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From Quantum Groups to Groups
Mehrdad Kalantar and Matthias Neufang

Abstract. In this paper we use the recent developments in the representation theory of locally compact
quantum groups, to assign to each locally compact quantum group G a locally compact group G̃ that
is the quantum version of point-masses and is an invariant for the latter. We show that “quantum
point-masses” can be identified with several other locally compact groups that can be naturally as-
signed to the quantum group G. This assignment preserves compactness as well as discreteness (hence
also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for
some of the most well-known examples of non-classical quantum groups. Also, we show that several
structural properties of G are encoded by G̃; the latter, despite being a simpler object, can carry very
important information about G.

1 Introduction

One of Murray and von Neumann’s primary motivations to define and study op-
erator algebras was the representation theory of groups, and in fact, those operator
algebras associated with groups have played a prominent role in the theory of opera-
tor algebras ever since.

Also, using different group properties in constructing and studying various types
of operator algebras has led to some of the deepest results in the subject.

The aim of this paper is to investigate operator algebras associated with locally
compact quantum groups G by studying the properties of an assigned locally com-
pact group G̃. The latter, in the classical case, is the initial group from which those
operator algebras are constructed. We see that, despite possibly being a much smaller
object in the non-commutative setting, the group G̃ can carry very important infor-
mation about the quantum group G.

Locally compact quantum groups, as introduced and studied by Kustermans and
Vaes in [17], provide a category which comprises both classical group algebras and
group-like objects arising in mathematical physics such as Woronowicz’s famous
quantum group SUµ(2).

To find a Pontryagin-type duality theorem which holds for all locally compact
groups rather than just abelian ones, one has to pass to the larger category of locally
compact quantum groups. In order to embed locally compact groups in this larger
category, one has to work with the algebras associated with a group. So, instead of
working with a locally compact group G, we study L∞(G), and we consider VN(G)
as its Pontryagin dual.

Also, there are many other occasions in which one prefers, or even has to pass from
a group to an associated (operator) algebra. However, there are several equivalent
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ways to recover the initial group from these algebras: G is topologically isomorphic,
for example, to

• the spectrum of C0(G);
• the spectrum of A(G);
• the set of all group-like elements in the symmetric quantum group VN(G).

In [27] Wendel proved that for a locally compact group G, every positive isometric
linear (left or right) L1(G)-module map on L1(G), i.e., every positive isometric (right
or left) multiplier, has to be the convolution by a point-mass. Moreover, the set of
point-masses regarded as maps on L1(G) with the strong operator (i.e., the point-
norm) topology is homeomorphic to the group G. In other words, he showed how a
locally compact group can be recovered from its measure algebra.

In [14], Junge, Neufang and Ruan defined an analogue of measure algebra for
locally compact quantum groups, and studied its structure and representation the-
ory; in fact, by means of a representation theorem they investigated the quantum
group analogue of the class of completely bounded multiplier algebras that play an
important role in Fourier analysis over groups. The latter result enables the authors
to express quantum group duality precisely in terms of a commutation relation. If
G = L∞(G) for a locally compact group G, then the algebra of completely bounded
multipliers Mcb(L1(G)) defined in [14] is the measure algebra of the group G. So we
can regard the algebra Mcb(L1(G)) as a quantization of the measure algebra. This mo-
tivated us to look for objects similar to point-masses in the classical case, so-to-speak
“quantum point-masses”.

Following this path, in this paper we start with assigning to each locally compact
quantum group G, a locally compact group G̃ that is an invariant for the latter; we
will later prove that this assignment preserves compactness as well as discreteness
(hence also finiteness), and, for large classes of quantum groups, amenability.

We first prove some basic properties of this group before arriving at one of our
main results in Section 3, Theorem 3.12, by establishing identifications between sev-
eral different locally compact groups which can be assigned to a locally compact
quantum group, including the intrinsic group of the dual quantum group, as well
as the spectrum of the universal C∗-algebra and of the L1-algebra of the dual quan-
tum group.

In Section 4, we calculate this associated group for some well-known examples of
locally compact quantum groups. For Woronowicz’s class of compact matrix pseu-
dogroups, we always obtain a compact Lie group—which in the case of SUµ(2) is
precisely the circle group.

In the last section of this paper, we present various applications of studying this
group. In particular, we show that for a large class of locally compact quantum
groups, the associated locally compact group cannot be “small”, and in fact, the small-
ness of the latter forces the former to be of a very specific type. We also see that this
group carries some natural properties inherited from the locally compact quantum
group, which shows that this assignment is natural.

The results in this paper are based on [15], written under the supervision of the
second-named author.
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2 Preliminaries

We recall from [17] and [26] that a (von Neumann algebraic) locally compact quan-
tum group G is a quadruple

(
L∞(G),Γ, ϕ, ψ

)
, where L∞(G) is a von Neumann alge-

bra with a co-associative co-multiplication Γ : L∞(G) → L∞(G)⊗̄L∞(G), ϕ and ψ
are (normal faithful semi-finite) left and right Haar weights on L∞(G), respectively.
We write M+

ϕ = {x ∈ L∞(G)+ : ϕ(x) < ∞} and Nϕ = {x ∈ L∞(G)+ : ϕ(x∗x) <
∞}, and we denote by Λϕ the inclusion of Nϕ into the GNS Hilbert space L2(G, ϕ)
of ϕ. According to [17, Proposition 2.11], we can identify L2(G, ϕ) and L2(G, ψ),
and we simply use L2(G) for this Hilbert space in the rest of this paper.

For each locally compact quantum group G, there exists a left fundamental unitary
operator W on L2(G)⊗ L2(G) that satisfies the pentagonal relation

W12W13W23 = W23W12

and such that the co-multiplication Γ on L∞(G) can be expressed as

Γ(x) = W ∗(1⊗ x)W (x ∈ L∞(G)).

Let L1(G) be the predual of L∞(G). Then the pre-adjoint of Γ induces on L1(G)
an associative completely contractive multiplication

? : L1(G)⊗̂L1(G) 3 f1 ⊗ f2 7→ f1 ? f2 = ( f1 ⊗ f2) ◦ Γ ∈ L1(G).

The left regular representation λ : L1(G)→ B
(

L2(G)
)

is defined by

λ : L1(G) 3 f 7→ λ( f ) = ( f ⊗ ι)(W ) ∈ B
(

L2(G)
)
,

which is an injective and completely contractive algebra homomorphism from L1(G)
into B

(
L2(G)

)
. Then

L∞(Ĝ) = {λ( f ) : f ∈ L1(G)} ′ ′

is the von Neumann algebra associated with the dual quantum group Ĝ of G. It fol-
lows that W ∈ L∞(G)⊗̄L∞(Ĝ). We also define the completely contractive injection

λ̂ : L1(Ĝ) 3 f̂ 7→ λ̂( f̂ ) = (ι⊗ f̂ )(W ) ∈ L∞(G).

