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Abstract. Consider the plane cubic curves over an algebraically closed field of characteristic 2. By
blowing up the parameter spaetwice we obtain a variety3 of complete cubics. We then compute
the characteristic numbers for various families of cubics by intersecting cyclBs on

Mathematics Subject Classifications1991).Primary 14N10; Secondary 14C17, 14H45.

Key words: Enumerative geometry, plane cubic curves, positive characteristic, blow-up, characteristic
numbers.

1. Introduction

One of the major objects of enumerative geometry is to determine the characteristic
numbers for families of plane curves. A characteristic number counts the number
of curves in a family that pass throughgiven points and touc|s given lines,
wherea + 3 equals the dimension of the family. For families of plane cubic curves
these numbers were first found by Maillard and Zeuthen in the early 1870’s, but
their methods were based on assumptions that were not rigorously justified.

More than a century went by before these numbers were confirmed. Kleiman
and Speiser [8,9, 10] and Aluffi [1, 2] both compute the characteristic numbers
for smooth, nodal and cuspidal cubics, but by very different means. Kleiman and
Speiser’s works are based on the classical degeneration method of Maillard and
Zeuthen. They specialize their family to more degenerate ones and then use the
numbers already obtained for the special families. In this way the characteristic
numbers for smooth cubics depend on the numbers for nodal cubics, which in turn
depend on the numbers for cuspidal cubics.

Aluffi's method is more direct. By a sequence of five blow-up$dhe con-
structs a variety of complete cubics. The characteristic numbers for smooth cubics
are then obtained by intersecting certain divisors on this variety. By a closer exam-
ination of the space parametrizing the singular cubics, Aluffi also obtains the
characteristic numbers for nodal and cuspidal cubics.

These papers, like most other papers on enumerative geometry, assume that the
characteristic is different from 2 and 3. One exception is Vainsenckarscs
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in characteristic 2[11] determining the number 51 of conics tangent to 5 other,
assuming the characteristic is 2.

In this paper we will apply the method used by Aluffi [1] and Vainsencher
[11,12] to construct a variety of complete plane cubics in characteristic 2. The
strategy is to blow up the parameter space along smooth centers until the proper
transforms of the line conditions no longer intersect. The technical difficulties of
this method is at each blow-up to determine the intersection of the line conditions
and to compute certain Segre classes. In characteristic 2, the intersection of the
line conditions has nonsingular support and is reduced at the general point. This
makes our case significantly less demanding than the characteristic O case, where
the intersection of the line conditions has more structure. In our case, two blow-ups
will suffice, giving a smooth spac®, of complete cubics which is relatively easy
to handle. The computation of the characteristic numbers follows the lines of Aluffi
and Vainsencher. In particular we will rely on Aluffi’'s blow-up formula [1, Thm. I1],
which relates intersection numbers before and after taking proper transforms.

2. Generalities about characteristic numbers

In this section, which is independent of the characteristic of the base/fiele
define the characteristic numbers and give their basic properties.

Intuitively, a characteristic numbeéy,, 5 for a family R of plane curves is the
number of curves passing througlgiven points and properly tangentogiven
lines wherex+( = dim R. (We call atangent proper if itis tangent at a nonsingular
point. By just tangent we mean a line intersecting the curve with multiplicity at
least 2 at a point.) To determine these numbers it is convenient to work in the
P" (n = 3d(d + 3)) parametrizing all plane curves of degie

DEFINITION 2.1. A point conditionin P" is a hyperplang? parametrizing the
curves containing a given point.like conditionis a hypersurfac&/ parametrizing
the curves tangent to a given line.

The following definition of characteristic numbers differs slightly from the intu-
itive one in that it may count curves with multiplicity greater than one. But as we
shall see, this need not be a big problem.

DEFINITION 2.2. Supposé&? C P" is an irreducibley-dimensional subvariety
parametrizing a family of curves such that the generic curve is reduced and irre-
ducible. Suppose we hawepoints and3 lines in general position, with + 3 = r.

Let H; andM; be the corresponding point and line conditionBfn We define the
characteristic numberfor R to be

Nuog = Zm(l',R.Hl. o Hy-My- - - M),
TEQ
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where@Q = {z € P" : C, intersects thes lines only at smooth poinjs(C, is

the curve corresponding to), andm is the usual intersection multiplicityV,, s

counts the weighted number of curves ihpassing through ther points and
properly tangent to thg lines.

The following theorem shows that these numbers are well defined, and that
the curves counted by a given characteristic number all appear with the same
multiplicity.

THEOREM 2.3LetR C P" be anirreducibley-dimensional family of generically
reduced and irreducible curves, and tetand 5 be nonnegative integers such that
a+p=r.

() There exists an open dense suliget (P2)® x (P?)? and nonnegative
integersN ande such that for each configuration of points and lifgs, . . . , pa,
l1,...,l3) € U there are exactlyV different curves fronR passing through the
points and properly tangent to thelines, and such that the multiplicity: (in the
sense of DefinitioR.2) at each of theV curves isp® when the characteristic is
and1 when the characteristic i8.

(i) The multiplicitym = m(() is a non-decreasing function 6f

Proof of (i). The existence of/ and N is well known and follows from
[5, Sect. 2]. It is also clear (same reference) that the numbermains the same
whenR is replaced by any open subset®fWe may then assume that all curves
in R are irreducible.

LetT C U x R be defined by

T = {(p]-?"'apaalla---alﬁ;w) . CI
containg; and is properly tangent g}

and letp andgq be the projections frorii’ to U andR respectively. Let € R be any
point. Theng~%(z) is an open subset ¢€,)* x (CY)? c (P?)* x (P?)%. Since
C, is irreducible, so is the dudl. This shows that the fibrg~1(z) is irreducible
and it follows thatT" is irreducible (sinceR is).

We know thatp is a generically finite surjective map of integral varieties. 4 et
andm be the separable and inseparable degrge ®hen it is well known ([11,
Sect. 7], is one reference) that the general fibre lodss distinct points, and the
multiplicity at each isn. ShrinkingU if necessary we have this statement for all
the fibres.

