of Lz and an object Os* 
of 5 3 (and vice versa) will be termed a representation and denoted by L3<-> 53 . 
The correspondence between an object OQ of Q and an object Os3 of .S3 (and vice 
versa) will be termed a mapping and denoted by Q <-> 53 . Iu the first part of 
this paper we shall deal with the representation Lz <-» 5 3 (starting with some 
theorems about the mapping of isotropic points). The second part deals with 
the mapping Q <-> S3. 

1. Mapping of isotropic points. The following theorems will be proved 
simultaneously: 

THEOREM (1,1). A necessary and sufficient condition that 

(1,1a) Zb
a ïb = 0 

admit at least one spinor1 £a is that the point x be isotropic: 

(1,1b) x . x = 0. 

THEOREM (1,2). If (1,1b) is satisfied then the locus of all spinors £° satisfying 
(1,1a) is a spinor line 

(1,2) °Sa&(0, 0, x11, x1, xul, x1Y). 

(The homogeneous Plucker point coordinates °S°6 = — °S6° are written in 
the following order: °S12, °S34, °S23, °S14, °S31, °S24. These coordinates are related 
to the homogeneous Plûcker plane coordinates °Ea& = — °H&a by 

•This is substantially the matrix used in Cartan's books [1] where also the theorem (1,1) 
may be found. 

7As usual, £a = 0 is not regarded as a (spinor) point in 53. 
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A i 2 = A » A34 — A , A23 — A , A l 4 — A , A31 — A , A24 — A .) 

THEOREM (1,3). The locus of all spinor lines (1,2) as x moves along Q w a 
linear congruence K with the axes 

(1.3) ^ ( O , 1 ,0 ,0 ,0 ,0) , 
23>a6(l, 0 ,0 ,0 , 0, 0). 

Hence Q as a point set is mapped by (1,2) on K and this mapping is a one to one 
correspondence. 

Proof. Theorem (1,1) is an immediate consequence of (0,12) and 

Ea
cE&°£6 = x . x f 

which follows from (0,13). If (1,1b) is satisfied then the four equations (1,1a) 
reduce to two independent equations (linear in £°) which together with (0,7) 
lead at once to (1,2). The locus of (1,2) is obviously a two parametric one 

and the rank of the matrix (°E, — °E, — °E) is8 3. Hence the locus is a con-
to1' du2' 

gruence of spinor lines (1,2). It is a linear congruence because we have 

(1.4) r o 6 ° s a 6 = * r a 6 °E a 6 = 0, 

where T and *T are two linear complexes 

(1,5a) Ta 6(l , 1,0, 0, 0, 0), 
(1,5b) * r o 6 ( - l , 1 ,0 ,0 ,0 ,0) . 

The remaining statement of Theorem (1,3) is obvious. 
Note. The equations of °£a6 mentioned in the proof are 

f xl + ?xul = px11 + ?xUI = 0. 
In the special theory of relativity xl and x11 are complex conjugate, so that we 
may put in this case 

(1,6) e = ?, ~e = ?. 

2. Representation of anisotropic points (Biaxial involution). Let v be an 
anisotropic point (v . v ^ 0) and 0&a its corresponding matrix built up according 
to (0, 12). Then the following theorem holds: 

THEOREM (2, 1). The spinor transformation 

(2, 1) '{« = Ub
atb 

is a biaxial involution with the axes 

(2, 2) <Qab(-€(v . v)*, €(v . v)*, vl\ v\ vll\ vlv) 
(e = + or e = - ). 

Proof. The double spinor points of the projectivity are obtained from 
8It has the rank 3 for the parametric equations xl — ul\ x11 — u2', xlîI — — uvu2't xlY = 1 

and consequently it has the rank 3 in any allowable parameter system. 
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(2,3a) (Qb
a - \ôb

a)£h = 0 

where, according to (0, 13), 

(2, 3b) X = €(v . v)*. 

The equations (2, 3a) reduce to two independent equations for the value (2, 3b) 
and these equations lead at once to (2, 2). Because +&a&~0o6= 8v . v ^ 0 
the spinor lines (2, 2) are skew. Hence (2, 1) is a biaxial projectivity with 
the axes (2, 2). A generic spinor £° in the spinor plane £4 = 0 on a line meeting 
the axes may be written 

(2, 4a) £° = a+0a4 + ^"O04 

or 
(2, 5a) I1 : ? : ? : J4 = (a + /?>*: (a + £> I V : (a - 0) (v . v)* : 0 

and its corresponding spinor '£ a in (2, 1) is 

(2, 5b) '£* : T : '£* : '£* = (a - 0 K : (a - 0)v™ : (a + j8) (v . v)* : 0 
or 
(2,4b) '£ a = a+S°4 - / T E 0 4 . 

