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Abstract

We study the normed spaces of (equivalence classes of) Banach space-valued functions that are Dobrakov,
5* or McShane integrable with respect to a Banach space-valued measure, where the norm is the natural
one given by the total semivariation of the indefinite integral. We show that simple functions are dense in
these spaces. As a consequence we characterize when the corresponding indefinite integrals have norm
relatively compact range. On the other hand, we also determine when these spaces are ultrabornological.
Our results apply to conclude, for instance, that the spaces of Birkhoff (respectively McShane) integrable
functions denned on a complete (respectively quasi-Radon) probability space, endowed with the Pettis
norm, are ultrabornological.

2000 Mathematics subject classification: primary 28B05,46G10; secondary 46A08, 46E40.
Keywords and phrases: Dobrakov integral; S* -integral; McShane integral; Birkhoff integral; ultra-
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1. Introduction

In the framework of integration of Banach space-valued functions defined on proba-
bility spaces, the notions of Birkhoff and (generalized) McShane integrability, that lie
strictly between Bochner and Pettis integrability, have been widely studied in the last
years, see [3, 24, 11, 9] and [25] among others. In a recent paper [26] we discussed
the natural extensions of the Birkhoff and McShane integrals to the case of integration
with respect to vector measures, comparing them with the Dobrakov (Bartle) integral
[1, 6]. The corresponding generalization of the Birkhoff integral was first considered
by Dobrakov [8] under the name S*-integral. Our purpose here is to analyze some

Partially supported by the grant BFM2002-01719 of MCYT (Spain) and a FPU grant of MECD (Spain).
© 2007 Australian Mathematical Society 1446-7887/07 $A2.00 -I- 0.00

85

https://doi.org/10.1017/S1446788700017481 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017481


86 Jose Rodriguez [2]

aspects of the spaces of (equivalence classes of) vector-valued functions that are Do-
brakov, 5* or McShane integrable with respect to a vector measure, equipped with the
norm given by the total semivariation of the indefinite integral. We refer the reader to
Section 2 for the definitions.

The study of the spaces of (equivalence classes of) vector-valued integrable func-
tions defined on a probability space, endowed with the norm given by the total
semivariation of the associated indefinite integral (usually called the Penis norm),
was initiated by Birkhoff [2] and Pettis [23] in the thirties. Theorem 18 in [2] states
that simple functions are dense in the space of Birkhoff integrable functions, but the
analogous question for the Pettis integral remained open until Fremlin and Talagrand
gave, in [13], a negative answer by showing an example of an indefinite Pettis integral
without norm relatively compact range. Recall that a Pettis integrable function is the
limit, for the Pettis norm, of a sequence of simple functions if and only if the range of
its indefinite integral is norm relatively compact, see [19, Theorem 9.1]. On the other
hand, it is also known that the indefinite Pettis integral of a McShane integrable func-
tion defined on a quasi-Radon probability space always has norm relatively compact
range (Fremlin, see [11, Corollary 3E]).

Within the more general framework of integration with respect to a vector measure,
we see in Section 3 that simple functions are dense in the spaces ofS* and McShane
integrable Junctions (Theorems 3.3 and 3.5). The intimate relationship between the
approximation by simple functions and the norm relative compactness of the indefinite
integral will also be discussed.

Going back to the papers by Birkhoff and Pettis, one finds that both authors used
the same sequence of simple functions to show that the spaces of Birkhoff and Pettis
integrable functions from [0, 1] (with the Lebesgue measure) to L2[0, 1] are not
complete. More generally, Thomas [30] (and Janicka and Kalton [17] in the case
of [0, 1]) proved that the space of Pettis integrable functions defined on a non-purely-
atomic probability space with values in an infinite dimensional Banach space is never
complete. This result has been extended in [14, Theorem 8] to the space of Dobrakov
integrable functions in the setting of injective tensor product integration (see case (C2)
in Section 2). In view of the above, the spaces of S* and McShane integrable functions
are not complete in general.

Fortunately, the space of Pettis integrable functions is always ultrabornological
(Diaz et al., see [4, Theorem 2]), hence we can apply the closed graph theorem to linear
mappings defined on it with values in the wide class of webbed locally convex spaces
(that includes Frechet spaces, the space of test functions and the space of distributions),
see [18]. The same conclusion holds for the space of McShane integrable functions
defined on [0, 1] (respectively R), see [4, Theorem 3] (respectively [27, Corollary 15])..
In particular, these spaces are barrelled. For more examples of ultrabornological non
complete normed spaces of vector-valued measurable and integrable functions we
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refer the reader to [4], [15, Chapter 4], [16] and [21].
The results in [4] are based on a general principle ([4, Corollary 1]) stating that

a metrizable locally convex space with a suitable Boolean algebra of projections is
ultrabomological. In Section 4, we successfully apply this criterion to the spaces of
vector-valued functions that are Dobrakov, S* or McShane integrable with respect to a
measure fi with values in the space of bounded operators between two Banach spaces.
This is possible after some technical work that may be of interest in its own right
and that extends to this more general setting some previous results spread out in the
literature. As a consequence we will deduce that each one of these spaces is ultra-
bomological if and only if it is barrelled if and only ifn(A) is an operator with closed
range for every atom A of the semivariation of fi (Theorems 4.7, 4.13 and 4.20). We
present examples showing that these spaces are neither ultrabomological nor barrelled
in general, which invalidates a statement of Swartz [29, Theorem 16] regarding the
barrelledness of the space of Dobrakov integrable functions. On the other hand, in
the particular case of integration with respect to a scalar measure, our results apply
to conclude that the spaces of vector-valued Birkhoff (respectively McShane) inte-
grable functions defined on a complete (respectively quasi-Radon) probability space
are ultrabomological (Corollaries 4.14 and 4.21).

2. Preliminaries

For the convenience of the reader this section is devoted to introduce the notation,
definitions and preliminary results about the Dobrakov, 5* and McShane integrals that
are used throughout this paper.

2.1. Notation and terminology Our standard references are [22] (barrelled and
ultrabomological locally convex spaces) and [5] (vector measures and integration of
vector-valued functions).

All our vector spaces are assumed to be real. Given a Banach space Z, we denote
by Bz the closed unit ball of Z , and Z* stands for the (topological) dual of Z. For a
seminormed space (F, || • ||), we denote by (F°, || • ||) the corresponding normed space
of equivalence classes obtained by the usual identification process, and we write / '
to denote the class of each / e F. A Hausdorff locally convex space E is barrelled
if every barrel in E (that is, a closed, absolutely convex and absorbing subset of E) is
a neighborhood of 0. We say that E is ultrabomological if every absolutely convex
subset of E that absorbs all Banach discs of E is a neighborhood of 0 (equivalently, E
is an inductive limit of Banach spaces). Every ultrabomological locally convex space
is barrelled, see for example [22, Section 6.1]. A projection on a vector space W is a
linear mapping P : W —• W such that P o P = P.

