
ON THE EXACT CALCULATION OF THE AGGREGATE CLAIMS
DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL

BY KARL-HEINZ WALDMANN

Institut fur Wirtschaftstheorie und Operations Research,
Universitat Karlsruhe

ABSTRACT

An iteration scheme is derived for calculating the aggregate claims distribution
in the individual life model. The (exact) procedure is an efficient reformulation
of De Pril's (1986) algorithm, considerably reducing both the number of
arithmetic operations to be carried out and the number of data to be kept at
each step of iteration. Scaling functions are used to stabilize the algorithm in
case of a portfolio with a large number of policies. Some numerical results are
displayed to demonstrate the efficiency of the method.

KEYWORDS

Individual life model; aggregate claims distribution; De Pril algorithm.

1. INTRODUCTION

Consider a portfolio of m independent life insurance policies. Suppose each
policy to have an amount at risk iel= {1, ..., a} and a mortality rate qj with
jeJ={\,...,b}. Let mtj denote the number of all policies with amount at risk i
and mortality rate qj.

In the individual risk model the total amount of claims, S, is the sum
S = Xx + ... + Xm of the m individual claims Xx, ..., Xm produced by the
policies. The distribution of S, f(s) = P(S = s), referred to as the aggregate
claims distribution, can be obtained by successively convoluting the m two-
point distributions of the individual claims. Since the numerical calculation of
an ra-fold convolution is usually very time-consuming, numerous approxima-
tions can be found in the literature. See, e.g., BEARD, PENTIKAINEN and
PESONEN (1984) for more details. The method derived in DE PRIL (1986) is a
remarkable progress in computing the distribution of S exactly. Compared with
Panjer's (1981) recursion formula, however, which can be thought of as the
counterpart within the collective risk model, the computing time remains large
(cf. KUON, REICH and REIMERS (1987), DE PRIL (1988), REIMERS (1988)).

In the present paper we shall reformulate the iteration scheme underlying the
method of DE PRIL (1986). A (much) more efficient organization of the data
will considerably reduce both the number of arithmetic operations to be carried
out and the number of data to be kept at each step of interation. Further, we
shall stabilize the algorithm by introducing a suitable scaling function. This
scaling function will enable us to apply the algorithm to a portfolio with an

ASTIN BULLETIN, Vol. 24, No. I, 1994

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

90 KARL-HEINZ WALDMANN

essentially larger number of policies. Finally, some numerical results will be
displayed to demonstrate the efficiency of the method.

2. THE AGGREGATE CLAIMS DISTRIBUTION

For jeJ, we set pj = \-qj, Zj = qj/pj, m} = S,e/w,y, and c = £ / e / L 7 e y imy.
Further, we use [JC] to denote the greatest integer less than or equal to x.

It has been shown in D E PRIL (1986) that the aggregate claims distribution
can be computed recursively via

b

(i) /(o) = n (pj*mj

7=1

and for s = 1, . . . , c

rain (a, s) [s/i]. rain (a, s) [s/i]

(2) /(*) = - X Z 9iUk)f{s-ki)
k=\

where

7=1

Theorem 1: Equation (2) can be written as
j min (a, s) b

(4) /(*) = - X S i
S (= 1 7 = 1

where, for all is I, jeJ, i < s

(5) r(s, i,j) = zj{f(s-i)-

and r{s, i,j) = 0 otherwise.

Proof: Let

{-\)k+lzff{s-ki)
k=\

Then, utilizing

s;i,j) = zJ\f(s-i)-

= zj\f(s-i)- X {-\)k+xzff{s-i-ki)
{

the assertion immediately follows from (2). •

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

AGGREGATE CLAIMS DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL 91

Equations (4) and (5) can be thought of as an efficient reformulation of
equation (2). The superiority results from

(a) a lower number of arithmetic operations to be carried out at each step of
iteration

(b) arrays of smaller size to keep the data needed for further iterations

To specify (a), we first study equation (2). Fix (s, i, k). Then, having already
computed g (i, k - 1), g (i, k) can be obtained as the result of

which can be managed by b + 1 multiplications and b additions. Two additional
multiplications and one subtraction are necessary to compute g(i,k)f(s — ki).
Summing over k there is a need of (6 + 3) [s/i] multiplications and (6+1) [s/i]
additions/subtractions.

On the other hand, by applying equations (4) and (5), for fixed (s, i,j), one
multiplication and two subtractions are necessary to compute r(s, i,j). Further,
one additional multiplication is needed to obtain {/ m^} r(s, i,j). Summing over
/, there is a need of 2b multiplications and 2b additions/subtractions.