Hence if we denote by + £ a ~£ a the double spinor points on the line ' ^ we 
obtain for the cross ratio (J 'J, + f~£) of these four points according to (2, 4) 

Hence there is at least one couple of corresponding spinor points £'£ in in­
volution and consequently the biaxial projectivity (2, 1) is an involution. 

Note (i). A biaxial involution is uniquely determined by its axes. In our 
case the axes are uniquely determined by the point v. Hence the axes (2, 2) 
of the biaxial involution (2, 1) may be looked upon as a representation in Sz of 
the anisotropic point v. 

Note (ii). Let p be an arbitrary point, isotropic or not. Then the cor­
responding spinor lines which respectively map or represent this point may be 
written 

(2, Ga) n* & ( -e (p . p)*, e(p . p)*, />", P\ Pu\ P™). 

They reduce to the spinor lines of K if p . p = 0. 

THEOREM (2, 2). The locus of all spinor lines (2, 6a) as p moves along L3 

is the linear complex Y defined by (I, 5a) and containing K. 

Proof. If p is not in the plane xlv = 0 we may put plY = 1 in (2, 6a) : 

(2, 6b) n a * ( - € ( p . p)*f c(p . p)*f pu, p\ pu\ 1). 

The locus of all spinor lines is obviously three parametric and the matrix 

II, — II, II, - — II ) is of rank 4. Hence the locus is a complex. Because 
dp1 dp11 dpm J 
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at least one of the coordinates pA must be different from zero, our statement 
holds for all points p of L3. Because 

ra6na6 = 0 

the complex is a linear one, namely the complex (1, 5a). The remaining 
statements are obvious. 

Note. According to Theorem (2, 2) we may say that L3 as a point set is 
represented by Y {and in particular Q as a point set is mapped on K in T). 

THEOREM (2, 3). The axes €£2 as given by (2, 2) are conjugate polars of the 
linear complex *T {defined by (1, 5b)) which is protectively orthogonal to V. Its 
rulings consist of spinor lines reproduced {not pointwise) by the biaxial involutions 
(2, 1). 

Let * r ° 6 be the components of any linear complex whatsoever and Aa6 the 
conjugate polar of +£2 with respect to *T. Then9 

(2,7a) Aa6 = 2*ra6(i*rcd+ocd) - +siab{%*Tcd*rcd). 

If we substitute from (1, 5b) we obtain 

(2, 7b) Aah = 2~Uab. 

Because ~S2°& is conjugate polar to +Œ°6, the latter must be conjugate polar 
to ~~0. Hence the congruence with axes ~̂ fi, 12 consists of rulings of *I\ 
Because 

Tab*Tah = 0 

the complexes T and *T are projectively orthogonal. 

Note (i). Conjugate polars with respect to a complex T* are skew unless 
one of them is a ruling of T*. Then both polars coincide. This is exactly the 
situation with the spinor lines (2, 2) and (1, 2). As long as the point v is an 
anisotropic one +0(~Œ) is not a ruling of *T (for *rO6e0°6 = ~ 4e(v . v)^ ^ 0) 
and consequently the conjugate polars + 0 , ~Q are skew. If on the contrary 
x is an isotropic point, then °S°6 as given by (1, 2) is a ruling of K which is 
the intersection of the complexes V and *T, and consequently it is a ruling of 
*I\ Hence we have + S = ~S = °S: both conjugate polars coincide. 

Note (ii). If £a is a generic spinor its spinor polar plane £a with respect to 
r is 
(2, 8a) Sa = Taht

b 

or 
(2,8b) & = f, fc = - e, {, = £4, à = - e 

Hence we have in the special theory of relativity by virtue of (1, 6) 

(2, 8c) fi = ? , f2 = - ?, f8 •= ? ,=J i , ' *4 = - I1 = £2. 
flCf. Hlavaty [2], where also other notions of line geometry, which are used here, are discussed. 
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Hence £1, £2, £1, £2 are "the covariant components" of £*, £2, £\ £2 in the 
theory of quanta.10 

3. Representation of a line. Let x be an isotropic point, vv a vector on Q 
defined at x. Put 

(3, la) 1 = *>xxx, 
(3, lb) v = v°x + wl, 

and denote by °Sa6 and eAa6 the spinor lines which map x and which repre­
sent 1, respectively. As v°, w change the point v describes a line L tangent to 
Q at x. 