For a measurable space (ft, E), a Banach space Z and a countably additive vector

https://doi.org/10.1017/S1446788700017481 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017481


88 Jose Rodriguez [4]

measure v : £ —> Z, the scalar semivariation of v [5, page 2] is the function
||v|| : £ —• [0, oo) given by IM|(£) = supz.eBz, \z*v\(E), where \z*v\ denotes the
variation of the signed measure z*v. It is well known [5, Proposition 11, page 4] that
for each E e £,

sup{||v(A)|| : A c £ , A e E ) < N | ( £ ) < 2 sup {H v(A)|| : A C E, A e E}.

Let 0 be a complete probability measure on £. For a Pettis 0-integrable function
/ : n —• Z, we define | | / | | P := supz.eBz. / 0 | z * / l ^ < °°- Clearly || • ||P is a
seminorm on the set of all Pettis 0-integrable functions from Q to Z and the induced
norm on the space of scalar equivalence classes is usually called the Pettis norm.

Throughout this paper X and Y are Banach spaces, (£2, £) is a measurable space
and ix : E —• £(X, Y) is a countably additive vector measure, where C(X, Y) is
the Banach space of all bounded operators from X to Y.

The semivariation of /x [6, page 513] is the function /2 : E —• [0, oo] denned by
ji(E) = sup || YH=\ MC^IOOOII. where the supremum is taken over all finite partitions
(£,)"=1 of E in E and all finite collections (*,-)"_, in Bx. In addition, jx is monotone
and countably subadditive. Throughout this paper we will assume that jl is continuous
in the sense of [7, page 17]: for each decreasing sequence {En)^Lx in E such that
Pl^li En = 0, we have limn /*(£„) = 0; equivalently, there is a non-negative finite
measure X on E such that lim^A)-^ £(A) = 0 and \im^A)^.o X(A) — 0, see [7,
Lemma 2]. Throughout this paper k will always be such a measure. From the
continuity of /i. it follows that p.(Q) < oo (see the remarks after Lemma 2 in [7]).
Observe that for each E € E the restriction of /x to the a-algebra E£ = {A e E :
A C £}, denoted by /xE, is countably additive and has continuous semivariation.
Clearly, the restriction of A. to E£, denoted by XE, fulfills limxE{A)->0 jTj;(A) = 0 and
l i m ^ ^ o M A ) = 0.

A set B e E is an atom of /2 if p.(B) > 0 and for each A € EB either jx(A) = 0 or
jl(B \ A) = 0 (equivalently, B is an atom of X). As usual, the outer measure induced
by X will be denoted by X*.

We stress that \x is continuous in the particular cases (Cl) and (C2) isolated below.
Further cases can be found in [1] and [20].

(C1) Integration ofX-valued functions with respect to a non-negative finite measure
v on E. In such a case we take Y := X and n(E)(x) := v(E)x for every E € E and
every x & X.
(C2) Injective tensor product integration of X-valued functions with respect to a

countably additive vector measure v : E —*• Z, where Z is another Banach space.
In such a case we take Y := X <£) Z (the injective tensor product of .Y and Z, see [5,
Chapter VIII]) and fi(E)(x) := x <8> v(E) for every £ e l and every x e X. It can
be easily checked that || v|| = jx. By [5, Corollary 6, page 14], there is a non-negative
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finite measure A. on E such that l im^^o ||v||(y4) = 0 and \imMW^0X.(A) = 0,
hence jx is continuous. Clearly, case (C2) includes (Cl).

2.2. The Dobrakov, S* and McShane integrals A function / : £2 —> X of
the form / — X!"=i X>XA;> X> S X, A, € E, is called simple. In this case we write
fn f d\x := £"_, MG^/X*/)- The family of all simple functions from £2 to X will be
denoted by S(E,X).

A function / : £2 —> X is called measurable if there is a sequence in <S(E, X)
converging pointwise to / . A function / : £2 —• X is Dobrakov integrable with
respect to /z, see [6, Definition 2 and Theorem 7], if it is measurable and there is a
sequence (/„) in S(E, X) converging to / /i-almost everywhere such that for every
E € E there exists limn / £ /„ djxE, for the norm topology of Y. The Dobrakov integral
of / with respect to JX is defined by

The family of all functions from £2 to X that are Dobrakov integrable with respect
to jii will be denoted by D(/x). It is easy to check that D(/x) is a linear subspace
of Xn and that the map from D(fx) to Y given by / i->- (D)fQfdfi is linear.
Observe also that for each / € D(/z) and each A e E the restriction f\A is Dobrakov
integrable with respect to /J,A . Moreover, the indefinite integral // : E —• Y given by
If {A) := (D) fA f d(iA is a countably additive vector measure, see [6, Theorem 3].
Throughout this paper we consider the space D(/j.) endowed with the seminorm || • ||/
defined by || / 1 | , :=\\If || (£2).

Given a function / : £2 —> X, a countable family F = (An) of pairwise disjoint
elements of E and a choice T = (tn) in T (that is, fn 6 An for every «), the symbol

denotes a formal series in Y. As usual, we say that another countable family F" of
pairwise disjoint elements of E is finer than F provided that each element of F' is
contained in some element of F.

A function / : Q —>• X is S*-integrable with respect to /z, with S*-integral
y € Y, see [8, Definition 1], if for every e > 0 there is a countable partition Fo

of £2 in E such that for every countable partition F of Q in E finer than Fo and
every choice T in F, the series S(f, F, T) is unconditionally convergent in Y and
\\S(f, F, T) - y\\ < e. The vector y (necessarily unique) is denoted by (S*) fn f d/x.
The family of all functions from Q to X which are S* -integrable with respect to /x
is a linear subspace of XQ that we denote by S*(fx). Clearly, the map from S*(/x)
to Y given by / i-> (5*)/n /d /x is linear. For each / e S*(/x) we know that:
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(i) / | A is 5*-integrable with respect to /xA for every A e E; (ii) the indefinite integral
vf : E —>• Y given by V/(A) := (5*) fAf d/xA is a countably additive vector
measure, see [8, Lemma 1 (1)]. Throughout we consider the space S*(ix) equipped
with the seminorm || • ||y given by | |/ | |v := ||v/||(£2).

We stress that a function / : £2 —> X is Dobrakov integrable with respect to \i if
and only if / is measurable and 5*-integrable with respect to fi (in this case, // = vf),
see [8, Theorem 1]. Therefore, (Z)(/z), || • ||/) is a subspace of (S*(n), \\ • \\v).

Throughout Subsections 3.2 and 4.3 we consider the McShane integral with respect
to a vector measure. As in the case of scalar measures, further conditions are required
to set up this integral. We assume that x is a topology on £2 with r C E and we
suppose that (£2, T, £, A.) is a finite quasi-Radon measure space, in the sense of [12,
Section 411H] (for instance, a finite Radon measure space, see [12, Section 416A1).
Equivalently, we will assume that jx satisfies the following properties:

(a) for every E € E and every e > 0 there exists a r-closed set C c E such that

(ft) infGeg p,(L)Q \ G) = 0 for every non-empty upwards directed family Q of
r-open sets;

(y) if A C E € £ and £(£) = 0, then A e XL

For each A € E the set function jj^ fulfills conditions (a), (yS) and (y) with respect
to "ZA and the induced topology xA = [B n A : B € r], since (A, rA, Y,A, kA) is a
finite quasi-Radon measure space too, see [12, Section 415B]. For some examples of
topological spaces and vector measures satisfying the conditions above we refer the
reader to [26].