The reduced quantum group C∗-algebra C0(G) = λ̂
(

L1(Ĝ)
)‖ · ‖

is a weak∗ dense
C∗-subalgebra of L∞(G) with the co-multiplication

Γ : C0(G)→ M
(

C0(G)⊗C0(G)
)

given by the restriction of the co-multiplication on L∞(G) to C0(G), where we de-
note by M

(
C0(G) ⊗ C0(G)

)
the multiplier C∗-algebra of the minimal C∗-algebra

tensor product C0(G)⊗C0(G).
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Let M(G) denote the operator dual C0(G)∗. There exists a completely contractive
multiplication on M(G) given by the convolution

? : M(G)⊗̂M(G) 3 µ⊗ν 7→ µ ? ν = µ(ι⊗ ν)Γ = ν(µ⊗ ι)Γ ∈ M(G)

such that M(G) contains L1(G) as a norm closed two-sided ideal. If G is a locally
compact group, then C0(Ga) is the C∗-algebra C0(G) of continuous functions on G
vanishing at infinity, and M(Ga) is the measure algebra M(G) of G. Correspondingly,
C0(Ĝa) is the left reduced group C∗-algebra C∗λ(G) of G. Hence, we have M(Ĝa) =
Bλ(G).

For a locally compact quantum group G, we denote by S its antipode, which is
the unique σ-strong∗ closed linear map on L∞(G) satisfying (ω⊗ι)(W ) ∈ D(S)
and S(ω⊗ι)(W ) = (ω⊗ι)(W ∗) for all ω ∈ B(L2(G))∗ and such that the elements
(ω⊗ι)(W ) form a σ-strong∗ core for S. The antipode S has a polar decomposition
S = Rτ− i

2
, where R is an anti-automorphism of L∞(G) and (τt ) is a strongly con-

tinuous one-parameter group of automorphisms of L∞(G). We call R the unitary
antipode and (τt ) the scaling group of G.

There exists a strictly positive operator δ, affiliated with M, called modular ele-
ment, such that

ψ(x) = ϕ(δ1/2xδ1/2)

for all x ∈ Mψ . Also, we have Γ(δit ) = δit ⊗ δit for all t ∈ R. We say that a locally
compact quantum group G is unimodular if δ = 1.

If we define a strictly positive operator P on L2(G) such that PitΛϕ(x) = Λϕ(τt (x))
for all t ∈ R and x ∈ Nϕ, then we have τt (x) = Pit xP−it , and

(2.1) P = P̂ and ∆it
ϕ̂ = Pit Jϕδ

it Jϕ,

where ∆ϕ̂ is the modular operator associated to ϕ̂ and Jϕ is the modular conjugate
associated to ϕ.

Moreover, the following hold for all t ∈ R.

Γ ◦ τt = (τt ⊗ τt ) ◦ Γ Γ ◦ σϕt = (τt ⊗ σϕt ) ◦ Γ;(2.2)

Γ ◦ τt = (σϕt ⊗ σ
ψ
−t ) ◦ Γ Γ ◦ σψt = (σψt ⊗ τ−t ) ◦ Γ.(2.3)

For more details, we refer the reader to [17].
It is known that a locally compact quantum group G = (M,Γ, ϕ, ψ) is a Kac

algebra if and only if the antipode S is bounded and the modular element δ is affiliated
with the center of M.

Let L1
∗(Ĝ) = {ω̂ ∈ L1(Ĝ) : ∃ f̂ ∈ L1(Ĝ) such that λ̂(ω̂)∗ = λ̂( f̂ )}. Then

L1
∗(Ĝ) ⊆ L1(Ĝ) is norm dense, and with the involution ω̂∗ = f̂ , and the norm

‖ω̂‖u = max{‖ω̂‖, ‖ω̂∗‖}, the space L1
∗(Ĝ) becomes a Banach ∗-algebra (for de-

tails see [16]). We obtain the universal quantum group C∗-algebra Cu(G) as the
universal enveloping C∗-algebra of the Banach algebra L1

∗(Ĝ). There is a universal
∗-representation λ̂u : L1

∗(Ĝ)→ B(Hu) such that

Cu(G) = λ̂u

(
L1(Ĝ)

)‖ · ‖
.
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There is a universal co-multiplication

Γu : Cu(G)→ M
(

Cu(G)⊗Cu(G)
)
,

and the operator dual Mu(G) := Cu(G)∗, which can be regarded as the space of
all quantum measures on G, is a unital completely contractive Banach algebra with
multiplication given by

ω ?u µ = ω(ι⊗ µ)Γu = µ(ω ⊗ ι)Γu.

By universal property of Cu(G), there is a unique surjective ∗-homomorphism π :

Cu(G) → C0(G) such that π
(
λ̂u(ω̂)

)
= λ̂(ω̂) for all ω̂ ∈ L1

∗(Ĝ) (see [1], [3] and
[16]).

A linear map m on L1(G) is called a left centralizer of L1(G) if it satisfies

m( f ? g) = m( f ) ? g

for all f , g ∈ L1(G). We denote by C l
cb

(
L1(G)

)
the space of all completely bounded

left centralizers of L1(G). We have the natural inclusions

L1(G) ↪→ M(G) ↪→ Mu(G)→ C l
cb

(
L1(G)

)
.

These algebras are typically not equal. We have

M(G) = Mu(G) = C l
cb

(
L1(G)

)
if and only if G is co-amenable, i.e., L1(G) has a contractive (or bounded) approx-
imate identity (cf. [1], [3], and [12]). If Ga is the commutative quantum group
associated with a locally compact group G, then Ga is always co-amenable since
L1(Ga) = L1(G) has a contractive approximate identity. On the other hand, if
Gs = Ĝa is the co-commutative dual quantum group of Ga, it is co-amenable, i.e.,
the Fourier algebra A(G) has a contractive approximate identity, if and only if the
group G is amenable.

The left regular representation λ can be extended to C l
cb(L1(G)) such that

〈ω̂, λ(ω)〉 = 〈̂λu(ω̂), ω〉 for all ω ∈ Mu(G) and ω̂ ∈ L1
∗(Ĝ).

A normal completely bounded map Φ on L∞(G) is called covariant if it satisfies

(Φ⊗ι) ◦ Γ = Γ ◦ Φ.

We denote by CBσcov(L∞(G)) the algebra of all normal completely bounded covariant
maps on L∞(G). It is easy to see that a normal completely bounded map Φ on
L∞(G) is in CBσ

cov

(
L∞(G)

)
if and only if it is a left L1(G)-module map on L∞(G).

Therefore, a map T is in C l
cb

(
L1(G)

)
if and only if T∗ is in CBσ

cov

(
L∞(G)

)
.

Let X,Y ⊆ B(H). We denote by CB
σ,X
Y

(
B(H)

)
the algebra of all normal com-

pletely bounded Y -bimodule maps Φ on B(H) that leave X invariant. It was proved
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in [14] that for a locally compact quantum group G, the adjoint of every left central-
izer T ∈ C l

cb

(
L1(G)

)
has a unique extension to a map

ΦT ∈ CB
σ,L∞(G)

L∞(Ĝ)
′

(
B(L2(G))

)
.