Finally, the argument given in the remark in [11, Sect. 7] shows that the mul-
tiplicity in the last paragraph coincides with the intersection theoretic one. (The
intersection-theoretic multiplicity can be obtained from an alternating sum of Tor’s.
Since the line conditions are smooth, and in particular Cohen-Macaulay, at the
points of intersection, all the higher Tor’s vanish.) O
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The following two lemmas are used in [1] to prove the characteristic O version
of the above theorem. We will need the lemmas to prove the second part of the
theorem.

LEMMA 2.4. Supposes C P" is a curve parametrizing generically reduced and
irreducible curves, and let € S be a general point. Then there exist at most
finitely many point condition&,, tangent toS' at «.

Proof. Let 7', be the tangent line t§' at =, and supposé&, C H,. Thenp is
contained in all the curves parametrized’By Clearly (since the curve parame-
trized byz is irreducible), only a finite number of sugtcan exist. O

LEMMA 2.5. Supposek C P" is an irreducible family of generically reduced
and irreducible curves. Then a general point condition will interdedtansver-
sally (by transversal we always mean that the scheme theoretical intersection has
no nonreduced componeits

Proof. Since the set of points such thatf,, does not intersed® transversally
is closed, it is enough to show the existence of ffjehat does. Suppose that all
point conditions intersed® in a nonreduced component. Then the union of these
components will coveR. Let xz € R be a general point, and I&t C R be any
curve havinge as a smooth point. Since the set of point conditions is 2-dimensional
there will be infinitely many point conditions tangentfoat z. These will also be
tangent taS, contradicting Lemma 2.4. O

Proof of Theored.3 (ii). LetHy,. .., H, andMy, ..., Mg be general pointand
line conditions irP™. We know that the pointsiRNH1N---NH,NM1N---N Mg
counted byN,, 3 all appear with the same multiplicity.. If we remove one of the
point conditions, then by (2.5) the components containing these points will also
have multiplicitym. When these components are intersected with a line condition,
all the points in the new intersection must have multiplicity at least O

Remark Note that the first part of this theorem seems to be a special case of
[5, Thm. 2]. The important difference is the definition of the characteristic num-
bers. While we intersect iR", the characteristic numbers in [5] are defined by

intersections il” x R wherel ¢ P? x P? is the incidence variety.

DEFINITION 2.6. With the same hypotheses as in Definition 2.2 we define the
total characteristic number®r R to be

Lop = Z m(z,R-Hy- -+ -Hy-My- -+ - M),
zePN\L
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whereL is the locus of the nonreduced curves, s is the weighted number of
reduced curves passing through theoints and tangent to the lines (but not
necessarily at smooth points).

In order to compute the total characteristic numbegs; (from which the
characteristic numbers will be deduced), we shall need the concept of a variety of
complete curves, which is defined as follows.

DEFINITION 2.7. A varietyB together with a surjective morphism B — P™ is
called avariety of complete curves

(1) = restricts to an isomorphism outside the loclspf nonreduced curves.
(2) The proper transforms of the line conditionsRh do not have a common
intersection inB.

PROPOSITION 2.8SupposeB is a complete nonsingular variety of complete
curves of degred. Supposd? C P" is a subvariety parametrizing a family of
generically reduced and irreducible curves, and lebe its proper transform in
B. Also, denote by7 and M the proper transforms of point and line conditions
respectively. Then the total characteristic numbersRare given by

Loy = /B[R] [H*[M]® witha + § = r = dim R.

Proof. Let Hy,...,H, andMjy, ..., Mgz be general point and line conditions
in P?, and letE = 7—%(L). Sincer: B — P" restricts to an isomorphism
B\E>P"\L it is sufficient to show thaR N Hy N --- N H, N My N -+ N Mg
does not intersedt. Since the general curve i is reduced we can assume that
dim(R N E) < r <1. The result follows if we can show thaf; andM; intersect
a given irreducible subvariety C B properly. { andW intersect properly if
codim'V') 4+ codimW) = codim(V N W).) The sef{] P’V C M;} is closed,
and sinceB is a variety of complete curves this set is not allft It follows
that the general line condition does not contllinso the intersection is proper.
Similarly, we can show thali; intersects a givelv C B properly. O

3. Generalities about cubics in characteristic 2

In this section we will discuss some elementary facts about plane cubic curves
in characteristic 2. It is essential to get information about the subvarietieg of
parametrizing special families of cubics.

From now on, and for the rest of the paper, we will assume that the characteristic
of the ground field is 2. The defining polynomial of a plane cubic curve will be
written in the following form
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F(z,y,2) = az®+ by® + ¢2® + da’y + ex®z
+fxy? + gy®z + ha2® + iyz® + joyz.

LetV = {(p,1):l istangent taC),} C P2 x PZ, and letr; and o be the two
projections. Then the fibre;l(p) is the ‘total dual’ ofC), (the union ofC’pv and

the possible multiple lines corresponding to each singularikypfandwz‘l(l) is
the line condition)M;.

LEMMA 3.1. If we usez,y and z as coordinates 0|1?2, we have the following
equation forV’

(be + gi)a® + (ac + eh)y® + (b +df)2° + (cf +gh +ij)z?y
+(fi + bh + )72 + (cd + ei + hj)zy? + (ai + dh + ef)y’z
+(dg + be + fj)z2° + (ag + ef + dj)yz* + j2myz = 0.

Proof. AssumeA’ = PZ\{y = 0} has affine coordinates = z/y andt = z/y
and leti = V N (P° x A%). Let! € A” be the line inP” given byy = maz + tz,
and letF(z,y, z) = 0 be the equation for a cub{c,. Now (p,!) € W if and only
if g(z,z) = F(x, mz + tz, z) has multiple factors, and this happens exactly when
the discriminanfAg(z, 1) = 0. In characteristic 2 the discriminant of a cubic poly-
nomialaz®+bz? + cx + disad + be. Letting F (z, vy, z) = az®+ by 4 - -+ jzyz,
and computingAF'(z, mz + t,1) we easily obtain (after some elementary, but
tedious computations) the equation f&t, and the equation fdr” follows. O

It should be well known that in characteristic 0 any nonsingular plane cubic can
be linearly transformed into one with equatiof + y2 + 22 + tzyz = 0. This

is also true in characteristic 2. See [4, Sect. 7.3] for a proof that works in all
characteristics different from 3. Note that in characteristic 2 the cUj\given by

23 + 3 + 28 + tzyz = Ois singular if and only i3 = 1.