To recall the definition of the McShane integral we need some terminology. A
gauge on (Q, r) is a function S : £2 —> x such that co e 8(co) for every co e £2. A
partial McShane partition ofQ is a finite collection V = {(£,-, Sj) : 1 < i < p] where
(#i)f=i are pairwise disjoint elements of £ and s, e Q for every 1 < / < p. We
write Wv := |Jf=1 £,. The collection V is said to be subordinate to S if £, C <$(.*,)
for every 1 < i < p. For every gauge S on (£2, T) and every 17 > 0, we write
n4i, to denote the set of all partial McShane partitions V of £2 subordinate to 6 such
that /t(£2 \ Wp) < r). Since (£2, r, £, X) is a finite quasi-Radon measure space, the
arguments in [11, Section lB(d)] show that FI5,, 5̂  0.

In the sequel, given a function / : Q —> X and a partial McShane partition
V - {(£,, s,) :l<i<p] of £2, we write f(P) := Ef=i M(^)(/U0) € 7.

A function / : £2 —• X is McShane integrable with respect to /x, with McShane
integral v e F, see [26, Definition 3.1], if for every e > 0 there exist a gauge 8 on
(£2, T) and r) > 0 such that \\f(P) - y\\ < e for every 7? € n M . The vector y e Y
(necessarily unique) is denoted by (Af) fnfdfi. The family of all functions from £2
to X which are McShane integrable with respect to /x is a linear subspace of Xa that
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will be denoted by M(fx). The map from A/(/x) to Y given by / i->- (M) fa f d/x is
linear. As for the Dobrakov and 5* integrals, if / e M(fi), then (i) f\A is McShane
integrable with respect to fiA for every A e £; (ii) the set function £y : £ —>• Y
given by ?/(A) := (A/) /A / d/xA is a countably additive vector measure, see [26,
Lemma 3.2]. From now on we consider the space M(fi) endowed with the seminorm
||. | | f defined by ll/llf := ||$>||(fi).

As we mentioned in the introduction, our paper [26] deals with the relationship
between the McShane, 5* and Dobrakov integrals. For a function / : fi —>• X, we
know that

(a) if / is 5*-integrable with respect to /z, then / is McShane integrable with respect
to fi and vf = £/, see [26, Theorem 3.7];
(b) / is Dobrakov integrable with respect to /x if and only if / is measurable and

McShane integrable with respect to /i, see [26, Theorem 3.8],

From (a) it follows that (S*(fi), \\ • \\v) is a subspace of (Af(/i), || • ||f).
Finally, we remark that in the particular case of integration of vector-valued func-

tions defined on a probability space (see case (Cl) in Subsection 2.1), the notions
of Dobrakov, 5* and McShane integrability correspond to the notions of Pettis (for
measurable functions), Birkhoff and generalized McShane integrability, respectively,
see [1, 6], [3, Proposition 2.6] and [10, Proposition 3].

3. Density of simple functions in the spaces of S* and
McShane integrable functions

It is known that the space <S(E, X) of all X-valued simple functions defined on fi
is a dense subspace of (D(ix), \\ • ||/), see [6, Theorem 7]. The aim of this section is to
extend this result to the spaces (S*(/x), || • ||u) and (M(/x), || • ||f). As an application
we discuss the norm relative compactness of the range of the indefinite integral vf

(respectively £f) associated to an S*-integrable (respectively McShane integrable)
function / .

3.1. Spaces of S*-integrable functions The following elementary lemmas will
be needed in the proofs of Theorem 3.3 below and some of the results stated in
Subsection 4.2. We refer the reader to [26] for the details.

LEMMA 3.1 ([26, Lemma 2.1]). Let f € S*(/x). Then for each e > 0 there is
a countable partition To of Q in E such that for every countable family V = (An)
ofpairwise disjoint elements of E finer than Fo and every choice T in V, the series
S(f T, T) is unconditionally convergent and \\ S(f, T, T) - vf( \Jn An) \\ < €.
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LEMMA 3.2 ([26, Lemma 2.2]). Suppose that £2 is an atom ofjx. If f e S*(n), then
there is E e E such that (l(Q \ E) = 0 and vf(Q) = fx(Q)(f(co))for every co e E.

THEOREM 3.3. <S(E, X) is dense in (S*(/t), || • ||v).

PROOF. We have to check that for every / e 5*(/i) and every e > 0 there is a
simple function g : £2 —> X such that sup£€i: \\vf(E) — vg(E)\\ < €. For the proof
we distinguish two cases.

Particular case. Suppose that k is atomless. Lemma 3.1 implies that there is a
countable partition Fo = (An) of fi in E such that

(3.1) S(f,r,T)-vf({jBm\ €
—

2

for every countable family F = (Bm) of pairwise disjoint elements of E finer than Fo

and every choice T in F, the series S(f, F, T) being unconditionally convergent.
Since vf is countably additive and vf(E) = 0 for every E e E with X(E) = 0, we

have

(3.2) lim vf(E) = 0,
(£)-0 '

see [5, Theorem 1, page 10]. Hence we can choose N e H large enough such that
||v/(fl)|| < e/2 for every B c U»>Af A«- B e E-

Fix con e An for every 1 < n < N and define g := X)!Li / K ) ^ , e <S(E, X).
We claim that

(3.3) supli^E)-v,(E)| | <€.

Indeed, take any E e E and fix r) > 0. Since A is atomless, k* ({&>„}) = 0 for every
1 < n < N. Therefore, bearing in mind (3.2), for each 1 < n < N we can choose
En C An, con € En € E, such that

(3.4) max \J(En\E))<r, and Vfl\J(En\E)
\n=\

Since F = { ( £ ' n A n ) U £ n : l < / i < A ^ } i s a finite collection of pairwise disjoint
elements of E finer than Fo, (3.1) yields

An) U £„)(/(*>„)) - vf I\J((E n An) U En)
n=l
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This inequality and (3.4) yield

93

n = l

d(E n An){f(con)) - vf I (j(E n An)
\»=i )

n((E n An) U £„)(/(«„)) - vf ( ( J ( ( £ n An) U £„)
n = l \n=l

n\ E)(f(a>n)) Vfl\J(En\E)
\n=l

-2+2r)-

The fact that vg(E) = X^̂ Li /i)) and the choice of iV imply

vg(E) - vf(E)\\ < vg(E) - vf (\J(E n An)\ + vfl\J(EnAn)
\n=l / \n>N

<e +2rj.

As E € D and r? > 0 are arbitrary, (3.3) holds and the proof of the Particular case is
complete.

General case. There is a (maybe empty) countable collection (Bn) of pairwise
disjoint atoms of A. such that, if we write A = £2 \ (Jn ^«. m e n ^A is atomless.