THEOREM (3, 1). The spinor lines €12°6 representing the points v of L belong 
to the pencil 

(3, 2) *Qab = v° °Sah + w*Aah 

(of rulings of T) in the polar plane of its vertex €£ with respect to I\ Both pencils 
(3, 2) coincide if and only if vv is the null vector of #xM (e.g. if L is a ruling of Q). 
Then the spinor plane of this pencil is the focal plane of K of the focal spinor 
point + £ = -£ of K. 

Proof. Because x and X\ are conjugate points (with respect to Q) we have 

(3, 3) v . v = 0°x + wl) . 0°x + w\) = w2z;Vxx . xM 

_ î£,V^axM = ^ 2 1 .1 . 

Substituting from (3, 3) and (3, 1) in (2, 2) and remembering (1, 2) we obtain 
the pencils (3, 2) of rulings of T. Hence each of these pencils must be in the 
polar spinor plane (with respect to T) of its vertex €£. According to the 
previous results we have +fl = ~Q if and only if v . v = 0, which yields by 
virtue of (3, 3) either w = 0 (e.g. v = x) or (for v ^ x) 

uV*ax/i = 0 

and L is a ruling of Q. Each of its points v is mapped on a spinor line of the 
pencil (3, 2) all of whose rulings belong to K. The last statement of the 
theorem follows at once from these facts. 

Note. As in the previous case we may look upon the pencils (3, 2) as repre­
senting the points of a tangential line L of Q. In the next section we shall be 
concerned with a representation of points of a non-tangential line. 

4. Continuation: Line-"sphere" transformation. Let iX, 2x be two iso­
tropic points not situated on the same ruling of Q, (iX . 2X ^ 0). Denote by 
M the line iX2x> by 

(4, 1) V -ss {WiK-

10Cf. van der Waerden [4]. 
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its generic point and by 

(4, 2) <a*6(-e(v . v)% €(v . v)*, vl\ v\ vul, vlv) 

the spinor lines representing v. 

THEOREM (4, 1). The locus of all spinor lines (4, 2) as v moves along M is a 
regulus R(M). 

The proof will be accomplished in three steps. 

(a) Let v, v' be two distinct points on M. Because M is not a tangent line 
to Q we must have 

(4, 3) (v . v)* (v' . v')* * ± v . v'. 

(b) If e0 a 6 and €'Q'ab are the lines representing v and v' we have, according 
to (4,2) and (4,3), 

^tiab<'tt'ab = 2ee'(-(v • v)*(v'. v')* + ee'v . v') ^ 0. 

Hence the spinor lines of the locus do not meet each other. 
(c) Let Yiab be an arbitrary spinor line not belonging to the locus. It 

intersects each spinor line e0°6 for which 

Zab'iïab = 0 
or 

(4, 4) - €(v . v)*(£34 - £12) = £23Z," + Y,uVi + ZnVm + ^2iVlv. 

Substituting in (4, 4) from (4, 1) we obtain an equation for lw : 2w. If it is 
not identically satisfied, it has only two roots lw : 2w (which may coincide). 
Hence Y,ab meets either all spinor lines of the locus or only two of them 
(which may coincide). The statement of the theorem follows from the results 
in (b) and (c). 

THEOREM (4, 2). The regulus R(M) has the following properties: 

(1) With any spinor line +£2(~£2) it contains also the spinor line ~12(+0). 

(2) It meets the congruence K in two distinct spinor lines t°S mapping the 
points iX. 

(3) If €fi, €12' represent two points v, v' of M then11 

(4, 5) (a) (+0, +0', i°S, 2°E) = (-0, "0 ' , i°S, 2°H), 
(b) (v, v', lX, 2x) = (+0, +0', x°H, 2°S)2. 

(4) The conjugate regulus12 *R(M) to R(M) consists of rulings of the complex 

*r. 
Proof. The statement (2) is obvious, the corresponding lines are 

(4, 6) i°Ha6(0, 0, ixu, ix\ ixu\ ixlv). 

"The symbols in (4,5a) denote cross ratios of spinor lines taken on R(M), the symbol at 
left in (4,5b) denotes a cross ratio of points on M. 

12e.g. the regulus belonging with R(M) to the same quadric. 
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On the other hand a generic spinor line ^ab of R(M) may be expressed by 

(4, 7a) * ° 6 s xi i°E°6 + X2 2°Sa6 + x3
+Oa6 

where 
*l*2(l°E«6 2°S a 5) + X U C s d ^ a b + O ^ ) + xMJZab+n**) = 0 

or13 

(4, 7b) X\X<L + xix3
2w + #2X3% = 0i 

and this equation is in particular satisfied by 

(4, 7c) xi : x2 : £3 = — 2hu : — 22w : 1. 

