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Abstract

In this note, we use Dedekind’s eta function to prove a congruence relation between the number of
representations by binary quadratic forms of discriminant —31 and Fourier coefficients of a weight 16
cusp form. Our result is analogous to the classical result concerning Ramanujan’s tau function and binary
quadratic forms of discriminant —23.
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The Ramanujan tau function 7 is defined by

A@ = q] [a =g = ) mwg,

n=1 n=1
where g := ¥ (z € C, Im(z) > 0). In 1930, Wilton [5] determined 7(n) modulo 23
for all positive integers n. In 2006, Sun and Williams [3, Corollary 2.2, page 357]
obtained Wilton’s congruence for 7(n) modulo 23 as a consequence of their work on
binary quadratic forms. Recently Dr. Pieter Moree of the Max Planck Institute for
Mathematics in Bonn, Germany, in relation to his recent work [1] with Ciolan and
Languasco, asked the second author if the analogous congruence modulo 31 could be
obtained using the ideas of [3] for the function 7¢(n), where
A(R)E4(z) = Z Ti6(n)q"
n=1

and E4(q) is the Eisenstein series

Ei2) = 1+240 ) o3(n)q".

n=1
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Swinnerton-Dyer [4, page 34], before giving the arguments that prove the congruence
relation (3), notes that ‘there seems little prospect’ of proving this congruence using
Dedekind’s eta function. In this note, we show that it can be done by giving an explicit
proof of the congruence relation (3) using Dedekind’s eta function. Then we combine
our results with [2, Theorem 10.2, page 166] to obtain the following congruence for
T16(n) modulo 31.

THEOREM 1. For any positive integer n,

0 (mod 31)  ifthere is a prime p | n with (3’41) =-1
and v,(n) = 1 (mod 2), or (5) = 1.
p =2x* +xy +4y* and v,(n) = 2 (mod 3),

Ti6(n) =
(1] 1 +vp(m) (mod 31)  otherwise,
pln,
(L)=1,
p=x>+xy+8y?
where

p=>1

/gln,
(4)=1,
p=2x2+xy+4y?,
vp(n)=1 (mod 3)

PROOF. We use the Dedekind eta function which is defined by

n(z) = q1/24 1_[(1 _ qn)'

n=1

We have

A@R)E4(2) =

2 @n* @) | 1(n64(2z) ) )
7222 2\nP@2) ()

64 4 48 4 16 2 32 4
+ 31(69271552'7 (2 34005104149 | 7915008727 _(42)
73%(22) 1 @nd(22) n'%(2)
40 16 64 88
1" 220 °(4z) 77" (2z2) n°°(2z2)
— 10506881291 %0 L gr977 _ 38401 =)
7?4(2) 732(2) 0(2)n'%(4z)
"2z %29 )
¥ (n?4z) @842/
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All of the functions in this modular equation are in M¢(I'o(4)) and the identity can be

proved using Sturm’s theorem. Thus, we have

(@) (42) l(n64(2z) AN
7*(22) 2\n?(42) 1?22

If f := ax® + bxy + ¢y” is a positive-definite integral binary quadratic form, we denote
by r(f;n) the number of representations of a nonnegative integer n by f. We set

AQE:(2) = ) (mod 31). (1)

1
$2(2) = > Zl(r(x2 +xy + 8y%n) — r2x% + xy + 4% )"

n=0

1 N 2 4 xy+8y? 2x% +xy+4y?
=5 2, @Y —q )
X,y=—00
The theta functions ¥ _ g~ and Y e g* o+ belong to the space
M;(To(124), (Z31)) as do the eta quotients

*

n@nE)nBln124z) 1> Q2n*(622) and (2 (312)
nQ2on(62z) T n(on(124z) n(22)n(622)°
Then it is straightforward to prove the modular identity

n(@n(42)n(312)n(124z) 1(772(21)772(622) ~ nz(z)n2(31z))

$2(z) = n(22)n(62z) T2 n(42n(124z)  n(2z2)n(62z)

using Sturm’s theorem. We have 1—A3 = (1 -A)* (mod 31) by the binomial
theorem, so that

_n@nté) 1 n*Qy ™
mo =TG5 5(7732(42) - n32(2Z)) (mod 31). 2)
From (1) and (2), we deduce that

A)E4(z) = ¢2(z) (mod 31). 3)

Appealing to the formula for %(r()c2 +xy + 8y n) — r(2x> + xy + 4y*; n)) given in [2,
Theorem 10.2, page 166], we obtain from (3) the congruence for 7,¢(n) stated in the
theorem. O
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