Since f\A€ 5*(/x/4), the Particular case already proved ensures us that there is a
simple function h : A — • X such that

(3.5) sup\\vf(E)-vh(E)\\ <-.
Eel., *•

As in the proof of the Particular case, we can choose N e M large enough such that
IIvf(B)\\ < e/2 for every B c \Jn>N Bn, B € E. According to Lemma 3.2, applied
to each f\Bn, for every I < n < N there exists &>„ € 5 , such that

(3.6) vf{E) = n(E)(f(con)) for every E e

Let us consider the simple function g : X defined by

g(co) =

h(a>) if a) € A;

f(cL>n) if co e Bn for some 1 < n < N;

0 otherwise.
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We claim that sup£eE \\vf{E) — i^(£)|| < e. Indeed, given £ e E, we have

\vf{E) - vg(E)\\ < \\vf(E n A) - vh{E n A)\\

n Bn) - vJE n Bn

n=l

by (3.5), (3.6) and the choice of N. This finishes the proof of the theorem. •

COROLLARY 3.4. The following conditions are equivalent:

(i) {/j.(E)(x) : E e E} is norm relatively compact for every x e X;

(ii) {v/(A) : A e E ) is norm relatively compact for every f € S*(/x).

PROOF, (i) implies (ii). Fix / 6 S*(fi). It suffices to check that (v/(A) : A e E}
is totally bounded by the norm. Fix e > 0. By Theorem 3.3 there is a simple function
8 = E"=i WA,, xi e X, A,- e S, such that

(3.7) sup

Since for each 1 < i < n the set {/x(£)(x,) : £ e S ] is norm compact and

£ € E) C

there are Eu . . . , Ek e E such that infi<,-<t (^^(f) — v^(£,)|| < e for every E € E.
This inequality and (3.7) yield infi<,-<t ||v/(£) — V/(£,)|| < 3e for every £ € E. As
e > 0 is arbitrary, {v/(A) : A e E} is norm relatively compact and the statement (i)
implies (ii) has been established.

Conversely, assume that (ii) holds, fix x e X and define / := xxa € S*(ix). Then
(v/(A) : A e E} = [n(E)(x) : £ e E} is norm relatively compact. The proof is
complete. D

Corollary 3.4 generalizes the fact that the range of the indefinite integral of a
Birkhoff integrable function is norm relatively compact, see [2, Theorem 18] and [3,
Corollary 3.6]. Our approach here avoids the operator-theoretic arguments involving
the Bourgain property used in [3] and it is closer to Birkhoff's ideas.

3.2. Spaces of McShane integrable functions As pointed out in the introduction,
every McShane integrable vector-valued function defined on a quasi-Radon probability
space is the limit, for the Pettis norm, of a sequence of simple functions. We next
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show that this result can be extended to the more general setting of this paper. Our
proof does not involve the techniques about stable families of measurable functions
that were used by Fremlin in the case of scalar measures. Throughout this subsection
T is a topology on ft with r c S and we assume that /x satisfies properties (a), (/J)
and (y) mentioned in Subsection 2.2.

THEOREM 3.5. S(T,, X) is dense in (M(fi), || • ||f).

PROOF. Fix / e M(/x). We have to prove that for each c > 0 there is g € <S(E, X)
such that sup£ei: \\$f(E) - f,(£)|| < e.

By the Henstock-Saks Lemma [26, Lemma 3.3], there is a gauge 8 on (ft, r) such
that

(3.8)

for every partial McShane partition V = {{Ft, /,) : 1 < i < q) of £2 subordinate to S.
Since lim^E^o £/(£) = 0, see [26, Lemma 3.2], there is an r) > 0 such that

(3.9) Uf(B)\\ < e/2 for every B e £ with p.(B) < rj.

F i x a pa r t i a l M c S h a n e p a r t i t i o n { ( £ , , st) : l < i < p ) o f Q s u b o r d i n a t e t o S s u c h t h a t
\ Uf=i £.) < 1- L e t u s de f ine « := EL f(s,)xE, e 5(E, X). We claim that

(3.10)
£€2.

Indeed, given E e E, the collection {(£, D E, s{) : 1 < i < p} is a partial McShane
partition of ft subordinate to S, and (3.8) yields

n E n ( | J ES

Therefore

' /*(£, D £)(/(«,-)) - ?/ ( £ n f (J £,

by (3.9). Since E,=. M(̂ » n £)(/(*,)) = f,(£), we get
E € E is arbitrary, (3.10) holds and the proof is finished.

< e. As
•
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We can now proceed analogously to the proof of Corollary 3.4 to deduce the
following result.

COROLLARY 3.6. The following conditions are equivalent:

(i) {/z(£)(x) : £ e S ) is norm relatively compact for every x € X;
(ii) {£/(A) : A e £} is norm relatively compact for every f e M(n).

4. Ultrabornological spaces of integrable functions

This section is devoted to characterizing when D(ix)', S*(iJ.y and M(/z)* are
ultrabornological normed spaces. The criterion obtained in [4, Corollary 1] (see Pro-
position 4.2 below) plays an essential role in our analysis. In order to recall it (in the
context of normed spaces) we first need a definition.

DEFINITION 4.1 ([4]). Let (T, A, 0) be a finite measure space and E a locally convex
space. A (T, A, 0)-Boolean algebra of projections in £ is a family {PA : A e A} of
continuous projections in E such that

(i) Pn is the identity on E;
(ii) PAnB = PAo PB for every A, B e A;
(iii) PAUB = PA + PB for every A, B € A with A n B = 0;
(iv) PA = 0 whenever 0(A) = 0.

PROPOSITION 4.2 ([4, Corollary 1]). Let (T, A, 9) be a finite measure space and E
a normed space. Suppose that there is an equicontinuous (T, A, 0)-Boolean algebra
of projections [PA : A € A] in E with the following properties:

(i) if(Bn)™=l is a decreasing sequence in A such that6(f}^Li Bn) = 0, (ej^l, is
a bounded sequence in E such that Pfl.(eB) = enfor every n e N, and (Bn)™=l e l\
then the series YlT=i P"en converges in E;

(ii) PA(E) is ultrabornological for every atom A ofO.

Then E is ultrabornological.

The result isolated in Corollary 4.4 below is an immediate consequence of Propo-
sition 4.2 that will be applied to each one of the spaces of integrable functions that we
consider in this paper. All of them are included in the following class of seminormed
spaces.

DEFINITION 4.3. A seminormed space (F, || • ||) belongs to the class 3M if
(i) F is a linear subspace of Xa;

(ii) /XA € F for every / e F and every A € E;
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(iii) for each / e F there is a countably additive vector measure Vf : E —*• Y
such that

• VfXA (ft) = Vf (A) for every A e E;
• Vf(E) = 0 whenever p,(E) = 0;

(iv) Va
F

f+g = a Vf + Vf for every / , g e F and every a e K.

As usual, given a function / : ft —> X and A € E, we denote by / X A the function
from ft to X defined by /XA(&>) — f(o)) if o> e A, and /XA =0ifa>e ft \ A.

Given a seminormed space (F, \\ • ||) in the class 3M, it is clear that VfXA(B) =
Vf(A D 5) for every A, B e E. Thus for each A e E we can define a mapping
Pf : F* —• F' by /»/( /") := ( / X A ) ' . It is easy to see that {P/ : A e E) is an
equicontinuous (ft, E, A)-Boolean algebra of projections on (F*, || • ||). We write PA

instead of Pf and Vf instead of Vf when no confusion is possible.