Substituting from (4, 7c) in (4, 7a) we obtain 

(4, 8) * a 6 = - "O06. 

Hence if R(M) contains +fi it contains also ~Î2. The remaining part of the 
statement (i) may be proved in a similar manner. The spinor line £0& 
involved in (4, 4) is a ruling of the conjugate regulus *R(M) if and only if the 
equation (4, 4) is satisfied identically (for any point v on M), and this yields 
S12 = L34 so t h a t 

(4,9) Za6*r°* = 0. 

The equation (4, 9) proves the statement (4). One of these rulings (belonging 
also to K) is 

(4, 10) L a 6 (0 , 0, 2xnix iv, ixV™, - ix\xl\ ixIV
2xIV). 

If ;£° and eco° are the intersection points of Y,ah with t°H°6 and «S2a6, respectively, 
then 

(4, 11) <0)a = 2W(2XIU1X™ + 2X
UiX1)2£

a + € 2XH(V . V)* i{ a . 

Consequently we obtain for the cross ratio of the points eco, «a/, i£, 2£ the 
expression 

(4, 12) (-co, V , * , 0 = ^ * , 

and this cross ratio is obviously equal to the cross ratio of the four rulings 
•0, <0', i°S, 2°S of R(M) taken on # ( M ) : 

(4, 13) («2, «0', 1°S, 2°S) = («CO, «0)', lS, ,C). 

On the other hand we have for the cross ratio of the four points v, v', iX, 2x by 
virtue of (4, 1) 

(4, 14) (v, v', lX) 2x) = ^ ' . 

nlw are the numbers denning V by (4,1). +12 is one of the spinor lines ' 0 representing V. 
The equation (4,7b) results from the previous one by virtue of iX . 2X ~A 0 and (4,1). 
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The equations (4, 5ab) follow from (4, 12) — (4, 14). 

Note (i). According to (4, 5b) a non-euclidean line metric on R{M) may 
be introduced (with i°S, 2°S as absolute lines) which is related to the angular 
metric in R* in the following way. The angle of the vectors v, v' in i?4 is 
equal to twice the "distance*' of the rulings 612, €12' on R{M). 

Note (ii). The correspondence M—> R{M) may be looked upon as a line-
"sphere" transformation. It is not a usual contact transformation, because it 
carries the intersection point 1 of two lines M and M' into a couple of common 
rulings «A of two reguli14 R{M) and R'(M') 

5. Mapping of a lineal element of Sz. DEFINITION (5, 1). By a lineal 
element (x, vv) we understand an isotropic point x {the support of the element) 
and a set of vectors15 pvv of Q defined at x {the direction of the element). If v* is 
{is not) the null vector of a^ [e.g. if the direction of the element is {is not) on a 
ruling of Q] the lineal element will be called an isotropic {an anisotropic) lineal 
element. 

In this section we shall be concerned with mapping of the lineal elements 
(x, vv) and introduce for this purpose a standard notation 

*v = ie\vK 

where %e\ are defined by (0, 9). A null vector vv leads to one of the rulings 
(0, 6) which may be written 

RAB = fa [AXXB] m 

Comparing this equation with (0, 6) one sees easily that *v = 0 defines the 
ruling JRAB{i ^ j). We use this fact in the next theorem which deals with an 
isotropic lineal element (x, vv) (where as usual the coordinates of its support 
are supposed to satisfy (0, 7)). 

THEOREM (5, 1). Let (x, vv) be an isotropic lineal element. This element is 
mapped on the spinor 

(5, 1) (a) nAa(0,0, -xu\ xl) or (b) <da{x\ xIV, 0,0) 

if vv defines the direction of the ruling lRAB {e.g. 2v = 0) or 2RAB {e.g. lv — 0). 
The spinor s (5, 1) are the focal spinor s of the spinor line °3°6 which maps the 
support x of the lineal elements {x,vv). 

Proof. Let °S°6 be given by (1,2). If we denote by j\f/a the intersection 
of °S with the axis j$ (given by (1, 3)) then these spinors, given by (5,1), are 
obviously the focal spinors of °S in K. On the other hand, if vv is a null vector 
of ax** then the spinor lines16 of the pencil (3, 2) are rulings of K and conse-

14If 1 is an isotropic point the couple of common rulings reduces to one ruling (belonging to K). 
lbp9^ 0 is an arbitrary factor. 
16Each of these spinor lines maps one point of the point set (3,1b). 
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quently (cf. Theorem (3, 1)) meet at the common focal spinor which maps the 
direction of the corresponding ruling of Q. The focal spinors of *A from 
(3, 1) are 

i\°(0, 0, -vWu, vW), 2A>xxxx, vWv, 0, 0). 