Now let £m(.v) (resp. £a(.v)) denote the number of multiplications (resp.
additions/subtractions) to be saved by applying equations (4) and (5) in place
of equation (2) at stage s of iteration. Then it easily follows that

min (a, .v)

i=\

min (a, s)

{(b+\)[s/i]-2b}x{(b+l)log(a+l)}s-2ab

where use has been made of log (a+ 1) < Z°=1 \/i < 1 + log (a) (cf. e.g., Ross
(1983)).

Now let us specify (b). To apply iteration scheme (2), an array with ac (resp.
c+ 1) elements is needed to keep g(i, k) (resp. f(s-ki)) for further iterations.
On the other hand, utilizing equations (4) and (5), an efficient implementation
of r(s, i,j) (resp./(.s-/)) needs an array with a(a+ 1)6/2 (resp. a+ 1) elements
only.

To illustrate the basic idea underlying the implementation of r(s, i,j),
observe (see Figure 1) that the r(s, i,j) within the upper triangle (solid line)
have to be kept at stage s, while at stage s+ 1 the r(s, i,j) of the lower triangle
(dashed line) have to be retained.

To manage these data in an efficient way, we rearrange the elements of the
upper triangle in an array with a(a+ l)/2 rows and b columns, and, switching
to the lower triangle, we replace the entries of (s — i,i,j) (not needed any
longer) by the ones of (s, i,j) (to be kept for further use) and let the other
entries unchanged.

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

92 KARL-HEINZ WALDMANN

FIGURE 1. Actualization of the data.

Formally, we introduce

Wi = O, iel

and actualize 10,• at each step s(s > 1) of iteration according to

Wj+ 1, if Wj < i— 1

k 0 otherwise

Then Wj coincides with s modulo / and (Vj+w,,]) is the position in the array,
in which the entry of (s, i,j) can be found.

3. STABILIZATION OF THE ALGORITHM WITH RESPECT
TO UNDERFLOW/OVERFLOW

Applying the algorithm to a portfolio with a large number of contracts, the
initial value/(0) is close to zero. This fact may cause an underflow followed by
an abort or irregular running of the procedure.

To discuss this aspect in more detail, let a> and Q denote the smallest and
greatest numbers that can be represented on the computer to carry out the
algorithm. Suppose /(0) < co. Then the algorithm stops with an underflow. On
the other hand, by formally setting /(0) equal to zero, the sequence f(s) of
iterates degenerates to a sequence that has all its elements equal to zero, which
is not consistent with the property of being a probability mass function.

There are a variety of ways to overcome this difficulty. Three methods of
different efficiency and/or applicability are to be stated as methods 1 to 3.
There f*(s), 0 < s < c, is used to denote the sequence of transformed
iterates.

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

AGGREGATE CLAIMS DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL 93

Method 1: Suppose

f * (s) = yf(s), 0<s<c

for some constant y with a> < 7/(0) < Q. Then the transformed iterates/*^)
can be obtained by formally starting (4) (resp. (2)) with y/(0) in place of
/(0). •

The use of a constant scaling function is the simplest way to stabilize the
algorithm. A more refined method is to combine a constant scaling function
with an exponential scaling function, which has been suggested by PANJER and
WILLMOT (1986) within the collective risk theory.

Method 2: Suppose

f * (. s) = y e ~ " (' + P) f (s) , 0<s<c

where a, /?, y are constants with 0 < a < 0.5, y > 0, and
a b

1=1 7 = 1

To compute f*(s), iteration scheme (4) has to be reformulated as

f*(0) = ye(l-")ls

, min (a, s) b

f*{S) = - YJ Z imiJr* (S> '>•/)' 1 < •? < C
5 /=1 j=\

where, for all iel,jej

t(i,j) = zje-°i

r*(s, i,j) = t(i,j){f*(s-i)-r*(s-i, i,j)}, i<s

and r*(s, i,j) = 0 otherwise. •

Method 2 starts with a larger initial value as well as method 1 and additionally
reduces the increase of the iterates. For large s, however, things may change
and the transformation may lead to an ealier abort on account of an
underflow. Our third method is one way to overcome this principal difficulty.
It again starts with a larger initial value, reduces the increase of the iterates
for 5 < E(S), and, additionally, reduces the decrease of the iterates for
s > E(S).