The next result, which can be seen as a quantum version of Wendel’s theorem ([27,
Theorem 3]), is the starting point for our work. In fact, this theorem will suggest
how to define the objects that should be called quantum point-masses.

In the sequel we shall denote by Ad(u) the map x 7→ uxu∗, for a unitary operator u.

Theorem 2.1 ([14, Theorem 4.7]) Let G be a locally compact quantum group, and
let T be a complete contraction in C l

cb

(
L1(G)

)
. Then the following are equivalent:

(i) T is a completely isometric linear isomorphism on L1(G);
(ii) T has a completely contractive inverse in C l

cb(L1(G));

(iii) ΦT is a ∗-automorphism in CB
σ,L∞(G)

L∞(Ĝ)
′ (B(L2(G)));

(iv) there exist a unitary operator û ∈ L∞(Ĝ) and a complex number λ ∈ T such that
ΦT(x) = λAd(û)(x). If, in addition, T is completely positive, then so is T−1. In
this case, we have ΦT = Ad(û).

3 Assigning a Group to a Quantum Group

In view of Theorem 2.1 and [27, Theorem 3], we define the following assignment.

Definition 3.1 Let G be a locally compact quantum group. Define G̃ to be the set
of all completely positive maps m ∈ C l

cb

(
L1(G)

)
which satisfy one of the equivalent

conditions of Theorem 2.1. We endow G̃ with the strong operator topology.

Example 3.2 As a consequence of [27, Theorem 3], we see that if G = L∞(G) for
a locally compact group G, then G̃ is topologically isomorphic to G.

Example 3.3 ([21, Theorem 2]) If G = VN(G) for an amenable locally compact
group G, then G̃ is topologically isomorphic to Ĝ, the set of all continuous characters
on G with the compact-open topology.

As we shall see later, amenability is not necessary.

We thus obtain an assignment G → G̃, from the category of locally compact
quantum groups to the category of groups, which is inverse to the usual embedding
of the latter category into the former. The main purpose of this paper is to investigate
how much information about G one can get from studying G̃, and also study the
preservation of several natural properties under this assignment

Note that in the classical case, for m ∈ G̃, the adjoint map m∗ : L∞(G)→ L∞(G)
is just the left translation. The next proposition shows that for a locally compact
quantum group G and m ∈ G̃, the adjoint map m∗ can be regarded as quantum left
translation.
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Proposition 3.4 Let m ∈ G̃ and ϕ be the left Haar weight on G. Then we have
ϕ ◦m∗ = ϕ.

Proof For x ∈M+
ϕ we have m∗(x) ∈M+

ϕ as well, and

ϕ ◦m∗(x)1 = (ι⊗ϕ)Γ
(

m∗(x)
)

= (ι⊗ϕ)(m∗⊗ι)Γ(x)

= m∗(ι⊗ϕ)Γ(x) = m∗
(
ϕ(x)1

)
= ϕ(x)1.

Proposition 3.5 G̃ is a topological group.

Proof Let mα → ι and nα → ι, where (mα) and (nα) are nets in G̃. Then, for all
f ∈ L1(G), we have

‖(mαnα − ι)( f )‖ ≤ ‖(mαnα −mα)( f )‖ + ‖(mα − ι)( f )‖

≤ ‖mα‖‖(nα − ι)( f )‖ + ‖(mα − ι)( f )‖ → 0.

We also have

‖m−1
α ( f )− f ‖ =

∥∥m−1
α ( f )−m−1

α

(
mα( f )

)∥∥
=
∥∥m−1

α

(
f −mα( f )

)∥∥ ≤ ‖ f −mα( f )‖ → 0.

Let (M,Γ) be a Hopf-von Neumann algebra. The intrinsic group of (M,Γ) is
defined as

Gr(M,Γ) := {x ∈ M : Γ(x) = x⊗x and x is invertible}.

We endow this group with the induced weak∗ topology. It can be easily seen (cf.
[8, Proposition 1.2.3]) that each x ∈ Gr(M,Γ) is in fact a unitary. For a locally
compact quantum group G = (M,Γ, ϕ, ψ) we denote Gr(M,Γ) simply by Gr(G).
For x ∈ Gr(G), by [17, Proposition 5.33], we have x ∈ D(S), and S(x) = x∗. This
implies that τ−i(x) = S2(x) = x, and it follows that τt (x) = x for all x ∈ Gr(G) and
t ∈ R. Hence, we obtain R(x) = x∗ for all x ∈ Gr(G).

Using the left fundamental unitary W , we can define the map

Γ̃ : B(L2(G)) 3 x 7→W ∗(1⊗x)W ∈ B(L2(G))⊗B(L2(G)),

which extends the co-multiplication Γ to B
(

L2(G)
)

.

Proposition 3.6 We have Gr(G) = Gr
(
B(L2(G)), Γ̃

)
.

Proof Obviously Gr(G) ⊆ Gr
(
B(L2(G)), Γ̃

)
. If x ∈ Gr

(
B(L2(G)), Γ̃

)
, then

Γ̃(x) = x⊗x; but since Γ̃(B(L2(G))) ⊆ L∞(G)⊗B(L2(G)), we have x ∈ L∞(G).

The following theorem was proved by de Cannière [5, Definition 2.5] for the case
of Kac algebras.
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Theorem 3.7 Let G be a locally compact quantum group. Then we have a group
homeomorphism

G̃ ∼= Gr(Ĝ).

Proof Let m ∈ G̃. Then m∗ is a ∗-automorphism on L∞(G), and since ϕ ◦m∗ = ϕ
(by Proposition 3.4), we can extend the map

Λϕ(x) 7→ Λϕ

(
m∗(x)

)
(x ∈ Nϕ)

to a unitary ûm on L2(G). Moreover, we have

m∗(x)Λϕ(a) = Λϕ

(
m∗(x)a

)
= Λϕ

(
m∗
(

xm∗−1(a)
))

= ûmΛϕ

(
xm∗−1(a)

)
= ûmxΛϕ

(
m∗−1(a)

)
= ûmxû∗mΛϕ(a),

which implies that m∗ = Ad(ûm), where Ad(ûm)(x) = ûmxû∗m, x ∈ B
(

L2(G)
)

. We

show that ûm ∈ Gr(Ĝ). For all x, y ∈ Nϕ we have

(ûm⊗1)W ∗
(

Λϕ(x)⊗ Λϕ(y)
)

= (ûm⊗1)Λϕ⊗ϕ(Γ(y)(x ⊗ 1)) = Λϕ⊗ϕ
(

(m∗⊗ι)(Γ(y)(x ⊗ 1))
)

= Λϕ⊗ϕ
(

Γ(m∗(y))(m∗(x)⊗1)
)

= W ∗
(

Λϕ(m∗(x))⊗ Λϕ(m∗(y))
)

= W ∗(ûm ⊗ ûm)
(

Λϕ(x)⊗ Λϕ(y)
)
.