COROLLARY 4.4. Let (F, || • ||) be a seminormed space in the class 0M with the
following properties:

(i) if(An)™=l is a countable partition o/ft in E, (fn)^ is a bounded sequence
in (F, || • ||) such that /nUm = 0 whenever n > m, and (an)^l, e £', then the function
f : ft —• X given by f := £ ~ , an/n teton^ to F andlim^ | E l i « - / . - / 1 | = 0;

(ii) PA(F') is ultrabornological for every atom A of jx.

Then ( F \ || • ||) is ultrabornological.

PROOF. In view of Proposition 4.2, it suffices to check condition (i) of that result.
To this end, we fix a decreasing sequence (Bn)™=i in E such that A.(p£l, Bn) = 0,
a bounded sequence (h'n)^=1 in F" such that Psn(K^ ~ K f° r every n e N, and
(&)n°°=i 6 ^'. Define A, := ( X , #«> A2 := ft \ Bx and An := Bn_2 \ Bn^ for
every n > 3. Then (An)£l, is a partition of ft in E. Since A.(Ai) = 0, we can
suppose without loss of generality that hn\M = 0 for every n € N. Define / i =
/2 = 0 € F and /„ := /in_2XBn_2 £ F for every « > 3. Clearly /B|ABI S 0 whenever
n > m. Notice that /B* = (/in-2XBn_2)* = Ffl/i.2(/i^_2) = /i^_2 for every n > 3, hence
(fn)™=l is a bounded sequence in F and (i) yields that / := YlT=i Pn-ifn G F and
lim ,̂ I YH=i Pn-ifn - f\\ = 0 . Accordingly, J27=i P-K converges in (F#, || • ||) and
the proof is complete. •

As regards to condition (ii) in Corollary 4.4, the following result clarifies the dif-
ferences between the case of integration with respect to a non-negative finite measure
and the general case.

PROPOSITION 4.5. Let (F, || • ||) be a seminormed space in the class 3M such that
<S(E, X) c F and Vg(ft) = fa gd/xfor every g € <S(E, X). Suppose that A e E is
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an atom of p, such that Vf (A) € fi(A)(X) for every f e F. Then PA(F') = {(XXAY •
x € X}, PA(F') is linearly homeomorphic to /z(A)(X), and the following conditions
are equivalent:

(i) PA(F') is a Banach space;
(ii) PA(F') is ultrabornological;

(iii) PA(F') is barrelled;
(iv) ix(A)(X) is closed in Y.

PROOF. Write T := fx(A) and kerT = {x e X : T(x) = 0}. We denote by f
the induced continuous linear bijection from the quotient Banach space X/kerT
onto T(X) defined by f (x + kerT) = T(x). Clearly, the inverse f"1 has closed
graph.

By hypothesis, for each / e F there is xf e X such that Vf(A) = T(xf).
Since A is an atom of k, it readily follows that {XJXAY — ( /XA)'- Therefore,
PA(F') = {(XXAY : x e X}. On the other hand, the fact that A is an atom of X
implies that

||r(jc)|| = sup||VXJf/l(fi)|| < UXXAYW <2sup\\VXXA(B)\\ =2\\T(x)\\

for every x e X. Thus we can define a linear homeomorphism <p : PA(F') —> T(X)

Let us turn to the proof of the equivalence between (i)-(iv). The statements (i)
implies (ii) implies (iii) are well known general facts, see for instance [22, Section 6.1].
Now assume that (iii) holds. Then T(X) is barrelled and, since f~[ has closed graph,
an appeal to the closed graph theorem for linear mappings from a barrelled space
into a Frechet space (see for instance [22, Theorem 4.1.10]) establishes that f"1 is
continuous. Hence f is a linear homeomorphism between the Banach space X/ ker T
and T(X). Therefore T(X) is complete and so it is closed in Y. This proves (iii)
implies (iv). Finally, if T(X) is a closed subspace of Y, then T(X) is complete
and, since <p is a linear homeomorphism, PA(F') is complete also. The proof is
finished. •

4.1. Spaces of Dobrakov integrable functions It is not difficult to see that
(D(/it), || • ||,) belongs to the class 3M (take V°w = If for every / e D(fi)) and
that for each atom A of jx we have //(A) e fi(A)(X) for every / € D(fx) (bear in
mind that a measurable function defined on A must be X-essentially constant). As an
immediate consequence of Proposition 4.5 we obtain the following corollary.

COROLLARY 4.6. If A e £ is an atom of ft, then PA(D(n)') is linearly homeomor-
phic to ix(A)(X) and the following conditions are equivalent:
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(i) PA(D(n)') is a Banach space;
(ii) PA(D(IL)') is ultrabornological;

(iii) PA(D(fx)')is barrelled;
(iv) p.(A)(X) is closed in Y.

THEOREM 4.7. The following conditions are equivalent:

(i) D(ix)' is ultrabornological;
(ii) D(fx)'is barrelled;

(iii) ix(A)(X) is closed in Y for every atom A of jx.

PROOF. We already know that (i) implies (ii). To prove (ii) implies (iii) fix an
atom A of ft and notice that, since PA is a continuous linear projection, PA(D(ix)')
is a complemented subspace of D(fx)', hence PA(D(n)') is barrelled, see [22, Corol-
lary 4.2.2 (i)]. An appeal to Corollary 4.6 ensures us that /x(A)(X) is closed in Y.

Finally, the statement (iii) implies (i) is established by applying Corollary 4.4.
We already know that PA(D(/x)') is ultrabornological for every atom A of jx (by
Corollary 4.6) and so it only remains to check the following fact.

(*) If (An )Jji, is a countable partition of Q in E, (/JJjLj is a bounded sequence
in (D(fx), || • ||/) such that fn\Am = 0 whenever n > m, and (an)™=1 e £\
then the function / : Q —> X given by / := J2T=i a"fn *s Dobrakov
integrable with respect to \x and limm | YZ=\ anfn — f\, =0.

To prove (*) define gm := YL™=\a><fi< e ^(/*) f°r every m € N. Observe that
(gm)™=i converges pointwise to / and that for each E e E there exists the limit (for the
norm topology of Y) \imm(D) fE gm d[x = limm £™=1 «„//„(£), because («„)£, e €'
and supneN || /n || / < oo. An appeal to [6, Theorem 16] ensures that / e D(fx) and that
limm Igm(E) = If(E) uniformly for E € E. Hence limm || £?=i «„/„ - / | | 7 = 0 and
condition (*) holds. Therefore D(ix)' is ultrabornological and the proof is finished.

•
It was claimed in [29, Theorem 16] that D(/x)" is always barrelled. However, this

statement is wrong. The simplest example of a non-barrelled D(fx)' is the range of a
bounded operator between Banach spaces provided it is not closed. More precisely,
take a non-empty set £2 and consider the cr-algebra E = {0, £2}. Fix a bounded
operator T between the Banach spaces Zx and Z2 such that T(Zt) is not closed in Z2

and define /i : E —• £(Z,, Z2) by M(0) := 0 and A*(£2) := r . Then D(/x)* (that is
linearly homeomorphic to T(Z2)) is not barrelled.