Method 3: Suppose

f * { s) = ye"('-")1f{s), 0<s<c

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

94 KARL-HEINZ WALDMANN

where

b

H= E(S)= Y, WjCli
7=1

and p as in (6). To compute/*(.?), the modified iteration scheme reads

f*(0) = Y
. min (a, s) b

where, for all iel, jej

r*(s, /.y) = t(s, i,j) {f*(s-i)-r*(s-i, i,j)\, i < s < c

and r*(s, i,j) = 0 otherwise. •

It is not surprising that the last scaling function is superior to the other ones,
since it is stimulated by the central limit theorem and thus best utilizes the
asymptotic behavior of S as m -> oo. Some numerical results to be given in the
next section will illustrate the efficiency. We finally remark that t(s,i,j) and
r*(s, i,j) can be implemented in the same way as r(s, i, j).

4. NUMERICAL RESULTS AND DISCUSSION

We consider as a starting point the portfolio discussed in GERBER (1979),
p. 53.

0.03
0.04
0.05
0.06

Since the portfolio consists of 31 policies only, there is no need for a
reformulation or stabilization of the algorithm. We therefore expand the
portfolio by considering krriy policies in place of m,7 (for all iel and je J).

Let k = 5000 (corresponding to 155 000 policies) to illustrate the numerical
progress resulting from the application of equations (4) and (5) in place of

3
1
2
2

1
2
4
2

2
2
2
2

1
2
1

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

AGGREGATE CLAIMS DISTRIBUTION IN THE INDIVIDUAL LIFE MODEL 95

equation (2). Then, being interested in computing the aggregate claims
distribution up to the smallest c* with P(S> c*) < 10~4, there is a saving of
more than 4.4* 109 multiplications and a saving of more than 3.1 *109

additons/subtractions. Moreover, the arrays to be kept at each step of iteration
can be reduced by 140 851 elements.

The maximal k implying a stable algorithm has been determined on the basis
of extended numbers (i.e. w = 1.9* 10~4951, Q = 1.1 * 104932). There stable
means that the algorithm does not stop with an underflow or overflow and that
both \E'(S)-E"(S)\/E"(S) < 1CT5 and |Var'(S)'/2-Var"(S)'/2|/Var"(,S')'/2 <
10~5 hold, where £"(5), Var'(S) are determined with help of the probability
mass function of S and E"(S), Var" (S) result from the moments of the
individual claims and the properties of expectation and variance. The maximal
k and the associated number of policies to be obtained in this way for
y = 104500 are displayed in Table 1.

TABLE 1

STABILITY OF THE ALGORITHMS UNDER CONSIDERATION (y = 104500)

Method maximal k number of policies

Equations (4) and (5) 7 900 244 900
Method I 15 100 468 100
Method 2 (a = 0.31) 22 100 685 100
Method 3 80 100 2 483 100

Stability of our numerical results thus means stability with respect to the first
two moments. For a more theoretial treatment of the numerical stability of
recursive formulae the reader is referred to PANJER and WANG (1993).

ACKNOWLEDGEMENT

I would like to thank the referees for their detailed and helpful comments.

REFERENCES

BEARD, R. E., PENTIKAINEN, T. and PESONEN, E. (1984) Risk Theory. 3rd edition. Chapman and
Hall, London.

DE PRIL, N. (1986) On the exact computation of the aggregate claims distribution in the individual
life model. AST1N Bulletin 16, 109-112.

DE PRIL, N. (1988) Improved Approximations for the Aggregate Claims Distribution of a Life
Insurance Portfolio. Scan. Actuarial J. 1988, 61-68.

GERBER, H.U. (1979) An Introduction to Mathematical Risk Theory. Huebner Foundation Mono-
graph 8, Philadelphia.

KUON, S., REICH, A. and REIMERS, L. (1987) Panjer vs. Kornya vs. De Pril: A comparison from a
practical point of view. AST1N Bulletin 17, 183-191.

PANJER, H. H. (1981) Recursive evaluation of a family of compound distributions. ASTIN Bulletin
12, 22-26.

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

96 KARL-HEINZ WALDMANN

PANJER H. H. and WILLMOT, G. E. (1986) Computational aspects of recursive evaluation of
compound distributions. Insurance: Mathematics and Economics 5, 113-116.

PANJER, H.H. and WANG, S. (1993) On the Stability of Recursive Algorithms. AST/N Bulletin, to
appear.

REIMERS, L. (1988) Letter to the Editor. ASTIN Bulletin J8, 113-114.
Ross, S.M. (1983) Stochastic Processes. John Wiley, New York.

Prof. Dr. KARL-HEINZ WALDMANN
Institut fur Wirtschaftstheorie und Operations Research,
Universitat Karlsruhe, Postf 6980, D-76128 Karlsruhe.

https://doi.org/10.2143/AST.24.1.2005083 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005083