Hence, we obtain W (ûm⊗1)W ∗ = ûm ⊗ ûm which implies

Ŵ ∗(1⊗ûm)Ŵ = χ(W )(1⊗ûm)χ(W ∗) = χ
(

W (ûm⊗1)W ∗
)

= χ(ûm ⊗ ûm) = ûm ⊗ ûm.

Thus ûm ∈ Gr
(
B
(

L2(G)
)
, Γ̂
)

, and so ûm ∈ Gr(Ĝ) by Proposition 3.6.

Now define Ψ : G̃→ Gr(Ĝ), Ψ(m) = ûm. It is easily seen that Ψ is a well-defined
group homomorphism. If Ψ(m) = 1, we have m∗ = Ad 1 = ι, which implies m = ι.
Hence Ψ is injective.

To see that Ψ is also surjective, let û ∈ Gr(Ĝ). Then the above calculations show
that for all ω ∈ B(L2(G))∗, we have

Ad(û)
(

(ι⊗ω)W ∗
)

= (ι⊗ω)
(

(û⊗1)W ∗(û∗⊗1)
)

= (ι⊗ω)
(

W ∗(û⊗û)(û∗⊗1)
)

= (ι⊗ω)
(

W ∗(1⊗û)
)

=
(
ι⊗(û · ω)

)
W ∗.

Since
{

(ι⊗ω)W ∗ : ω ∈ B(L2(G))∗
}

is weak∗ dense in L∞(G), we see that

Ad(û)
(

L∞(G)
)
⊆ L∞(G),
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whence Ad(û) ∈ CB
σ,L∞(G)

L∞(Ĝ)
′

(
B
(

L2(G)
))

. Hence, by Theorem 2.1, there exists m ∈

G̃ such that m∗ = Ad(û), which implies that Ψ(m) = û.
We now show that Ψ is a homeomorphism with respect to the corresponding

topologies. For all ξ ∈ L2(G), y ∈ L∞(G) and m ∈ G̃, and m∗ = Ad(ûm), we have

〈m(ωξ), y〉 = 〈ωξ,m∗(y)〉 = 〈ωξ, ûm yû∗m〉 = 〈ûm yû∗mξ, ξ〉

= 〈yû∗mξ, û
∗
mξ〉 = 〈ωû∗mξ, y〉,

which implies m(ωξ) = ωû∗mξ . Next, denote by P ⊆ L2(G) the positive cone associ-
ated to the standard representation of L∞(G) on L2(G) (see [10] for details). Since
ûm is the canonical unitary implementation of the ∗-automorphism m∗ ([10, proof
of Proposition 3.7]), it follows from [10, Theorem 3.2] that ûm leaves P invariant. So,
we have

(3.1) û(P) ⊆ P.

for all û ∈ Gr(Ĝ).
Now, let (mα) be a net in G̃ such that mα → ι, with m∗α = Ad(ûα). Then, using

(3.1), [10, Lemma 2.10], and the fact that P generates L2(G) [10, Remark 2.7], we get

mα → ι⇔ ‖mα(ωξ)− ωξ‖ → 0 ∀ξ ∈ P

⇔ ‖ωû∗α ξ − ωξ‖ → 0 ∀ξ ∈ P

⇔ ‖û∗αξ − ξ‖ → 0 ∀ξ ∈ P

⇔ û∗α
sot
−→ 1⇔ ûα

sot
−→ 1⇔ ûα

w∗

−→ 1.

Hence, Ψ is a homeomorphism.

Our next result is a generalization of the Heisenberg commutation relation, which
has been known to hold for Kac algebras [8, Corollary 4.6.6].

Theorem 3.8 Let G be a locally compact quantum group. Let u ∈ Gr(G) and û ∈
Gr(Ĝ). Then there exists λ ∈ T such that

uû = λûu.

Proof One can obtain similar results as [14, Theorem 5.1 and Corollary 5.3] for left
multipliers, using same arguments, which then together with Theorems 2.1 and 3.7
imply that Ad(u) and Ad(û) commute as operators on B

(
L2(G)

)
. Therefore we have

Ad(u) Ad(û) = Ad(û) Ad(u)⇒ Ad(uûu∗û∗) = ι⇒ uûu∗û∗ ∈ C1,

which yields the conclusion.
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Next theorem is as well a generalization of a result known in the Kac algebra case
[8, Theorem 3.6.10]. The latter proof uses boundedness of the antipode (which does
not hold in the case of general locally compact quantum groups) in an essential way.
In [15, Theorem 3.2.11] we proved this result for the general case of locally compact
quantum groups. Here we present a new proof which is also shorter.

For a Banach algebra A we denote by sp(A) its spectrum, i.e., the set of all non-
zero bounded multiplicative linear functionals on A.

Theorem 3.9 Let G be a locally compact quantum group. Then we have

Gr(G) = sp
(

L1(G)
)
.

Proof Let x ∈ Gr(G). Then Γ(x) = x⊗ x and x 6= 0, and for ω, ω ′ ∈ L1(G) we have

〈ω ? ω ′, x〉 = 〈ω⊗ω ′,Γ(x)〉 = 〈ω⊗ω ′, x⊗x〉 = 〈ω, x〉〈ω ′, x〉,

which implies x ∈ sp
(

L1(G)
)

. Hence, Gr(G) ⊆ sp
(

L1(G)
)

.

To show the inverse inclusion, first let x ∈ sp
(

L1(G)
)
∩ L∞(G)+. Then xis ∈

Gr(G) for all s ∈ R, since

Γ(xis) = (x⊗x)is = eis log (x⊗x) = eis(log (x⊗1)+log (1⊗x))

= eis log (x⊗1) · eis log (1⊗x) = (eis log x ⊗ 1)(1⊗ eis log x)

= eis log x ⊗ eis log x = xis⊗xis.

So τt (xis) = xis for all s, t ∈ R. Therefore, by the equations (2.3), there exists c ∈ C
such that

σϕt (x)is = σϕt (xis) = csxis = (c−ix)is

for all s, t ∈ R, which implies σϕt (x) = c−ix for all t ∈ R. Since x ≥ 0 and σϕt in a
∗-automorphism, we have σϕt (x) = x for all t ∈ R. This yields, by [25, Theorem 2.6],
that x is a multiplier of Mϕ, and we have ϕ(ax) = ϕ(xa) for all a ∈Mϕ.

Since ϕ is n.s.f., there exists a ∈Mϕ such that ϕ(ax) = 1, and we then have

1 = ϕ(ax)1 = (ι⊗ϕ)Γ(ax) = (ι⊗ϕ)
(

Γ(a)(x⊗x)
)

=
(

(ι⊗ϕ)(Γ(a)(1⊗x))
)

x.

Hence, x has a left inverse. Similarly we can show that x has also a right inverse, and
therefore x is invertible.

Now, let x ∈ sp
(

L1(G)
)

. Then both xx∗ and x∗x are in sp
(

L1(G)
)

, whence
invertible by the above, which implies that x is invertible.