REMARK. It is elementary that a locally convex space with a dense barrelled linear
subspace is barrelled, see for example [22, Proposition 4.2.1 (ii)]. Combining Theo-
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rem 4.7 with Theorem 3.3 (respectively Theorem 3.5) we infer that S*(/z)" (respec-
tively M(IM)', in contexts in which it is definable) is barrelled provided that n(A)(X)
is closed in Y for every atom A of p.. In the next subsections some extra work leads
us to prove that these spaces are even ultrabornological.

4.2. Spaces of S*-integrable functions The aim of this subsection is to prove the
analogue of Theorem 4.7 for the space of S*-integrable functions. The proof requires
some previous work. First of all, observe that Lemma 4.8 below guarantees that
(5*(/x), II • II v) belongs to the class 3M (take vfw = vf for every / e S*(ji)).

LEMMA 4.8. Let f e S*(fi)andA <= E. ThenfxA e 5* (n) and vfXA (ft) = vf(A).

PROOF. Fix e > 0. Since f\A is 5*-integrable with respect to fiA, there is a
countable partition F^ of A in HA such that

(4.1) \\S(f,r',T')-Vf(A)\\<€

for every countable partition F' of A in EA finer than FQ and every choice T in F,
the series S(f, F', 7") being unconditionally convergent. Define Fo :— FQ U {ft \ A}.

If F = (An) is a countable partition of ft in E finer than Fo and T = (tn) is any
choice in F, then F' = [An : An c A] is a countable partition of A in EA finer than
T$ and 7' = {/„ : An C A} is a choice in F', hence 5 ( / X A . F, 7) = S(/U, F \ T) is
unconditionally convergent and (4.1) yields

, F , 7) - 1̂

As € > 0 is arbitrary, fxA e 5*(/i) and (5*) / a / ^ d/i = vr(A). D

COROLLARY 4.9. 7/" A e E w an atom of [i, then PA(S*(fi)') is linearly homeo-
morphic to /x(A)(X) and the following conditions are equivalent:

(i) PA (S* (/x)') is a Banach space;
(ii) PA (S* (/A) ') is ultrabornological;

(iii) PA (S* 0*) *) « barrelled;
(iv)

PROOF. The result follows straightforwardly from Proposition 4.5, bearing in mind
that vf(A) € n(A)(X) for every / € S*(n) (by Lemma 3.2). •

Corollary 4.9 and the comments after Theorem 4.7 make clear that S*(/z)* is not
barrelled in general.

The following criterion of unconditional convergence for double series in Banach
spaces will be used in the proofs of Lemmas 4.11 and 4.12.
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LEMMA 4.10 ([3, Lemma 3.1]). Let {zn,k)nMH oe a double sequence in a Banach
space Z such that

(i) the series ^ t zn,k '•* unconditionally convergent for every n e N;
(ii) there exist an unconditionally convergent series J2n kz'nk in Z and a sequence

(«„)£, € tl such that I J2keQ(Zn,k - < t ) | | < \an\for every finite set Q c N and
every n 6 N.

Then J2n k z«,* w unconditionally convergent in Z.

LEMMA 4.11. Let f : ft —>• X be a function. The following conditions are
equivalent:

(i) / is S*-integrable with respect to ju;
(ii) there is a countable partition Fo = (An) o/ft in E such that f\An e S*(iiAn)

for every n, and for every countable partition F = (Bn) of£2 in E finer than Fo, the
series ^2n(S*) fB fdfiBn converges unconditionally.

PROOF. It only remains to prove (ii) implies (i). We show that / G S*(/x) and
(5*) fafd/x = J2n (5*) Ln f d^K =-y eY. To this end fix e > 0. For each n e M,
we apply Lemma 3.1 to obtain a countable partition T" of An in SAji such that for
every countable family F" = (Cm) of pairwise disjoint elements of Y,An finer than F"
and every choice T in F',

(4.2) \\s(fr',T
II

')-(S*) f
Jc

€

where C = [Jm Cm, the series S(f, F', T') being unconditionally convergent.
Observe that Fj := (Jn F" is a countable partition of ft in S finer than Fo. We

claim that if F is any countable partition of ft in £ finer than F, and T is any choice
in F, then the series S(f, F, T) converges unconditionally and \\S(f, F, T) — y\\ < e.
Indeed, let F = (An<k) be such a partition, where F" := (Anik)k is a countable partition
of An in T.An finer than F" for every n. Fix any choice T = (tn,k) in F and define
T" := (tn,k)k for every n. We first check that S(f, F, T) is unconditionally convergent
with the help of Lemma 4.10. Notice that

(a) the series S(f, F", T") is unconditionally convergent for every n;
(b) J2nk(S*)fA fdfiAnt is unconditionally convergent too, since F = (A n t ) is

finer than Fo;
(c) for each finite set Q c N and each n e N inequality (4.2) yields

€

~ 2"
keQ k€Q • " • - '
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An appeal to Lemma 4.10 allows us to conclude that S(/, F, T) converges uncondi-
tionally in Y. Finally, (4.2) implies that

1 S(f, F, T) - y\\ < J2 Ik/ , T", T") - fdfiA 2"

As e > 0 is arbitrary, / e S*(/x) and (S*) fnfdix = y. The proof is complete. •

In the particular case of Birkhoff integrable functions, the previous result was proved
in [3, Lemma 3.2] using the countable additivity of the indefinite Pettis integral.

LEMMA 4.12. Let (An)™=i be a countable partition ofQ. in £, (/„)£!, a bounded

sequence in (5*(/x), || • ||w) such that fn\Am = 0 whenever n > m, and (an)£i, e lx.

Define f : Q - ^ X by f := ^Zi a"U Then

(i) feS*(ix);

(ii) vf (£) = En°°=1«- vf. (E) for every E € S;
(iii) l i m N | | E L « " / n - / H v = 0.

PROOF, (i) For each n e N we have f\An = E " = I « ' / I A , , hence f\An is 5*-
integrable with respect to nAn. Thus, in view of Lemma 4.11, in order to prove that
/ € S* (n) we only have to check that if F is a countable partition of fi in E finer
than {An)%Lv then the series 5ZAer(S*) fA f d\i converges unconditionally in Y.

To this end fix such a partition F = {Antk), where An = \Jk Ank for every n € N.
Notice that

(4.3) (S*) f
JA*.k

for every n, k e N. Write K := supneN ||/n||v and fix e > 0. There is an N € N large
enough such that (J2n>N \a»\)K 5 «• Since each v/n is countably additive, there is a
finite set T C N x N such that \an \ \\ vfn (U(m,*)es A"*) II - €IN for e v e ry 1 <n <N

7 = 0. Combining (4.3) with the inequalitieswhenever S C
above we infer

x N is finite and

E inj
(m,k)eS * A"k

fdfi Am*

- E
II (m,*)€S i= l

E«-'
n=l (m,Jt)€5

^Ei«-ik( UA-*
n=l V(m,t)eS
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n=l \n>N

whenever 5 c N x N is finite and S D T = 0. As e > 0 is arbitrary, the series

12n,k(S*) /A. t f d^A^ converges unconditionally. This completes the proof of (i).
In order to see (ii) we begin with the claim: The series J2n,k

 anVf.(Ak) w uncondi-
tionally convergent.