LEMMA 3.2. The following holds for plane cubic curves in characterigtic

(1) The dual of a nonsingular cubic is a nonsingular cubic.

(2) The dual of a nodal cubic is a nonsingular conic.

(3) The dual of a cuspidal cubic is a line. In particular, a cuspidal cubic is strange
(there is a point common to all the proper tanggnts

Proof. (1) This can be checked @ given byz3+ 43+ 23+ tzyz = 0 (t° # 1).
By Lemma 3.1 we see that) is given byz3 + 2 + 23 + t2zyz = 0 which is
nonsingular.

(2) ltis an easy exercise to check that all nodal cubics are projectively equiva-
lent, so we only need to consider the nodal cubic givemby: 33 + zyz = 0. By
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(3.1) the dual curve is? + zy = O (we ignore the line = 0 in P* corresponding
to the node) which is a nonsingular conic.

(3) The dual of the cuspidal curv€ + y2z = 0 is the liney = 0. The argu-
ments are similar to the nodal case. O

Remark In characteristic 0, it is well known that the dual of a honsingular plane
curveC has degreé(d < 1), whered = degC. What happens in characteristic
2 is that the defining polynomial af’" reduces to the square of a polynomial of
degreeld(d <1).

If C; is a nonsingular cubic given ky? + 3 + 23 + tzyz = 0 we see from the
proof of the first part of the lemma thé&f,’)" = C,4 so that in general biduality
does not hold. We have biduality only for a special class of cubics characterized by
the following proposition.

PROPOSITION 3.3.The following are equivalent for a nonsingular cubic
C c P2

(1) C = (CY)V.

(2) C is projectively equivalent to the curve with equatioh+ y2 + 23 = 0.

(3) 7 = 0in the equation for C.

(4) C has Hasse-invariar.

(5) C hasj-invariantO.

Proof. (1) & (2) is a trivial consequence of the fact tat’ )" = C,. whenC;
given byz3 + y3 + 23 4+ tzyz = 0. If C ~ D (projective equivalence) angh = 0
then it is easy to verify thagi- = 0, so we hav¢2) < (3). (3) < (4) is a special
case of [7, IV Prop. 4.21}}) < (5) follows from [7, IV 4.23] (note to corollary):

Remark It can be shown that thg-invariant of C; equalst*?/(¢3 + 1)3, which
gives another proof of3) < (5). When we use the notatigjz: we do not mean
the j-invariant, but simply the coefficiertin an equation for'.

The cubics described in Proposition 3.3 we gatlurves. We next show that the
cuspidal cubics are degenerateurves. First we need some lemmas.

LEMMA 3.4. LetC be a cubic withjo = 0, and letH be the matrix

a f h

d b 1

e g c
Then:

(1) Cis nonsingular= rk(H) = 3

https://doi.org/10.1023/A:1000291224146 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000291224146

130 ANDERS H@YER BERG

(2) Cis singular and reducees rk(H) = 2
(3) Cis nonreduced= rk(H) =1

Proof. The singular locus is precisely the set of poiftsy, z) such that all the
partial derivatives are zero, or equivalently?, 42, %) belongs to the nullspace of
H. The lemma now follows by elementary linear algebra. O

LEMMA 3.5. Let C be a singular cubic. Then C is cuspidpbssibly degenerate
if and only ifj = 0in the equation for C.

Proof. Choose aB € PGL(3) mapping a singularity of” to (0,0, 1). Let
D = B(C) and introduce affine coordinateS= z/z, y' = y/z. The affine equa-
tion of D can be written ag (z,y’) = 0. Letf = f3 + f2 + f1+ fo wheref; is
homogeneous of degréeSinceD is singular a0, 0) we havef; = fo = 0, and
fo = epz’® + gpy'? + jpz'y' is the equation of the tangent cor.is cuspidal
exactly when the tangent cone is a double line, and that happens exactly when
jp = 0. Since by (3.3)¢ = 0 < jp = 0 the lemma follows. O

PROPOSITION 3.6A plane cubic curvel is cuspidal(possibly degenerate
if and only ifde{ H) = j = 0.

Proof. If C is cuspidal, thenj = 0 by (3.5) and défi) = O by (3.4).
det H) = j = 0 implies thatC' is singular by (3.4) and cuspidal by (3.5). O

Let C' be a non-degenerate cuspidal cubic given®iy, v, z) = az® + by +
-+ + jzyz. By (3.4) we have that i¢7) = 2. It follows that the cofactor matrix,
cof(H), has rank 1, so that nonzero rows (resp. columns) off£pfdefine the
same point irP?.

bc+gi cd+ei dg+ be
cof(H) = | c¢f +gh ac+eh ag+ef
fi+bh ai+dh ab+df

Let P be the point defined by the columns, andjebe the point defined by the

square root of the rows: lf, 5,7) # (0,0, 0) is arow, therQ = (v/a, /B, /7).
This is well defined since there is only one square root in characteristic 2.

PROPOSITION 3.7LetC', P andQ@ be as above. Thef is the cusp of”, and P
is the only flex of C. Als@? is a strange point, that is: every proper tangentof
containsP.

Proof. Suppos&) = (v/bc + gi, Ved + ei, \/dg + be) is given by the first row
of cof(H). Using that de(t ) = 0 we easily see that, (Q) = F,(Q) = F»(Q) =
0, so@ must be the cusp af'. Now the last part: The tangent @iy, u1, u2) € C
is given by

(aud + fud + hud)x + (duf + buf + iul)y + (eud + gui + cu3)z =0
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or equivalently(z y z)H (u§ u3 u3)! = 0. We must show that this equation is
satisfied wherP = (z y z) is a column in cofH) or a row in ad{H ). But from
the identity(adjH)H = I de{ H) = 0 we have thaftz y z) H = 0, and the result
follows.