If Γ̃ : B
(

L2(G)
)
→ B

(
L2(G)

)
⊗B
(

L2(G)
)

is the extension of Γ via the funda-

mental unitary W , then Γ̃∗ defines a product on B(L2(G))∗, which turns the latter to
a completely contractive Banach algebra. We denote this Banach algebra by T?(G).

Corollary 3.10 We have Gr
(
B
(

L2(G)
)
, Γ̃
)

= sp
(
T?(G)

)
.
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Proof The inclusion Gr
(
B
(

L2(G)
)
,Γ
)
⊆ sp

(
T?(G)

)
is obvious. To see the con-

verse, let x ∈ sp
(
T?(G)

)
, i.e., Γ(x) = x⊗x and x 6= 0. Then we have x ∈ L∞(G),

and so, by Theorem 3.9, x ∈ Gr(G), which is equal to Gr
(
B
(

L2(G)
)
,Γ
)

by Propo-
sition 3.6.

Theorem 3.11 Let G be a locally compact quantum group. Then we have a group
homeomorphism

sp
(

L1(Ĝ)
) ∼= sp

(
Cu(G)

)
.

Proof Let φ ∈ sp
(

Cu(G)
)

. Then for all ω̂1, ω̂2 ∈ L1
∗(Ĝ) we have

〈ω̂1 ? ω̂2, λ(φ)〉 = 〈̂λu(ω̂1 ? ω̂2), φ〉 = 〈̂λu(ω̂1)̂λu(ω̂2), φ〉

= 〈̂λu(ω̂1), φ〉〈̂λu(ω̂2), φ〉 = 〈ω̂1, λ(φ)〉〈ω̂2, λ(φ)〉.

Since L1
∗(Ĝ) is norm dense in L1(Ĝ), and 〈L1(Ĝ) ? L1(Ĝ)〉 is norm dense in L1(Ĝ),

we have that 〈L1
∗(Ĝ) ? L1

∗(Ĝ)〉 is norm dense in L1(Ĝ). Hence, λ(φ) ∈ sp
(

L1(Ĝ)
)

.

Now, let x̂ ∈ sp
(

L1(Ĝ)
)

. Then x̂ ∈ Gr(Ĝ), by Theorem 3.9, and so we have

Ŝ(x̂) = x̂∗. Therefore we get 〈ω̂∗, x̂〉 = 〈ω̂, Ŝ(x̂)∗〉 = 〈ω̂, x̂〉 for all ω̂ ∈ L1
∗(Ĝ).

Hence, the map 〈 · , x̂〉 : L1
∗(Ĝ) → C is a non-zero ∗-homomorphism, and so by

the universality of Cu(G), we obtain a ∗-homomorphism θx̂ : Cu(G) → C such that

〈̂λu(ω̂), θx̂〉 = 〈ω̂, x̂〉 for all ω̂ ∈ L1
∗(Ĝ).

We show that the induced maps sp
(

Cu(G)
)
3 φ 7→ λ(φ) ∈ sp

(
L1(Ĝ)

)
and

sp
(

L1(Ĝ)
)
3 x̂ 7→ θx̂ ∈ sp

(
Cu(G)

)
are inverses to each other. Let x̂ ∈ sp

(
L1(Ĝ)

)
,

then we have
〈ω̂, λ(θx̂)〉 = 〈̂λu(ω̂), θx̂〉 = 〈ω̂, x̂〉

for all ω̂ ∈ L1
∗(Ĝ), which yields, by density of L1

∗(Ĝ) in L1(Ĝ), that λ(θx̂) = x̂.
Conversely, assume that φ ∈ sp

(
Cu(G)

)
, then we have

〈̂λu(ω̂), θλ(φ)〉 = 〈ω̂, λ(φ)〉 = 〈̂λu(ω̂), φ〉

for all ω̂ ∈ L1
∗(Ĝ). The density of λ̂u

(
L1
∗(Ĝ)

)
in Cu(G) implies that θλu(φ) = φ.

Since λ : Cu(G)∗ → L∞(Ĝ) is an algebra homomorphism, the map

sp
(

Cu(G)
)
3 φ 7→ λ(φ) ∈ sp

(
L1(Ĝ)

)
defines a bijective group homomorphism. Moreover, for a net (φα) in sp

(
Cu(G)

)
and φ ∈ sp

(
Cu(G)

)
, the density of L1

∗(Ĝ) and λ̂u

(
L1
∗(Ĝ)

)
in L1(Ĝ) and Cu(G),

respectively, yield

φα
w∗

−→ φ⇐⇒ 〈̂λu(ω̂), φα〉 −→ 〈̂λu(ω̂), φ〉 ∀ω̂ ∈ L1
∗(Ĝ)

⇐⇒ 〈ω̂, λ(φα)〉 −→ 〈ω̂, λ(φ)〉 ∀ω̂ ∈ L1
∗(Ĝ)⇐⇒ λ(φα)

w∗

−→ λ(φ).

Hence, the map sp
(

Cu(G)
)
3 φ 7→ λ(φ) ∈ sp

(
L1(Ĝ)

)
is a group homeomorphism.
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Next theorem combines all the above identifications.

Theorem 3.12 The following can be identified as locally compact groups:

(i) G̃ with the strong operator topology;
(ii) Gr(Ĝ) with the weak∗ topology;
(iii) sp

(
L1(Ĝ)

)
with the weak∗ topology;

(iv) Gr
(
B
(

L2(G)
)
, Γ̂
)

with the weak∗ topology;

(v) sp
(
T?(Ĝ)

)
with the weak∗ topology;

(vi) sp
(

Cu(G)
)

with the weak∗ topology.

Proof Since the spectrum of a Banach algebra is locally compact with weak∗ topol-
ogy, all the above groups are locally compact groups.

Remark 3.13 Applying Theorem 3.12 to the case where G = VN(G) for a locally
compact group G, we obtain a generalization of a Renault’s result (cf. [21, Theo-
rem 2]), in which G is assumed amenable.

Theorem 3.14 The assignment G → G̃ preserves compactness, discreteness, and
hence finiteness.

Proof Let G be compact. Then Ĝ is discrete, and in view of Theorem 3.12, we may
equivalently show that Gr(Ĝ) is compact. Let ê ∈ L1(Ĝ) be the unit. Then, for any
x̂ ∈ Gr(Ĝ), we have

〈 f̂ , x̂〉 = 〈 f̂ ? ê, x̂〉 = 〈 f̂⊗ê, Γ̂(x̂)〉 = 〈 f̂ ⊗ ê, x̂ ⊗ x̂〉 = 〈 f̂ , x̂〉〈ê, x̂〉

for all f̂ ∈ L1(Ĝ). So 〈ê, x̂〉 = 1 for all x̂ ∈ Ĝ and since Gr(Ĝ) = sp
(

L1(Ĝ)
)

by

Theorem 3.9, this implies that the constant function ê|Gr(Ĝ) ≡ 1 lies in C0

(
Gr(Ĝ)

)
.