It is easily seen that 
iX* = ^ ° or 2X

a = 2\P
a 

requires 2v = 0 or lv = 0. The remaining statements of our theorem are 
obvious. 

In the next theorem we shall be concerned with a mapping of an anisotropic 
lineal element (x, v"). Because in this case Vv ^ 0 we may assume without 
loss of generality 

(5, 2) lv > 0. 

THEOREM (5, 2). Let (5, 1) be the focal spinors of °Sah which maps the 
support x of an anisotropic element (x, vv). This element is mapped on a couple 
of spinors17 

(5, 3) «£« = (%)*!*« + e{h)KV-

Proof. Each spinor line €Q,ah of the pencil (3, 2) represents a point on the 
line L whose direction is defined by V. Hence the vertex of the pencil (3, 2) is 
the map of our lineal element. We obtain it as the intersection point of the 
spinor lines °S and CA. A generic spinor point on °E may be written 

(5, 4) £° = Xi*a + /x2^
a. 

It is also on €A if and only if 

(5, 5) X : M = - (xHu + xlvlm) : e*m( l . 1)*, 

where v is defined by (3, 1). Because, by virtue of (0, 9) and (0, 10), 

- (x1/11 + x IV/m) = - v*[xWl + *xm*IV] = vx[xlW + xllIxxlv] 
(5, 6) = v^exx

lu = lvxll\ 
1.1 = v^Xx . xM = v^axp = ^v^^e^e^ + W O = ly2z;» 

we obtain by virtue of (5, 2) the equation (5, 3) from (5, 4) — (5, 6). 

THEOREM (5, 3). Let (x, v") be a set of lineal elements with a fixed support x, 
which is mapped on the spinor line °S. / / (5, 1) are focal spinor of °S, then the 
set (x1v

r) is mapped on an involution on °E whose double points are i^, 2i^. 

The proof follows at once from the cross ratio 

(5,7) (+£,"?, !*,2*) = - 1. 

THEOREM (5, 4). Let v be an anisotropic point. The set of all lineal elements 
(x, v") common to Q and the circumscribed cone to Q, which has v for its vertex, 
is mapped on the axis (2, 2) of the biaxial involution (2, 1). 

17By ( ) Ï we understand always the positive square root. 
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Proof. The spinor lines (3, 2) have the coordinates (2, 2). If we keep v 
fixed, e£i do not change and intersect the spinor lines °S (which represent the 
supports of the corresponding lineal elements (x, vv)) in (5, 3). 

The locus of the supports of lineal elements (x, vv) dealt with in the previous 
theorem is a conic section. We denote by lv its tangential vector at x and shall 
consider next the set of lineal elements (x, /"). The following three theorems 
will be proved simultaneously. 

THEOREM (5, 5a). The lineal element (x, lv) is mapped on the couple of 
spinors 

(5,8) «A* = (1v)h*a + e(-*v)hta 

and the locus of these spinors is a couple of spinor lines eAab. 

THEOREM (5, 5b). The spinor lines €&°6 eA°6 and the axes *<J>°6 (given by 
(1, 3)) are rulings of the same regulus R. The spinor lines *Aab are the only 
common couple of the involutions on R, whose double rulings are *$ and eQ. The 
conjugate regulus *R to R consists of ruling of *I\ 

THEOREM (5, 5c). The regulus R intersects the complex T only in *Q. 

Proof. The vector vv from Theorem (5,4) is conjugate (with respect to 
a\y) to l\ Hence 

(5, 9a) W + 2vll = 0. 

Substituting from (5, 9a) in (5, 3) we obtain (5, 8). Furthermore the couples 
€Q and *$ are couples of conjugate polars with respect to the same linear 
complex *T and consequently are rulings of the same regulus, which we denote 
by R. Hence the conjugate regulus *R consists of rulings of18 *I\ 

Moreover the locus of spinors (5, 8) is obviously on R. Because 

(5, 9b) (+{, - { , +X, -X) = (+X, -X, !*, ,*) = - 1 

the locus in question is constituted by two spinor lines which have the properties 
mentioned in Theorem (5, 5b). 