To prove thatP € C just note that” = (z y z)H (2?2 y? 2?)" and use the same
argument. If the tangent & meets the curve at another pofitthen (sinceP is
a strange point) this tangent would be a bitangent which is impaossible for cubics.
This proves thaP is a flex. The tangents at other nonsingular points all corftain
so there cannot be more flexes. O

The set ofj-curves (including degenerate curves) is parametrizé®flwyhen we to
apoint(a, b, ... ,4) in P? associate the curve with equati@n® + by + - - - + iy22.

We have seen that the cuspidal cubics are parametrized by a hypersurface of degree
3inP8.

PROPOSITION 3.8The cuspidal cubics with cugpesp. flex on a given line are
parametrized by &-fold of degreein PS.

Proof. Assume the line is given hy = 0. By the first part of (3.7) we find the
desired locus to be given by + gi = cf + gh = fi+ bh = 0 which the computer
programMacaulaytells us has degree 3 and codimension PinThe case with
the flex is similar. O

Let ¢: P* x P> — P° be the map given by
¢((a’ b’ C)’ (d’ e’ f)) = (ad’ be’ cf’ ae’ a’f’ bd’ bf’ Cd’ ce’ O)’

(¢ is the Segre embedding on tA&given byj = 0). We claim that the image gfis
exactlyL, the locus of the nonreduced curves. Indeed, the dérec L can easily

be seen to be the image @3, v3, 23), (z1,y1, 21)) wherel = (zo,yo0, 20) € p?
andm = (z1,y1, z1) € P°. This shows that we have an isomorphigm: P* x P°.

Now, T C L, the locus of the triple lines, is isomorphicl?(.z) (Il e If’2 corresponds
to the triple linel®), and the map: T — L is via these isomorphisms given by

i(l) = (I%,1) (the coordinates af ¢ P* are the squares of the coordinated)of
Let j be the embedding — P°. We record for later use:

LEMMA 3.9. Leth; andhy denote the pullbacks of the hyperplane classes on the

factors ofL ~ P* x P°, and leth andt be the hyperplane classes BhandT ~ P°
respectively. Thefi*h = hq + hp, i*h1 = 2t andi*hy = t. 0

https://doi.org/10.1023/A:1000291224146 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000291224146

132 ANDERS H@YER BERG

4. The two blow-ups

We now follow the strategy of blowing up the parameter spRéealong nonsin-
gular varieties supported on the intersection of the line conditions, until we have a
variety of complete curves. This strategy was successfully employed by Aluffi in
[1], where five blow-ups were needed. We shall only need two blow-ups, and the
varieties and maps involved in this process appear in the following diagram

D B
T
S F k E By
~ q p T
p? T : L P
= - -

By Section 3 we know thak is nonsingular, so that will be the centre for our
first blow-up.

4.1. The first blow-upLet B; be the blow-up oP® alongL, let N be the normal
bundle of L in P%, and letE = P(N) be the exceptional divisor with maps as
shown in the diagram.

If H andM are pointand line conditions &Y, denote byif; andM; their prop-
er transforms inB;. (We reserve the notatiol andM for the proper transforms
in B.) We call H; andM; point and line conditions it .

To determine the intersection of the line conditionginwe need to examine
the tangent hyperplanes of the line condition®n

LEMMA 4.1. Let M; be the line condition iP® corresponding to the ling and
let» € M; be a cubic not containing Suppos&’. is tangent td at p and thatg
is the other point of intersection.

(1) If p # ¢ the tangent hyperplane @ff; at » equals the linear span of, and
Y,, whereX,, is the cubics tangent tbat p andY} is the cubics through and
tangent td at another point.

(2) If p = ¢ the tangent hyperplane aff; at » equals the point conditiof,,.

Proof. Assume thatis given byz = 0, and thaC, is tangenttd atq = (0, 1, 0)
and also meetsatp = (0,0, 1). This means thdt= ¢ = g = 0 in the equation for
C)-. We know from the beginning of Section 3 thef is given bybc + g7 = 0, and
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a simple computation shows that the tangent hyperpland,ddt C.. is given by
g =0.X, (b =g =0)andY, (c = g = 0) are both contained in this hyperplane,
and (1) follows. (2) follows by a similar argumef#,, is given byb = 0). O

LEMMA 4.2.

(1) Supposer € T corresponds to the liné. The intersection of the tangent
hyperplanes of the line conditions atis 5-dimensional and consists of the
cubics having as a component.

(2) If z € L\T, the intersection of the tangent hyperplanes of the line conditions
at z is 4-dimensional and thus equals the tangent space aff:z.

(3) The tangent space d@f at a triple linel2 consists of the cubics havihdgnd a
touching conic as components.

Proof. (1) follows directly from the second part of Lemma 4.1. To prove (2) one
needs to compute (using the first part of 4.1) tangent hyperplanes to 5 sufficiently
general line conditions at a poimte L\T'. For (3) assumeéis given byz = O.

Then the triple liné® corresponds to the poifit, 0, . .., 0) € P°. By (3.4) we know
thatZ, c P?is given byj = 0 and rkH = 1. A simple computation shows that the
tangent space df at/®is givenbyb = ¢ = g = i = j = 0 and the result followsa

PROPOSITION 4.3The intersectionS of the line conditions inB; is a 2-
dimensional subvariety af. More precisely,S = P(£), whereL is a sub line
bundle ofi* N.

Proof. Obviously,S must be contained in the exceptional divigarAlso, since
the intersection of the line conditions is ‘sufficiently transversal’ at pointé in
outsideT (the second part of Lemma 4.2) the line conditiddsn B, can only
intersect in the fibres ovér.

Letvs: P° — P? be the composition o 4, sending a lind to the point corre-
sponding to the triple lin€. (This is the third Veronese embeddingszfprojected

into the hyperplang = 0.) Similarly, we letv,: P* — PS5 be the map sendingto
12, whereP® parametrizes the conics.

We have the following exact sequences of vector bundleés onP® = P(Q)
0— Opz — Syn?Q ® O(3) — viTre — 0,
0— Opz — SYNFQ @ O(2) = v3Tps — 0,
0— i*Ty, L v3Tpe — i*N — 0.