Therefore Gr(Ĝ) is compact.
Now let G be discrete. Then Ĝ is compact, and again by Theorem 3.12 we need to

show that Gr(Ĝ) is discrete. Let x̂ ∈ Gr(Ĝ) and ϕ̂ ∈ L1(Ĝ) be the Haar state. Then
we have

〈 f̂ , 1〉〈ϕ̂, x̂〉 = 〈 f̂ ? ϕ̂, x̂〉 = 〈 f̂ ⊗ ϕ̂, x̂ ⊗ x̂〉 = 〈 f̂ , x̂〉〈ϕ̂, x̂〉

for all f̂ ∈ L1(Ĝ). So if x̂ 6= 1, we must have 〈ϕ̂, x̂〉 = 0, and since 〈ϕ̂, 1〉 = 1, we

see that ϕ̂, as a function on Gr(Ĝ) is the characteristic function of {1}. But since ϕ̂ is

continuous on Gr(Ĝ), the latter must be discrete.

In the following (Theorem 3.16), we shall investigate the relation between the
operations G→ G̃ and G→ Ĝ.

Lemma 3.15 Let G and H be two locally compact groups in duality, i.e., there exists
a continuous bi-homomorphism 〈 · , · 〉 : G × H → T, where T denotes the unit circle.
Define the sets

G1 := {g ∈ G : 〈g,H〉 = 1},

H1 := {h ∈ H : 〈G, h〉 = 1}.
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Then G1 and H1 are closed normal subgroups of G and H, containing the commutator
subgroups, and we have

G

G1

∼=
(̂ H

H1

)
.

Proof For all g ∈ G, g1 ∈ G1 and h ∈ H we have

〈g−1g1g, h〉 = 〈g−1, h〉〈g1, h〉〈g, h〉 = 〈g−1, h〉〈g, h〉 = 〈e, h〉 = 1.

Therefore, G1 is normal in G. For all g1, g2 ∈ G and h ∈ H we have

〈g1g2g−1
1 g−1

2 , h〉 = 〈g1, h〉〈g2, h〉〈g−1
1 , h〉〈g−1

2 , h〉 = 1.

Thus, [G,G] ⊆ G1; similarly, we see that H1 is normal in H, and [H,H] ⊆ H1. Now
it just remains to show the last assertion. Define

φ : G→
(̂ H

H1

)
, φ(g)(h) = 〈g, h〉.

The definition of H1 implies that φ(g) is well-defined for each g ∈ G. Obviously, φ
is a group homomorphism, and we have Ker(φ) = G1. Hence we have an injective
group homomorphism

φ :
G

G1
↪→
(̂ H

H1

)
.

Similarly, by exchanging the roles of G and H we obtain

H

H1
↪→
(̂ G

G1

)
whence

̂̂( G

G1

)
�
(̂ H

H1

)
.

If we compose the last surjection with the identification of G
G1

with its second dual,

we get φ. Hence φ is onto, and

G

G1

∼=
(̂ H

H1

)
.

It follows from Theorem 3.8 and Lemma 3.15 that Gr(G) ∩ Gr(Ĝ) ′ is a normal
subgroup of Gr(G), and

Gr(G)

Gr(G) ∩ Gr(Ĝ) ′

is an abelian group. In the following we denote this group by G̃1.
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Theorem 3.16 Let G be a locally compact quantum group. Then we have a group
homeomorphism ̂̃G1

∼= ˜̂G1.

Proof By Theorem 3.8 we have a duality between G̃ and
˜̂G. Hence, the theorem

follows from Lemma 3.15.

In the above, to a locally compact quantum group G, we have assigned the locally
compact group G̃, which is easily seen to be an invariant for G. We shall now assign
another invariant to G.

Let G be a locally compact quantum group, v ∈ Gr(G) and v̂ ∈ Gr(Ĝ). By
Theorem 3.8, there exists λv,v̂ ∈ T such that vv̂ = λv,v̂v̂v. It is easy to see that (v, v̂) 7→
λv,v̂ defines a bi-homomorphism γ : Gr(G)× Gr(Ĝ)→ T.

Proposition 3.17 Let G be a locally compact quantum group. Then Im(γ), the image
of γ, is a subgroup of T, and an invariant for G.

Proof Using the above notation, we have a bi-character γ1 : G̃1 ×
˜̂G1 → T, induced

by γ, with Im(γ1) = Im(γ) (see the proof of Lemma 3.15). Since G̃1 and
˜̂G1 are

abelian, by the universal property of the tensor product, there exists a homomor-

phism γ2 : G̃1 ⊗Z
˜̂G1 → T, with Im(γ2) = Im(γ1). But Im(γ2) is a subgroup of T

since γ2 is a group homomorphism.

Since there is a good classification of subgroups of T (cf. [11, Theorem 25.13]),
this invariant may be helpful towards some sort of classification of locally compact
quantum groups.

4 Examples

In this section we calculate the locally compact group G̃ for some of the most inter-
esting and well-known examples of non-classical, non-Kac, locally compact quantum
groups.

4.1 Woronowicz’s Compact Matrix Pseudogroups

Let A be a C∗-algebra with unit, UN = [ui j] an N × N (N ∈ N) matrix with en-
tries belonging to A, and A be the ∗-subalgebra of A generated by the entries of UN .
Then G = (A,UN ) is called a compact matrix pseudogroup [28, Definition 1.1] if the
following hold:

(i) A is dense in A;
(ii) there exists a C∗-homomorphism Γ from A to A⊗minA such that

Γ(ui j) =

N∑
k=1

uik⊗uk j (i, j = 1, 2, . . . ,N);
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(iii) there exists a linear anti-multiplicative map κ : A→ A such that

κ
(
κ(a∗)∗

)
= a

for all a ∈ A, and ∑
k

κ(uik)uk j = δi j1,

∑
k

uikκ(uk j) = δi j1,

for all i, j = 1, 2, . . . ,N.

Theorem 4.1 Let G = (A,UN ) be a compact matrix pseudogroup. Then G̃ is home-
omorphic to a compact subgroup of GLN (C), hence a compact Lie group.

Proof Define the map

Φ : sp(A)→ MN (C), f 7→ [ f (ui j)]i j .

Then Φ is injective since {ui j} generates A. For all f , g ∈ sp(A), we have

Φ( f ? g) = [ f ? g(ui j)]i j = [( f ⊗ g)Γ(ui j)]i j =
[

( f ⊗ g)
N∑

k=1

(uik ⊗ uk j)
]

i j

=
[ N∑

k=1

f (uik)g(uk j)]i j = [ f (ui j)]i j[g(ui j)]i j = Φ( f )Φ(g).

So, Φ is an injective group homomorphism. Obviously Im(Φ) ⊆ GLN (C).
Since each of the maps f 7→ f (ui j) is continuous, Φ is also continuous. By Theo-

rem 3.14, G̃ is compact, and therefore Φ is a homeomorphism onto its image.