In order to prove Theorem (5, 5c), let us write for the generic ruling Xofc 

of R 

(5, io) E a 6 = *i+aa6 + x2~nab + JCS1^06, 

where the xi, #2, £3 are subject to 

(5, 11) 4xi^2(v. v)* — X1X3 + x2xz = 0. 

From (5, 10) we obtain 

(5,12) iZabT
ab = *3 

and the theorem follows from (5, 10) — (5, 12). 
18Because K belongs to T the rulings of *R are also (rulings of K and consequently) rulings 

ofr. 
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6. Mapping of spinors on lineal elements. Throughout this section we 
shall consider spinors whose coordinates satisfy the conditions 

(6, 1) PI??? * 0 

(and consequently are not incident with the axes *$ of the congruence 2 r ) . 

THEOREM (6, 1). Through a given spinor £° there is only one ruling °S of 
K namely 

(6,2) °2a6(o, o, e?, e?> - ??,??), 
and this spinor line maps the point 

(6, 3) x1 : x11 : xin : xIV = ?? : £2£3 : - J 1 ? : ??. 

The focal spinors of °S are 

(6,4) 1^(0,0, {•,£*), ,rU\ ? , 0 , 0 ) . 

Proof. If rja are the coordinates of a generic spinor in 53 then the equations 
of a spinor line of K going through £a are 

V1? - V2? = 0, T?3£4 - i,*{« = 0, 

and these equations lead at once to (6, 2). Comparing (6, 2) and (1, 2) we 
obtain (6, 3) and comparing (6, 3) and (5, 1) we obtain (6, 4). 

Note (i). If the locus of the spinors £a is a curve or a surface in 5 3 then the 
equations (6, 3) define the locus of the supports of the corresponding lineal 
elements. 

Note (ii). From (5, 3) and (5, 1) we obtain 

(6, 5a) <£a(€(
2z;)V, e(2*/)Vv, - Qv)***11, O»)**1), 

where the xA are defined by (0, 3). Hence if we denote by p the parameter 
which defines v' at xA we may write 

(6,5b) ?a = W,u*',p). 

In the following considerations we shall use the symbol £\a = and the 
dux 

spinor lines 
(6,6) nx

a& EE £[<vi. 

Moreover, we shall deal with the complex T and the axis *$ which we normalize 
in the following way: As the coordinates of the complex r we shall use the 

expressions -~k and denote them again by r ° 6 . As the coordinates 
(rc drc )2 ^ 2^o 6 

for *$ we shall use the expressions and denote them again by l$ab. 
l$cdTcd 

These normalized coordinates do not depend on factor of proportionality and 
are given by the corresponding numbers in (1, 5a) and (1,3). 
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THEOREM (6, 2). The vectors (0, 9) may be written 

(6, 7a) Vx = £ i*o6nx
a*, hx = £ 2#a6nx°6, 

and moreover 

(6, 7b) ax„ = ^ . i ^ . d n c x " ^ ' " ' . 

Proof. The coordinates in (6, 3) being homogeneous we may put without 
loss of generality 

xl = ?{«, *" = e?, xm = - ? ? , xlv = £2£4. 

Substituting these values in (0, 9), we obtain 

(6,7c) %x = 2 ^ nx
12, 2*x = 2 1 | nx

34, 

and (6,7a) follows from (6,7c) and (1,3). From (6,7a) and (0,10) we obtain 
(6,7b). 

THEOREM (6,3). A given spinor £a is mapped on a lineal element (x, vv) 
whose support is given by (6,3) and whose direction vector vp has the covariant 
components 

(6.8) *>x = r a 6 n x
a 6 . 

Proof. Starting with (6,5a) and (6,3) we see that there must be two factors 
a, ft such that 

a^1 = &&)*•?•?, *<? = &&)*•? <£4, a<? = 0Qv)* *? •£•, a<£4 = 0Qv)* -f1 «ft 

and consequently by virtue of (6,1) 

a = ep(2v)% <£4 = flO»)* «ft 
Hence 
(6.9) lv = (<£4)V, 2z> = (•?)**, <7 ^ 0. 
On the other hand, 

(6.10) 2vx = 2vva,x = Vex + V*x. 

Substituting in (6,10) from (6,7a) and (6,9) we obtain 

(6.11) 2vx = (r^1^4(2$a 6+1$a 6)nx
a 6 = *«? •{* r a 6nx«6 . 

Because the direction of the lineal element (x, vp) is defined by the ratio 
v1': v2'—or vi.:v2.—we omit in (6,11) the factors 2 and a*^1 e£4 and obtain (6,8). 