The firsttwo are the pullbacks of the Euler sequencéX 8gnt Q) andP(Syn? Q),
and the last is the pullback froih of the standard sequence relating the normal
bundle with the tangent bundles. From the composition

SynfQ ® O(<1) — SynfQ ® Q — SynT Q,
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we get (by tensoring witkd(3)) an induced map37ps — v37pe. In the fiber over
I3 € T the image of this map can be identified with the cubics contaihify
the third part of (4.2) we see that the m@pn the third sequence above factors
throughv3Tps. The quotientl = v3Tps/i*Ty, is then a sub line bundle af V.
ThatS = P(L) can now be checked at each fibre using Lemma 4.2 (1). O

4.2. The second blow-up.et B be the blow-up ofB; along S, and letD be
the exceptional divisor. To show that the intersection of the line conditions on
B is empty, we will introduce local coordinates éh and compute the tangent
hyperplanes of the line conditions there.

Let U c P° be the open set where = 1. Affine coordinates fof/ are then
(b,c,d,e, f,g,h,1,7), and affine equations fdr are

b+df =0, c+eh=0, g+ef=0, 1

+

dh =0, j=0.

We may now choose affine coordinatése, d, e, f, g, h, i, j) on an operV C B
such that
bj=b+df, d=d, j=1j.
j=g+ef, e=e,
¢j=c+eh, f=F,
ij=1i+dh, h=nh,

Q|

Now j = 0 is the exceptional divisor, an{d, ¢, g, ) are coordinates for a fiber in
E. Letl be the line given by: + ay + 8z = 0, and letM; be the corresponding
line condition orP°. One may now calculate the equationdf in V', which turns
out to be

i f+a® h+p?
det| d +« b i+8 | =0.
e+p g+a &
SinceO = (0,0,0,0,0,0,0,0,0) € V obviously lies on all the line conditions,
we haveO € S. We need to show that the intersection of the tangent hyperplanes

of the line conditions aD equals the tangent plane Sfat O. By expanding the
above determinant we find th&p M is given by

afj + B2f + o®h + af?(d+ g) + b+ o?Ble +1i) + a’c = 0.
The intersection of these planeseand varies((«, 5) # (0, 0)) is given by

b=¢=f=h=35=0, d=g, é=i,
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which is 2-dimensional and thus equalfieS. This proves that the intersection of
the line conditions orB is empty. In other words

THEOREM 4.4.The varietyB, obtained by the sequence of two blow-up®%Yf
is a variety of complete cubics. O

5. The intersection ring of B

The first aim of this section is to give a complete multiplication table of the divisor
classes om3. Our main tool will be the following intersection formula.

LEMMAS.1. Supposd. C V are nonsingular varieties of dimensiohandrn. Let
V' be the blowup oft” along L, and letE be the exceptional divisor with maps as
shown in the diagram

E J v
P s
I V.

3

Suppose further thaV is the normal bundle of in V" with total Segre class(NV).
Assumed > 1, and letz € Az(V) be the class of g-dimensional cycle of.
Then the following formula holds.

J e R )

Proof. Recall thatj*[E] = c10g(«1) and thats(N) = X,50p.c10r(1)" by
definition. Now we have

Ly we = [ Gy gee = [ @oen) i

— (e1)ft / s(N) - iz

L
where the last equality is by the projection formula. O

In view of this lemma, what we need in order to compute intersection numbers on
B are the total Segre classes of the normal bundﬂg;pg andNg,p,. Lethy and

h2 be the pullbacks of the hyperplane classes of each of the factbradd’ x PZ,
and lett be the class of a line ol ~ P,
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First we will examine the embeddingof S in B1. Lete = [E] be the class of
the exceptional divisor iB;. We would like to know the pullback af by f. We
know thate pulls back toc;O(«<1) on E = P(N pe) and then also te,O(«1)
onS = P(L). But sinceL is a line bundle(®s(<1) = L. It follows that

ffe = 1l = c1(v3Tps /1" Tr) = vsc1(Tps) &1 c1(Tr)
= u5(6h) i* (3hy + 3hp) = 12t 0t = 3t.
PROPOSITION 5.2.
(Npjpo) = 1&Thy &Thy + 2817 + 2815 + 5% by

E276h3hy ©276h1h3 + 1479203,
s(Ng/p,) = 1415t + 120%,

Proof. Recall thatL is the image of a Segre embeddingof P2 x P?in a
hyperplane irP°. Then we have

* 10
(N, o) = r*c(Tpo) _ (L4 h1+ h2)

Ty ) (L+h)31+ hg)®

s(NL/Pg) = c(NL/Pg)*1 can now be obtained by expanding and inverting the
above expression.

The second part is more complicated. The following exact sequence of vector
bundles or# is well known [6, Lem. 15.4]

0= 0p = p"Npp ® O(1) = T — p*Ty, — 0.

The total Chern class of the tensor product is given by (see [6, Remark 3.2.3])
5
c(p* Ny jps ® O(1)) = D ¢(O(1))> "ei (N po)
1=0
= (1ee)® + (L ee)*(Thy + Thy)
+(1e)3(21h] + 2183 + 3%ghy) + - -

Restricting toF = =—%(T') we get (recall thak; and h, pull back to 2 and¢
respectively)

k*e(Tg) = c(q"i"TL)e(q"i" Ny, jpo @ O(1))
= (14 2t)3(1 + )3(1 + 21t ©5e 4 183 <84te + 102 + - --)
= 14 30t ©5¢ 4 4052 <12%e + 10e® + - - -,
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which pulls back ors to 1+ 15t + 1082 (remember that pulls back to 3). Finally
we have (we omit the pullbacks)

«(Tp,) _ c(Ngp,)c(TE)

c(N. = =
( S/Bl) C(TS) C(TS)
2
_ (1+e)(1+4 15t + 108&7) 1415 4+ 1052
(1+1¢)3
and the result follows by inverting this expression. O

Denote byd = [D] the class of the exceptional divisor of the second blow-up.
Also, denote by andh the classes of the pullbacks i of [E] and[H] respec-
tively. We omit pullback and integral signs when no confusion is likely to occur.

PROPOSITION 5.3The group of divisor classes dnis generated by, e andh,
and the multiplication table is as followsall other terms are zerp

e =1479  d° =120

he8 =552  d8 = d8h = 45,

h2e’ =174, d'e2 =d’eh = d'h? =9,
h3eb = 42,

K4S =6, hd=1.