4.2 SUµ(2)

In the following, we consider Woronowicz’s twisted SUµ(2) quantum group for
µ ∈ (−1, 1) and µ 6= 0 (cf. [31]). The quantum group SUµ(2) is a co-amenable
compact matrix pseudogroup with the quantum group C∗-algebra C

(
SUµ(2)

)
=

Cu

(
SUµ(2)

)
generated by two operators u and v such that the matrix

U =

[
u −µv∗

v u∗

]
is a unitary matrix in M2

(
C
(

SUµ(2)
))

.

Theorem 4.2 Let G = SUµ(2). Then G̃ = T.
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Proof Let Φ : sp
(

C
(

SUµ(2)
))
→ GL2(C) be as in the proof of Theorem 4.1, and

f ∈ sp
(

C
(

SUµ(2)
))

. It is easy to verify that T ⊆ Im(Φ), under the identification of
T with the matrices of the form

Φ( f ) =

(
λ 0
0 λ̄

)
where λ ∈ T. To see that any element in Im(Φ) is of this form, note that Φ( f ) is a
unitary matrix in M2(C) for all f ∈ sp

(
C
(

SUµ(2)
))

. But since

Φ( f ) =

(
f (u) −µ f (v)
f (v) f (u)

)
,

it follows that f (v) = 0, and the theorem follows.

4.3 Eµ(2) and its Dual

Let (ek,l)k,l∈Z be the canonical basis for l2(Z× Z). Define operators v and n on
l2(Z× Z) as follows: {

vek,l = ek−1,l

nek,l = µkek,l+1.

Then v is a unitary and n is a normal operator with sp(n) ⊆ C
µ

, where

Cµ
:= {z ∈ C : z = 0 or |z| ∈ µZ}.

The (C∗-algebraic) locally compact quantum group Eµ(2) is defined (cf. [30, Sec-
tion 1]) to be the non-unital C∗-algebra generated by the operators of the form
Σvk fk(n), where k runs over a finite set of integers, and fk ∈ C0(Cµ

). The co-
multiplication Γ is defined on Eµ(2) in the following way:{

Γ(v) = v ⊗ v

Γ(n) = v ⊗ n + n⊗ v.

Using [30, Theorem 1.1], we can calculate G̃ for the quantum group Eµ(2).

Theorem 4.3 Let G = Eµ(2). Then G̃ ∼= T.

Proof In view of [30, Theorem 1.1], for any z ∈ T we can define fz ∈ sp(C0(Eµ(2)))
such that fz(v) = z and fz(n) = 0. Conversely, for each f ∈ sp

(
C0

(
Eµ(2)

))
, by

[30, Theorem 1.1] again, f (v) is a unitary and f (n) is a normal operator on C, and
we have f (n) = f (v) f (n) f (v) = µ f (n). Since µ 6= 1, we must have f (n) = 0. Put
z := f (v) ∈ T. So f = fz. Moreover, for z, z ′ ∈ T we have

fz ? fz ′(v) = ( fz ⊗ fz ′)Γ(v) = ( fz ⊗ fz ′)(v ⊗ v)

= fz(v) fz ′(v) = zz ′ = fzz ′(v),

fz ? fz ′(n) = ( fz ⊗ fz ′)Γ(n) = ( fz ⊗ fz ′)(v ⊗ n + n⊗ v)

= fz(v) fz ′(n) + fz(n) fz ′(v) = 0 = fzz ′(n).

Hence fz ? fz ′ = fzz ′ .
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In [30] Woronowicz has also described Êµ(2), the dual quantum group of Eµ(2).
Similarly to Eµ(2), this quantum group is determined by two operators N and b, with

co-multiplication determined by Γ̂(N) = N⊗1+1⊗N, Γ̂(b) = b⊗µ N
2 +µ

−N
2 ⊗b. The

dual quantum group Êµ(2) has a universal property as well, which makes it easy to
calculate our group.

Theorem 4.4 Let G = Êµ(2). Then G̃ ∼= Z.

Proof For any s ∈ Z we define f̂s ∈ sp
(

C0

(
Êµ(2)

)
,C
)

by f̂s(b) = 0, f̂s(N) = s.

Then it is clear from [30, Theorem 3.1] that the map s 7→ f̂s ∈ sp
(

C0

(
Êµ(2)

))
is a

bi-continuous bijection. For s, s ′ ∈ Z we have

f̂s ? f̂s ′(b) = ( f̂s ⊗ f̂s ′)Γ̂(b) = ( f̂s ⊗ f̂s ′)(b⊗ µ N
2 + µ−

N
2 ⊗ b)

= f̂s(b) f̂s ′(µ
N
2 ) + f̂s(µ

− N
2 ) f̂s ′(b) = 0 = f̂s+s ′(b),

f̂s ? f̂s ′(N) = ( f̂s ⊗ f̂s ′)Γ̂(N) = ( f̂s ⊗ f̂s ′)(N ⊗ 1 + 1⊗ N)

= f̂s(N) f̂s ′(1) + f̂s(1) f̂s ′(N) = s + s ′ = f̂s+s ′(N).

So f̂s ? f̂s ′ = f̂s+s ′ .

5 Structural Properties of G encoded by G̃
In this section, we investigate the relation between the structure of G and that of G̃.

5.1 Unimodularity of G

Let G be a locally compact quantum group. The main goal of this section (Theo-

rem 5.8) is to show that if both G̃ and
˜̂G are small, then G is of a very specific type,

namely a unimodular Kac algebra.
In the sequel, for a locally compact group G, we denote by Z(G) the center of the

group G.

Proposition 5.1 Let G be a locally compact quantum group. If Z
(

Gr(G)
)

is discrete,
then G is unimodular.

Proof By [2, Proposition 4.2.] we have δit ∈ Z
(

Gr(G)
)

for all t ∈ R, where δ is

the modular element of G, and Z
(

Gr(G)
)

is the center of the intrinsic group Gr(G).
Since the map

R 3 t 7→ δit ∈ Z
(

Gr(G)
)

is continuous, its range must be connected. But since Z
(

Gr(G)
)

is discrete, the range
must be a single point. Therefore, we obtain δit = 1 for all t ∈ R, which implies
δ = 1.

Combining Proposition 5.1 with Theorem 4.4, we obtain the following.
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Corollary 5.2 The quantum group Eµ(2) is unimodular.

Lemma 5.3 Let Φ and Ψ be weak∗ continuous linear maps on L∞(G). If we have
(ι⊗ Φ) ◦ Γ = (ι⊗Ψ) ◦ Γ or (Φ⊗ ι) ◦ Γ = (Ψ⊗ ι) ◦ Γ, then Φ = Ψ.

Proof Assume that (ι ⊗ Φ) ◦ Γ = (ι ⊗ Ψ) ◦ Γ. Then, for all x ∈ L∞(G) and
ω ∈ L1(G), we have Φ

(
(ω⊗ ι)Γ(x)

)
= Ψ

(
(ω⊗ ι)Γ(x)

)
. Since the set {(ω⊗ ι)Γ(x) :

ω ∈ L1(G), x ∈ L∞(G)} is weak∗ dense in L∞(G), the conclusion follows. The
argument assuming the second relation is analogous.