Indeed, this follows immediately from Lemma 4.10 because

(a) the series £ t an vh (Ak) converges unconditionally for every n € N;
(b) for every finite set Q c N and every n e N w e have

< \an\K.
keQ k£Q

Bearing in mind (4.3), we conclude that

OO / 00 00 / 00

(
n=\ n=l \k=\

oo / k

= E

-E
oo

k=l \n=
oo

k=\ \n=l k=\

and (An n E)™=1 yieldsGiven E € S, the same argument applied to ( / J E

v/(£) = J2™=\ <*nVfn(E)> as required.

Finally, to deduce (iii) fix e > 0 and take No 6 N large enough such that

J2n>N \an\ —€- F° r e a c n N > Nothe function hN e S*(/x) defined by

hN:=f-

satisfies

II^L<2sup||vA,(£)||=2sup

n>N

n>N

<2Ke,
\n>N

where the equality follows from (ii) and the linearity of the 5*-integral. As e > 0 is
arbitrary, (iii) holds and the proof is finished. •

We can now prove the chief result of this subsection.

THEOREM 4.13. The following conditions are equivalent:

(i) S*(ix)'is ultrabornological;
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(ii) S*{ix)' is barrelled;
(iii) ix(A){X) is closed in Y for every atom A of pi.

PROOF. The proof of (ii) implies (iii) follows the same steps as for D(/x)' in
Theorem 4.7, but now using Corollary 4.9 instead of Corollary 4.6. On the other
hand, the statement (iii) implies (i) is a straightforward consequence of Corollaries 4.4
and 4.9 and Lemma 4.12. •

In the particular case of integration with respect to a non-negative finite measure
(see case (Cl) in Subsection 2.1) condition (iii) in Theorem 4.13 is automatically
fulfilled. Consequently, we obtain the following result for spaces of Birkhoff integrable
functions.

COROLLARY 4.14. Let (T, A, 0) be a complete probability space and Z a Banach
space. Then the space of all {equivalence classes of) Birkhoff integrable functions
defined on T with values in Z, endowed with the Pettis norm, is ultrabornologicaL

4.3. Spaces of McShane integrable functions In this subsection we analyze when
the space of McShane integrable functions is ultrabornological. Theorem 4.20 below
shows that the same conclusions which we have already obtained for D {/x)' and S* (/z)'
remain true for M(/x)\ In the sequel x is a topology on Q with r c E and we suppose
that fr fulfills properties (a), (£) and (y) mentioned in Subsection 2.2.

From the next two lemmas it will become clear that (M(/A), || • ||{) is a seminormed
space in the class 3M (with v^(M) = %f for every / e M{/x)) that satisfies the
requirements in Proposition 4.5.

LEMMA 4.15 ([26], Proposition 3.4). Let f e M{/x) and A e £. Then fxA e
Af(/*) and SfXA (£2) = ?, (A)..

LEMMA 4.16. Suppose that Q is an atom ofp,. If f € M(/z), then there is E e £
such that fl,{n\E)=0 and £/(£?) = n{Q.){f {a>)) for every o € E.

PROOF. The family Q, made up of all G e x with k{G) = 0, is non-empty and
upwards directed, hence property (/J) may be applied to deduce that X{[J Q) = 0.
Define E := Q \ \JQ. Since f\E is McShane integrable with respect to fiE, with
integral £/(£) = £/(fi), for each n e N there exist a gauge SH on {E, xE) and rjn > 0
such that

(4.4) ][>(£,•)(/(*/))-?/(«)
1

n
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for every partial McShane partition {(£,, $,-) : 1 < i < p] of E subordinate to Sn such
that £ ( J Z \ l X i £•)<>?,,•

Fix co € E and n e N. Then Sn(co) = Gn n E = Gn \ \JQ for some Gn e r.
Since Sn(co) ̂  0, we have X(Gn) > 0 and, since ft is an atom of X, it follows
that k(E \ <$„(«)) = 0. In particular, fi(8n(co)) = /x(ft). Therefore (4.4) applied
to {(8n(co),co)} yields ||/x(ft)(/(«)) - f/(ft)|| < 1/n. As co e E and n e N are
arbitrary, we deduce that f/(ft) = /x(ft)(/(<y)) for every co e E and the proof is
over. •

COROLLARY 4.17. If A e Y, is an atom offr, then PA(M(n)') is linearly homeo-
morphic to n(A)(X) and the following conditions are equivalent:

(i) PA (M(fi)') is a Banach space;
(ii) PA(M(ix)') is ultrabornological;
(iii) PA(M(ix)') is barrelled;
(iv) n(A){X) is closed in Y.

In order to apply Corollary 4.4 to (Af(^), || • || f), we also need Proposition 4.18
below. The proof of this Beppo-Levi type result is inspired by some of the ideas used
in [27, Theorem 8] and [28, Theorem 6] for the McShane integral of vector-valued
functions defined on K.

PROPOSITION 4.18. Let (/„) be a sequence in M(/x) such that YlT=i f» con^erges
pointwise for the norm topology ofX, and X ^ ||/n||< < oo. Then

(i) / : = H^li fn '•* McShane integrable with respect to /x;
(ii) KfiE) = En°°=. KfiE) for every E e E;

(iii) lim,v || Y.1=i /« ~ fh = °-

PROOF. Define gn := YH=i fa e M(ji) for every n € N and fix e > 0. For each
n e N the Henstock-Saks Lemma [26, Lemma 3.3] can be used to obtain a gauge 8n

on (ft, r) such that

(4.5) \\i

for every partial McShane partition V of ft subordinate to 8n. Fix N e N large enough
such that

(4.6)

Since for each n e N w e have lim£(E)_>o £/„ (£) = 0 (see [26, Lemma 3.2]), there is
n > 0 such that

(4.7) l k / , ( £ ) | | < e / 2 " for every 1 <n<N
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whenever ix(E) < t). On the other hand, given co e £2, fix N < n(a>) e N such that
\)gn(v) - /(<w)ll < * for every n > n{io).

Let us define a gauge <5 on (Q, r) by S(<w) := 8n(a))(co) for every &; e £2. We claim
that

(4.8) fCP) - + 3)c for every V € n4,,.
n=l

Indeed, take any P = {(£*, 5,) : 1 < / < p} e USt). For each n e N the collection
{(£,, 5,) : n(si) = n} is a (maybe empty) partial McShane partition of fi subordinate
to <$„, hence (4.5) yields

n=l

oo

The choice of n(s,) implies \\gn(Sl)(
si) ~ f(si)\\ 5 € for every \ <i < p, and therefore

(4.9)

On the other hand, (4.6) and (4.7) yield

1=1

n=\

P "(si)

n=\

n=l n=l

n = l

N

1=1

n=l

keeping in mind that n(s,) > N for every 1 < i < p and that jx(Q \ Uf=i £;) < »?•
Inequality (4.8) now follows from the previous one and (4.9). As e > 0 is arbitrary,
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/ e MO) and fy(J2) = ^ i f/.C^). This completes the proof of (i). Statement (ii)
can be obtained by applying the previous arguments to each f\E with £ e E.