7. Mapping of (G) and (F). If the coordinates xA of a point undergo a 
transformation from (T) 

(7,1) 'xA = L B A * 5 , detZ,z?A ^ 0, 

then the spinor coordinates undergo a transformation 
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(7,3a) Ôab
A = 5[a6j-

(7,2) '£« = A6°£6, detA 6
a ^ 0, 

where the Ab
a are function of the LBA- In this section we shall be concerned 

with the relationship of (7,1) and (7,2) referring to (7,2) as a map19 of (7,1). 
We shall use also the symbols 

A 
" o o — "[at 

defined in the following way: 

(7,3b) Ou1 = Ô2Z
U = ô31

m = <524
IV = 1, the remaining ôab

A = 0. 

THEOREM (7,1). The map (7,2) of (7,1) has the following properties™ 

(7,4G) Ab
a = Ofor a = 1 or 2, b = 3 or 4 and for a = 3 or 4, 6 = 1 or 2, 

(7,4F) A6° = O/or a, & = 1 or 2 and a, b = 3 or 4, 

(7,5G) |A s Ax[lA2
2] = A3

f3A4
4], 

(7,5F) §A s Ax
f3A2

4] = A3
[lA4

21, 

(7,6) bcd
BLB

A = 5a^A[c«Ad]
6. 

Proof. Any transformation (7,1) belonging to (G) [(F)] reproduces each of 
the reguli of Q [interchanges these reguli]. Consequently its map reproduces 
[interchanges] the axis z<3> of K. The equations (7,4) express analytically this 
fact. Any transformation (7,1) from (T) carries a lineal element in a lineal 
element. Consequently by virtue of Theorems (5,4) and (2,2) the map (7,2) 
of (7,1) reproduces the complex T. Because of (1,5a) (7,4) and 

T ° 6 = Ac
[oAd

61 Tcd 

the complex T is reproduced if and only if (7,5) holds. The equations (2,2) 
yield 

(7,7a) 2vA = ôab
A *Qab. 

The transformations (7,1) and (7,2) carry vA and eQab respectively into 

(7,8) V = LB
AvB, '«'Oa6 = A c

[ aA/ ] «0/ , 

where again 

(7,7b) 2 V = 5ab
A '<'Vab. 

The equations (7,6) follow from (7,7ab) and (7,8). 

Note (i) : Because 
V 0 12 = _ Vfi34 = _ ' € ( ' v / v ) * f 

«Q12 = _ ^ 3 4 = _ €(V.V)*, 

we have by virtue of (7,5) 
19(7,1) induces a transformation of lineal elements (X, vv) and (7,2) may be thought of as a 

map of this transformation. 
20The equations (G) [(F)] refer to the case of (7,1) belonging to (G) [(F)]. 
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(7,9aG) <'G12 = A<012 <'Û34 = A «Q34, 

(7,9aF) '«'Û12 = - A«012 vfi34 = - A «G34. 

Consequently by virtue of (7,2) 

(7,9b) 'v.'v = A2v.v. 

On the other hand we have by virtue of (7,1) 

(7,9c) 'v.'v = L2v.v, 

where L2 is a well defined function of the LBA. Hence 

(7,10) L2 = A2, 

and this equation prescribes a condition for the A6°. 
Note (ii). Because any transformation from (G) [(F)] reproduces (inter­

changes) the reguli of Q it may be easily proved that 

(7,11G) LfiL^Lm^Lfi 9* 0, 
(7,1 IF) Ln^L^L^L^ * 0. 

Hence the number 

is different from zero. We use it in the following theorem, where without loss 
of generality we assume that L\l is a real number and moreover 

(7,13) U1 > 0. 

THEOREM (7,2). Any transformations from (G) and (F) respectively are 
mapped on two always distinct21 transformations: 

v = hue + Li^e) 'e = -(Lm1^ - w ) 

(7,14G) fe = -(Lilve + Ziv I vf) (7,14F) '? = -(Z,m
IV£3 - £iIV£4) 

'? = eq(Lmme - £im£4) T = eq(Lime + Livm£2) 
'£4 = eqi-Lm1? + W ) '£4 = eq(-Ljle - iiv1*2) 

where €=-\-lore= — 1 and g w aw^ owe 0/ //ze four fourth roots of q*. 

Proof. Let us first prove the equations (7,14G). From (7,4G) and (7,6) 
for c = 1, d = 4, A — I we obtain Li1 = A^A^. 