Proof. The first assertion follows from the general theory of blowing-up [6,
Sect. 6.7], and the numbers can be computed using (5.1) and (5.2) above. For
example

wel = | mimilHPmE) = [ P

= /L S(NL/P9)(h1 + ha)?

_ / (2842 + 2842 + 5%h1ho) (B2 + h2 + 2hhy)
L
= 28+ 28+ 118= 174,
where the last ‘integral’ was evaluated using th&i3 = 1 andh? = 0in A(L). O
SupposdV c P is a hypersurface. The proper transformsiofin B and By

will be denoted by¥ andiW; respectively. We shall need a formula for computing
[W] € AY(B) in terms ofh, e andd. The following lemma follows directly from
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the general theory of blowing-up [6, Sect. 6.7].

LEMMAS.4. Letm; be the multiplicity o#¥” alongL, and letm; be the multiplicity
of Wy alongS. Then

[W] = (degW)h ©mie ©mad
in AY(B). O
We shall also need to compute the classes of proper transforms of subvarieties of
higher codimension. This can be done with Fulton’s blow-up formula [6, Th. 6.7],
but for our purposes it is more convenient to use a different version (Theorem 5.5
below).
LetV be a nonsingular variety; a nonsingular closed subvariety, andlebe

any pure-dimensional subschemelafDefine the full intersection class of by
LinV by

LoX =¢(Npyv)Ns(LNX,X).

Note that if X has codimension 1 i, L o X = ux(L) + *[X] whereux (L)
is the multiplicity of X alongL (see [1, Sect. 2]). Applied to our first blow-up we
have for example

LoH = hi+ hoy,

Lo M = 1+ 2hy+ 2h,.
Another convenientresultis thab X = X oL when bothZ, andX are nonsingular

[2, Lem. A.1].
THEOREMS5.5. [1, Thm. ll]Suppose thdt is the blowup ot alongL asin(5.1),
and thatX+, ..., X, are pure-dimensional subschemed/oivhose codimensions
add to the dimension df. Then the following formula holds.
¥ ¥ H(L o Xv)
X = [ e [ 2R
Proof. Details may be found in [1]. O

6. Characteristic numbers of nonsingular cubics

We will now determine the characteristic numbeéys 3 for the family of all
nonsingular cubics. By (2.8) this amounts to compute the intersedtfji§i/]®
in A(B). The following lemma is an application of (5.4).

LEMMA 6.1. In the intersection ringd(B) we have the following relations
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(1) [H] = h.
(2) [M] = 2h <e <d.

Proof. (1) is obvious ad. is not contained in any point condition. From (3.1)
we know thatc + gi = 0 is the equation for the line condition corresponding to
the linez = 0. It follows thatM has degree 2 and is generically smooth aléng
We also have that/; is generically smooth alon§ (in Section 4.2 we computed
the tangent spaces 8f; at points inS). Hence (2) follows from Lemma 5.4. 0

By this lemma the characteristic numbers are given by
Nop = h®(2h e ed)P.
This can be evaluated by (5.3), and the result is:

THEOREM 6.2.The characteristic numbers for nonsingular cubic curves in char-
acteristic2 are

Noo, Ng1, ..., Noo=1,2,4,8 16,26 34,29 13,2,

where the last numbefyg g, counts one curve with multiplicit®, and the other
numbers count each curve once.

Proof. We only need to justify the multiplicities. Since by (2.3) all multiplicities
must be powers of 2, the second last numbarg = 13, must count each curve
with multiplicity one. By the second part of (2.3) so must the 8 preceding numbers.

We will now show thatVg g only counts one curve. Assume ti@t andC, are
2 different nonsingular cubics tangent to 9 given lines in general position. The dual

curves,Cy andCy, then contain the 9 corresponding point35|2n Since there is
only one cubicD passing through the 9 given points, we must have@at C .
SinceNp g = 2, C1 and(C? are the only cubic curves havirdg as dual.

If we assume that the equationBfis in normal formz3 +y3+ 23+ t2zyz = 0,
we have from Section 3 that the curve givendy+ 43 + 2% + tzyz = 0 is the
only cubic in normal form havind as dual. We may then assume tidatis in
normal form, and that’z, given byF'(z,y, z) = 0, is not. Obviously, the 6 curves
given by F' and permutations of the variables must all héaves dual. It follows
that these 6 curves must be equal, so we may assumgthay, z) is a symmetric
polynomial (withd # 0)

F(z,y,2) = a(z® + 43+ 2%) + d(z®y + - - - + y2?) + jzyz.
By (3.1) the dual o’ is given by

(a®+d?)(2° +y° + 2°) +d(a + d + j) (@Y + - - + y2°) + jPayz.
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Since this polynomial is assumed to be in normal form we must have thét= ;.
Thena? + d? = 52, and the equation fofy reduces ta:3 + 4 + 2% + 2yz = 0,
which implies that”y is singular. This is a contradiction sin¢& was assumed
nonsingular. O

Remark Let §:P°--- — P° be the rational map associating to each nonsingu-
lar cubic its dual. Then we obviously have théd/;) = H;v, but since biduality
does not hold we cannot exp&¢id, ) to be a line condition. In fact, the degree of

d(Hp) C P° must equalVy g. (The duals of the curves counted By g is the inter-

section ofd (H,,) and 8 point conditions iﬁ’g.) Computing the degree of the image
of a variety by a rational map can be done with the helmMataulay Doing this,

we find thaté(H,) C P’ is given by a polynomial of degree 13 (with 303 terms),
confirming our computation oNyg. (By the same argumeni/acaulayshould

in principle be able to comput®,7; = 29, N3g = 34 andN4s = 26 as well.

These numbers are the degrees of the images of lower-dimensional linear spaces.
The complexity of these computations seems to be more than our installation of
Macaulaycan handle within reasonable time.)

7. Characteristic numbers of nodal cubics

The computation of the characteristic numbers for nodal cubics is considerably
more difficult than in the nonsingular case. Here we will take advantage of Aluffi's
results and methods in [1], [2] and [3]; in particular Theorem 5.5 and the results
about the full intersection classes. Many of our intermediate results are similar to
Aluffi’'s and some of the proofs carry over.