Finally, we prove (iii). Given AT e N, the function

n>N

satifies = Yln>N f°r every £ e E, by (ii). Hence

- (limsup||/iA,||f) <lim sup sup || £A
I \ N J N EeE

= lim sup sup
N EeE n>N

lim = 0 .
n>N

Therefore, (iii) holds true and the proof is complete. D

REMARK. The analogue of Proposition 4.18 for the Birkhoff integral does not hold
in general. Indeed, let us consider the sequence of Birkhoff integrable functions
/„ : [0, 1] —> co([O, 1]) constructed in [25, Theorem 2.5] that converges pointwise
to a function / : [0, 1] —• co([O, 1]) which is not Birkhoff integrable. A glance at
the proofs of Theorems 2.3 and 2.5 in [25] reveals that each /„ is scalarly null. Define
g! := / , and gn := fn — /„_[ for every n > 2. Then gn is Birkhoff integrable and
scalarly null for every n € N. However, Y1T=\ Sn = h'inn /„ = / is not Birkhoff
integrable.

COROLLARY 4.19. Let (An)™=l be a countable partition of SI in E, (/n)^l, a bounded
sequence in (M(/A), || • ||f) such that fn\Am = 0 whenever n > m, and («„)£!, € £l.
Define f : £2 —+ X by f := £n°°=. «„/„. Then

(i) feM(fx);

(ii) l imA, | |E»ALi«- /»- / | | f=0.

We are thus led to the previously announced result.

THEOREM 4.20. The following conditions are equivalent:

(i) M((A)'is ultrabornological;
(ii) M (^Y is barrelled;

(iii) /A(A)(X) is closed in Y for every atom A ofjX.

PROOF. Imitate the proof of Theorem 4.13 using Corollaries 4.19 and 4.17 instead
of Lemma 4.12 and Corollary 4.9, respectively. •
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COROLLARY 4.21. Let (7\ X, A, 9) be a quasi-Radon probability space and Z a
Banach space. Then the space of all {equivalence classes of) McShane integrable
functions defined on T with values in Z, endowed with the Pettis norm, is ultra-
bornological.

Finally, notice that the example after Theorem 4.7 (with r := {0, Q}) shows that
M(ix)' is not barrelled in general.

References

[1] R. G. Bartle, 'A general bilinear vector integral*, Studia Math. 15 (1956), 337-352.
[2] G. Birkhoff, 'Integration of functions with values in a Banach space', Trans. Amer. Math. Soc. 38

(1935), 357-378.
[3] B. Cascales and J. Rodriguez, 'The Birkhoff integral and the property of Bourgain', Math. Ann.

331 (2005), 259-279.
[4] S. Diaz, A. Fernandez, M. Florencio and P. J. Paul, 'A wide class of ultrabornological spaces of

measurable functions', J. Math. Anal. Appl. 190 (1995), 697-713.
[5] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys 15 (American Mathematical Society,

Providence, RI, 1977).
[6] I. Dobrakov, 'On integration in Banach spaces. I', Czechoslovak Math. J. 20 (95) (1970), 511-536.
[7] , 'On representation of linear operators on C0(7\X)', Czechoslovak Math. J. 21 (96) (1971),

13-30.
[8] , 'On integration in Banach spaces. VII', Czechoslovak Math. J. 38 (113) (1988), 434-449.
[9] D. H. Fremlin, 'The McShane and Birkhoff integrals of vector-valued functions', Research re-

port 92-10, version of 13.10.04 (Mathematics Department, University of Essex, Colchester, UK),
available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm.

[10] , 'Problem ET\ version of 27.10.04 (Mathematics Department, University of Essex, Colch-
ester, UK), available at http://www.essex.ac.uk/maths/staff/fremlin/problems.htm.

[11] , 'The generalized McShane integral', Illinois J. Math. 39(1995), 39-67.
[12] , Measure theory. Vol. 4 Topological measure spaces (Torres Fremlin, Colchester, 2003).
[13] D. H. Fremlin and M. Talagrand, 'A decomposition theorem for additive set-functions, with

applications to Pettis integrals and ergodic means', Math. Z. 168 (1979), 117-142.
[14] F. J. Freniche and J. C. Garcia-Vazquez, "The Bartle bilinear integration and Carleman operators',

J. Math. Anal. Appl. 240 (1999), 324-339.
[15] J. L. Gamez, Denjoy integrals of functions with values in Banach spaces (Ph.D. Thesis, Universidad

Complutense de Madrid, Spain, 1997), (Spanish).
[16] A. Gilioli, 'Natural ultrabornological, noncomplete, normed function spaces', Arch. Math. (Basel)

61 (1993), 465-477, Edited by Klaus Floret and Chaim S. Honig.
[17] L. JanickaandN. J. Kalton, 'Vector measures of infinite variation', Bull.Acad. Polon. Sci. Sen Sci.

Math. Astronom. Phys. 25 (1977), 239-241.
[18] H. Jarchow, Locally convex spaces (B. G. Teubner, Stuttgart, 1981).
[19] K. Musial, 'Topics in the theory of Pettis integration', Rend. Istit. Mat. Univ. Trieste 23 (1991),

177-262.
[20] T. V. Panchapagesan, "On the distinguishing features of the Dobrakov integral', Divulg. Mat. 3

(1995), 79-114.

https://doi.org/10.1017/S1446788700017481 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017481


[25] Spaces of vector functions 109

[21] P. J. Paul, "The space of Denjoy-Dunford integrable functions is ultrabornological', Bull. Belg.
Math. Soc. Simon Stevin 8 (2001), 75-82.

[22] P. Perez Carreras and J. Bonet, Barrelled locally convex spaces, North-Holland Math. Studies 131
(North-Holland, Amsterdam, 1987).

[23] B. J. Pettis, 'On integration in vector spaces', Trans. Amer. Math. Soc. 44 (1938), 277-304.
[24] L. Di Piazza and D. Preiss, 'When do McShane and Pettis integrals coincide?', Illinois J. Math. 47

(2003), 1177-1187.
[25] J. Rodriguez, 'On the existence of Pettis integrable functions which are not Birkhoff integrable',

Proc. Amer. Math. Soc. 133 (2005), 1157-1163.
[26] J. Rodriguez, 'On integration of vector functions with respect to vector measures', Czechoslovak

Math. J. 56 (2006), 805-825.
[27] C. Swartz, 'Beppo Levi's theorem for the vector-valued McShane integral and applications', Bull.

Belg. Math. Soc. Simon Stevin 4 (1997), 589-599.
[28] , 'Uniform integrability and mean convergence for the vector-valued McShane integral',

Real Anal. Exchange 23 (1997/98), 303-311.
[29] , 'Barrelledness of the space of Dobrakov integrable functions', Math. Slovaca 51 (2001),

521-528.
[30] G. E. F. Thomas, 'Totally summable functions with values in locally convex spaces', in: Measure

theory (Proc. Con}., Oberwolfach, 1975), Lecture Notes in Math. 541 (Springer, Berlin, 1976)
pp. 117-131.

Departamento de Matematicas
Universidad de Murcia
30.100 Espinardo
Murcia
Spain
e-mail: joserr@um.es

https://doi.org/10.1017/S1446788700017481 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017481