If we put Ai1 = 1/p then we obtain22 from (7,13) and (7,6) 
21E.g. two distinct transformations (7,14G) [(7,14F)]. 
^The equations (7,15) constitute the conditions for the LBA to be the coefficients of a trans­

formation from (G). 
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A i - Liyl _ £ i v m _ Lnm _ Ui_ 
2 Up Li n i £ Luimp Lm

lp ' 
7\ IV 

A x
2 = i ± - _ Im IV

 = L i n Uu11 

Up Lm
lp Uup LmmP 

A2
2 = 

Ln11 -ML Ziv" 

Up Lnilnp LnSp UnP 

(7,15) 

A3' = Z m « ^ , A 4 ' = - Z I » ^ , 
(7,lo) 

A34 = - Lin1/', A44 = Up. 

Multiplying the first right hand member of these equations by {UY we obtain 

/ A , ' A A 1 ( UU1 \ / A S
3 A A h(Luiin-U"\ 

(7.17) U ' A ^ = p~(û)i U I V i iv I v j ' W A4
4j = PiLi) \-LnS-U) • 

Hence we must have by virtue of (7,5G) 

(7.18) AibA^l = — LI&LIV™] = A3[
3A4

4] = W W 1 1 1 ^ 1 ' , 
P2L\l 

or 

(7.19) g W V - ^ ^ . 

Denoting by §&(& = 1, 2, 3, 4) the fourth roots of g4 and substituting in 
(7,17), we obtain four transformations. Choosing conveniently the names of 
the roots, we have qi = — qz, qi = — q± — iqi which means that the four transfor­
mations (7,17) reduce to two, one for q\ and one for iqi. The coefficients A&° 
in (7,17) being homogeneous we obtain (7,14G) for e = + 1 if we put q — qi 
and (7,14G) for e = — 1 if we put q = iqi and multiply the so obtained co­
efficients Aba by i. The equations (7,14) F may be proved in a similar manner. 

Note (i). The transformations (7,14) reproduce the complex T because by 
virtue of (7,18) and (7,19) the equations (7,5) are satisfied. On the other hand 
(7,10) is obviously a necessary condition that V be reproduced. Hence (7,10) 
is satisfied by the coefficients of the transformations (7,14). 

Note (ii). For the identity LBA = SBA we have g4 = 1 and the equations 
(7,14G) reduce to identity and to 

'? = e, fe = ?, '? = - *8, '£4 = - s*. 
This transformation reproduces each of the couples (5,3) interchanging +£ and 
*~£, as was to be expected. 

8. Mapping of the biaxial involution (2,1). In this section we shall be 
concerned with the transformation on Q which is mapped on (2,1) and we shall 
call it the map of (2,1). A projective transformation in L3 will be termed a 
v-reflection if it reproduces Q, v and each point of the polar plane of v with 
respect to Q, where v is assumed to be an anisotropic point. 
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THEOREM (8,1)- The biaxial involution (2,1) is a map of the transformation 
of lineal elements on Q induced by a v-reflection 

(8,1) 'xA = xAv.v - 2vAx.v. 

Proof. The equations (7,4F) and (7,5F) are satisfied for (2,1) (the matrix 
Q&a being built up according to (0,13)). If there is a map of (2,1) then its 
coefficients must satisfy the equations (7,6) (where we put &ba instead of A&a). 
These equations define the matrix LBA of the transformation (8,1). This 
transformation obviously reproduces v and each conjugate point x of v (with 
respect to Q). Moreover we have from (8,1) 

'x.'x = (x.x)(v.v)2 

and consequently (8.1) reproduces Q. Hence (8,1) is a v-reflection. 

Note. The transformation of lineal elements induced by (8,1) may be 
easily obtained. If x is an isotropic point for which x.v ^ 0, then its corres­
ponding isotropic point is the second intersection points of Q and the line xv. 
An arbitrary plane through xv intersects the tangential planes at x and 'x in 
the lines which define the corresponding directions of the line elements at x 
and 'x. 

In the next paper we shall deal with the analysis of 5 3 starting with (6,5b). 

Note added in April 1951: 

At the last International Congress of Mathematicians (Cambridge, Septem­
ber 1950) Professor O. Veblen was kind enough to mention to me his paper 
"Geometry of four-component spinors" (Proc. Nat. Ac. Sci., vol. 19 (1933), 
503-517) which was unknown to me. Although his paper and this present 
one follow quite different lines, it is nevertheless interesting to observe that 
they have two points in common: (1) the equations (2, 10) together with (3,2) 
in Professor Veblen's paper are substantially the same as my equations (6, 3), 
and (2) the elements of the first two of the matrices (4, 8) of Professor 
Veblen are substantially the Pliicker coordinates of my complexes (1, 5). 
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