Suppose thaR is anr-dimensional family of singular curves where the generic
curve is reduced and irreducible. Denote Rlythe curves with a singularity on
a given linel, and RP those with singularity at a given poipt The following
definition will be useful when we consider nodal and cuspidal curves.

DEFINITION 7.1. Suppose+ (3 = r<l. Define the following numbers associated
to the family R

I', 5 = the total characteristic numbers faf,

N, 5 = the characteristic numbers f&.
Supposer + 8 = r <2. Then define

e 5= the total characteristic numbers f8F,

(63
N? 5 = the characteristic numbers f&”.

Note that when the generic curve fhhas exactly one singularity we clearly have
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Letting R in the above definition be the nodal cubics, the numbegrs, Flaﬁ

andNé’ j are the total characteristic numbers for the three familess and P
where

N = nodal cubics
G = cubics with singularity on a given ling
P = cubics with singularity at a given poipt

Also, let F' be the nodal cubics properly tangent to a given lirene characteristic
numbersV, g follow from the total characteristic numbers by the following lemma.
(Compare with [3, Thm. 1].)

LEMMA 7.2. We have the following relations between the characteristic numbers
and the total characteristic numbers for the famili€s G and P

B
Lo = Nag +5N(§,5—1+ (2 Ng,ﬂ—Z’

Ffw = Né’ﬂJrﬁNg,ﬂ_l.

Proof. We will prove that{N N M;] = [F] + [G], in other words thafV and
M, intersect transversally. Lat be a general point oN N M;. All we need to
show is that the tangent hyperplarfésVv andT, M, are different. It is sufficient to
show this for a general linetangent taC,.. But (4.1) tells us thal, M, varies ag
varies, so in general we must have tiigh/; # T, N. The lemma now follows by
arguments similar to those following Lemma 1.3 in [3]. O

RemarkThat N and M intersect transversally is special for characteristic 2. In all
other characteristics we hay® N M;] = [F] + 2[G] as shown in [3, Lem. 1.3].
The rest of Aluffi's proof is characteristic free. The only difference is that the
multiplicity 2 appears as a coefficient in the formulas.

Consider the following blow-up diagram wheBg is the blowup ofP®° alongL
as before.

P2><E—j>P2><B1

P2><L—Z.>P2><P9.

Let D c P? x P% be given by the vanishing of the three partial derivatives of
F = az3 + by® + --- + jzyz. This means thatp,t) € D if and only if C; is
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singular ap. Letk be the class of a hyperplaneRi.

LEMMA 7.3. The full intersection clas§P? x L) o D (regarded as a class in
P2 x L) is a quadratic polynomial ik, and the coefficients are given by

Lo N = coefficient of?,
L o G = coefficient of,

L o P = the constant term

Proof. This follows from the birational invariance of Segre classes[5, Sect. 4.2].
See [2, Prop. 2.1] and [3, Lem. 2.2] for details of the proofs of similar resuits.

PROPOSITION 7.4The full intersection classes &f, G and P by L are
LoN = 8+ 12(h1+ h2),

LoG = 2+ 8hy + 6hy + 6(h1 + h2)?,

Lo P = hy+ 2k + 3hihy + (h1 + h2)>.

Proof. By (7.3) this amounts to computii§? x L) o D. LetW = (P?x L)ND.
(That the intersection is transversal can easily be checked by pulling the equations
for D back toP? x L.) This means thdd” = {(p,1°m) : p € I} C P? x L, so that
[W] = hy + 2k € A(P? x L). Lettingp be the inclusion of¥” in P> x L we have

1 _ hi+ 2k
c(Nypoyr)|  1+ha+ 2k

pis(W, P? x L) =p. [

SinceD C P*xP?is given by 3 equations of bidegrees (2,1) we haVey, 2, ps) =
(1+ h + 2k)® which pulls back orP? x L to (1 + hy + ha + 2k)3.

P2 x [ — P2 x P°

w D.

As all the varieties in the above diagram are nonsingular, the full intersection classes
commute, and we get (as classe®fnx L)

p«[(P? x L) o D]
= p[D o (P2 x L)] = p[e(Np p2, pa) s(W, P? x L)]

(1+h1+ha+ 2k)3(h1 + 2k)

2 o
= pus(W,P? x L)i"c(Np jp2,ps) = 1+ hy + 2k
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and the result follows by expanding the last expression. O

SinceL o N = 8+ 12(hy + hy), the multiplicity, m1, of N alongL is 8. Letm;
denote the multiplicity ofV; alongS. By (5.4) we have thdiV] = 12h <8e<mid.

To determinem, we will computel'pg in two different ways. Since the dual of a
nodal cubic is a conic, no nodal cubic can be tangent to more than 5 given lines in
general position. Also, at most two of the lines can pass through the node, so we
see thal'gg = 0. On the other hand by (2.8) and (5.3) we have

Tog = / (12h =8¢ ©mad)(2h e <d)® = 60<12m;,
B

so we must haven, = 5.

THEOREM 7.5.The following table gives the complete list of characteristic num-
bers and total characteristic numbers for the famill€ésG and P

a,f Tap Nag Thss Nigy NYsz,
80 12 12

7,1 24 18 6 6
6,2 48 25 12 11 1
53 96 30 24 20 2
4,4 144 24 36 24 4
35 168 8 42 22 5
26 123 0 33 8 5
1,7 42 0 12 0 2
08 0 0 0 0 0

Proof. The total characteristic numbers firare given by

Top = / [N][H]*[M]? = h®(2h ©e <d)P (12h <8¢ <5d),
B
which can be evaluated by (5.3).

The numberi‘fm andNSﬂ with 6 < 4 follow by applying (5.5) and (7.4) to
the first blow-up. For example

Thy = [ JGUAPII® = | (AP

(since the intersection of 3 general point conditions in

Bj does not mee$)

= [IGUHPMI & [ (Lo G)(Lo H(L o M) s(Nye0)
= L
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= 96 (24 8hy + 6hy + - --)(hy + h2)®
X (14 2h1 + 2h2)H (1 &Thy ©Thy 4 ---)

= 96 (hy + h2)3(2+ 10h1 4+ 8hy + - --) = 96 =54 = 42

All the zeros follow from the fact (3.2) that the dual of a nodal cubic is a non-
singular conic, so that a nodal cubic can be properly tangent to at most 5 lines in
general position. The remaining numbers can now be computed using the relations
in (7.2) O

Remark Some of the arguments above (in particular the ‘zero-arguments’) could
have been replaced by the computation of the full intersection classes

SoNy = 5+ 12,
SoGy = 1+ 7t + 6t
SoP, = t+ 22

combined with another application of Theorem 5.5. See [2, Sect. 2.1] for a similar
computation in characteristic O.

8. Other characteristic numbers

In Section 3 we mentioned the very special class of curves calbenives. These
curves are parametrized by an open subset of the hypersuffac®® given by

4 = 0. The computation of the characteristic numbers for this family is now an
easy consequence of our previous results.

LEMMA 8.1 [J] = h e as a class in the intersection ring &f.

Proof. We know that deg = 1, and thatl. C J with multiplicity one, so by
(5.4) we only need to prove thatis not contained ir/;. From Section 4 we know
that S = P(L) where the fiber ofZ over a triple linel® can be identified with
NT;sM;/TiL. Now, by (4.2),nT;sM; is just the 5-dimensional space of cubics
containing the liné. Obviously,NT;3sM; ¢ J, and it follows thatS ¢ J1. O

THEOREM 8.2.The characteristic numbers for the family, of cubics with
j-invariantO are

N8,07 N7,17 v 7N0,8 = 17 27 47 87 107 87 47 27 1
and all the numbers above count curves with multiplitity

Proof. We apply (2.8) withR = .J to obtainN,, 5 = h*(2h <se <d)? (h &)
which can be evaluated by (5.3). Since the last numNgg, = 1, clearly counts
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curves with multiplicity 1, it follows from (2.3) that all the other numbers will also
count curves with multiplicity 1. O

Remark The symmetry of the numbers in (8.2) reflects the fact that the dual
of aj-curve is also g-curve, and thatC")"V = C for aj-curveC. This is similar
to the case of smooth conics and cuspidal cubics in characteristic 0.

We now proceed to the characteristic numbers for families of cuspidal cubics.
Let K, G, and P, be the subvarieties & defined by

K = cuspidal cubics
G = cubics with cusp on a given line
P, = cubics with cusp at a given poipt
LEMMA 8.3. We have the following relations in the intersection ring3of
[N][J] = 4[K],
[PIJ] = [P].

Proof. We know from Section 3 that” has degree 3 and is contained/inFrom
the equation fo we can easily check thd{ is singular along. of multiplicity
2. It follows that[K] = 3h <2¢ regarded as a class it(.J) (we omit the pullback
signs). Note that the proof of (8.1) also shows that .J; = 0, so thati*d = 0,
wherei is the inclusion/ ¢ B. Now, we have (as classesif(B))

[N][J] = i4i*[N] = i4i* (12h <8¢ ©5d) = i, (12h <8¢) = 4K].

That[P][.J] = [P;] is clear sinceP and.J are both linear subspaces®t inter-
secting transversally along.. O

We now use the notation from Definition 7.1 with = K, the cuspidal cubics.
This means thal, 3, N, ; andN¥, ; are the characteristic numbers for the three

families K, G, and Py, andl’, g, I‘fm are corresponding total characteristic num-
bers. Also, letF}, be the cuspidal cubics properly tangent to a given linerom
(3.7) we know thatF}, can also be described as the cuspidal cubics with a flex on
the given linel. The following lemma is the cuspidal version of Lemma 7.2.

LEMMA 8.4. We have the following relations between the characteristic numbers
and the total characteristic numbers for the famili€s G, and P,

p
Fa7ﬁ = NOé’ﬂ +’6Né7ﬂ_l+ (2 Ngaﬂfz’

Ths = Nbg+BNL s o
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Proof. This is similar to the proof of (7.2). All we need to show is that
[K N M;| = [Fi] + [Gy]. Recall that degk) = 3 and degM;) = 2. From
(3.8) we have thaf7;, and F}, both have degree 3, and it follows th&tand M,
intersect transversally. O

Before we prove our final result, we note that
So.Ji = pj(S)+ f*[7a] = f*(h <e) = 3t &3t =0,

wheref is the embedding of in B1. The last relationS o J; =0, basically tells
us that the second blow-up is superfluous when our family is containéd in

THEOREM 8.5.The following table gives the complete list of characteristic num-
bers and total characteristic numbers for the famili€s GG;, and P,,, and all the
numbers count curves with multiplicity

a,B Tap Nag Fla,ﬂfl N({‘t,ﬁfl NY

) o,f—2

7.0 3 3

61 6 3 3 3

52 12 1 6 5 1
43 12 0 6 2 2
3,4 6 0 3 0 1
25 0 0 0 0 0
16 0 0 0 0 0
07 0 0 0 0 0

Proof. The total characteristic numbers for the famili€sand P, follow from
(5.5) and (8.3). Recall thaf o .J; = 0 so that we only need to apply (5.5) on the
first blow-up. For example

Lo = [ IRIAPWI = 5 [ IR0
= 3 ([
& [ (LoN) (L o)L o HP(EoMS(N, )

= 2(192+:168) = 6.

SinceG, has degree 3 we clearly havgo = 3andl 51 = 6.Also, since a cuspidal
cubic is strange, it can not be properly tangent to 3 general lines. It follows that
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No3 = 0 wheng > 3. The remaining numbers in the above table now follow by
Lemma 8.4.

It remains to prove that the multiplicities are 1. By (2.3) this holds¥gr; and
N} 5. If we can show thalV; , counts two different curves, the result will be true

for N, 5 and then by (8.4) also fdf, g andI, ;.

Nﬁ,z counts the curves passing through 4 given points, with the flex at another
given pointp (the intersection of the two lines) and with cusp on a givenllifidne
curves counted b;wf,l have the same description with cusp and flex interchanged.
Suppose = (0,0, 1) and! is given byz = 0. LetC' be a curve counted byil.

Let H be its matrix and letC* be the cuspidal cubic given by the transpdge
Since cofH') = (cof H)! it follows from (3.7) thatC" has a flex ap and a cusp
onl. SoC" is counted byN}Lz. SinceNy , counts different curves then algﬁiz
must count different curves. O
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