Lemma 5.4 If δ = 1 and σϕt = τt for all t ∈ R, then τt = σϕt = ι for all t ∈ R,
and G is a Kac algebra.

Proof Since δ = 1, we have σψt = σϕt for all t ∈ R. Moreover, since σϕt = τt , by the
equations (2.2) and 2.3, we have

(σϕt ⊗ σ
ψ
−t ) ◦ Γ = Γ ◦ τt = (τt ⊗ τt ) ◦ Γ = (σϕt ⊗ σ

ψ
t ) ◦ Γ,

which implies that (ι⊗σψ−t ) ◦Γ = (ι⊗σψt ) ◦Γ for all t ∈ R. Now, Lemma 5.3 yields

σψ−t = σψt , i.e., σψ2t = ι, for all t ∈ R. Hence, τt = σϕt = σψt = ι for all t ∈ R, and
therefore G is a Kac algebra.

Proposition 5.5 If G and Ĝ are both unimodular, then G is a Kac algebra.

Proof Since δ̂ = 1, equations (2.1) imply that Pit = ∆it
ϕ, whence σϕt = τt for all

t ∈ R. Since, in addition, δ = 1, Lemma 5.4 yields the claim.

In particular, combining Propositions 5.1 and 5.5, we see that for a unimodular
locally compact quantum group G, the smallness of the group G̃ forces the quantum
group G to be of Kac type.

Corollary 5.6 Let G be a unimodular locally compact quantum group. If Z(G̃) is
discrete, then G is a Kac algebra.

Since every compact quantum group is unimodular, we obtain the following in-
teresting result.

Corollary 5.7 Let G be a compact quantum group. If Z(G̃) is discrete, then G is a
Kac algebra.

The class of non-Kac compact quantum groups is one of the most important and
well-known classes of non-classical quantum groups. Some important examples of
such objects are deformations of compact Lie groups, such as Woronowicz’s famous
SUµ(2), which we have discussed in Section 4.2. This shows the significance of our
Corollary 5.7: there is some richness of classical information in these classes of quan-
tum structures!

Theorem 5.8 Let G be a locally compact quantum group. If Z(G̃) and Z(
˜̂G) are both

discrete, then G is a unimodular Kac algebra.

Proof Since Z(G̃) is discrete, Ĝ is unimodular by Proposition 5.1, and hence our
assertion follows from Corollary 5.6, applied to Ĝ.
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5.2 Traciality of the Haar Weights

There is a strong connection between the group G̃, assigned to G, and traciality of
the Haar weights, especially in the Kac algebra case. Since the scaling group τt in this
case is trivial, equation (2.2) implies

Γσϕt = (ι⊗ σϕt )Γ ∀t ∈ R,

and so σϕt ∈ CBσ
cov

(
L∞(G)

)
. Thus, we obtain ∆it

ϕ ∈ Gr(Ĝ) for all t ∈ R (this was

also proved in [5, Corollary 2.4]). Hence, we see that if G is a Kac algebra such that G̃
is trivial, then ϕ is tracial. Similarly to Proposition 5.1, the fact that the map t 7→ ∆it

ϕ

is continuous, allows us to further generalize this result.

Proposition 5.9 Let G be a Kac algebra. If G̃ is discrete, then ϕ is tracial.

We have seen in Corollary 5.6 that for a unimodular locally compact quantum
group G, the smallness of G̃ forces the quantum group to be a Kac algebra. The
situation is similar for traciality.

Proposition 5.10 Let G be a locally compact quantum group with tracial Haar
weight. If Gr(G) is discrete, then G is a Kac algebra.

Proof Since Gr(G) is discrete, we have δ = 1. Also, traciality of ϕ implies that

Γ = Γσϕt = (τt ⊗ σϕt )Γ = (τt ⊗ ι)Γ,

for all t ∈ R, which implies that τ = ι, by Lemma 5.3. Hence, G is a Kac algebra.

Moreover, by combining [8, Proposition 6.1.2] with Theorem 5.8, we obtain a
stronger version of the latter.

Theorem 5.11 Let G be a locally compact quantum group. If Z(G̃) and Z(
˜̂G) are

both discrete, then G is a unimodular Kac algebra with tracial Haar weight.

5.3 Amenability

In the last part of this section we investigate the question of whether amenability
passes from G to G̃. In the following, for a locally compact quantum group G, we
denote by NG the von Neumann subalgebra of L∞(G) generated by the intrinsic
group Gr(G).

Proposition 5.12 Let G be a locally compact quantum group such that the restriction
ϕ|NG is semi-finite. Then we have the identification

NG ∼= VN
(

Gr(G)
)
.
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Proof It is obvious that the restriction of Γ to NG defines a co-multiplication on NG,
and by our assumption, on NG, the restriction of ϕ to NG is an n.s.f. left invariant
weight on NG. Also, since R(v) = v∗ for all v ∈ Gr(G), we have R(NG) ⊆ NG, which
implies that ϕ ◦ R defines a right Haar weight on NG. Therefore, NG can be given a
locally compact quantum group structure. Obviously, it is co-commutative, and so
NG ∼= V N

(
Gr(G)

)
, by [24, Theorem 2].

Corollary 5.13 If G is a compact quantum group, then NG ∼= VN
(

Gr(G)
)

.

Theorem 5.14 Let G be a discrete quantum group. If G is amenable, then so is the
group G̃.

Proof If F ∈ L∞(G)∗ is an invariant mean on G, then one can see that the map
(F⊗ι) ◦ Γ : B

(
L2(G)

)
→ B

(
L2(G)

)
is a conditional expectation on L∞(Ĝ). Also,

since σϕ̂t (x̂) ∈ Cx̂ for all t ∈ R and x̂ ∈ Gr(Ĝ), we have σϕ̂t (NĜ) ⊆ NĜ, and

therefore, by [25, Theorem 4.2], there exists a conditional expectation E : L∞(Ĝ) →
NĜ. Hence, E ◦ (F⊗ι) ◦ Γ is a conditional expectation from B

(
L2(G)

)
on NĜ

∼=
VN(G̃), and so VN(G̃) is injective. Since, by Theorem 3.14, G̃ is discrete, it follows
that G̃ is amenable (cf. [4]).

Let i : NG ↪→ L∞(G) be the canonical injection. Obviously, i is weak∗ continuous,
so we have the pre-adjoint map i∗ : L1(G) � (NG)∗. Then direct calculation implies
the following.

Lemma 5.15 The map i∗ : L1(G) � (NG)∗ is a completely bounded algebra homo-
morphism.

If a locally compact quantum group G satisfies the condition of Proposition 5.12,
then VN

(
Gr(G)

) ∼= Gr(G) ′ ′ ∩ L∞(G), and by the above, we have a surjective con-

tinuous algebra homomorphism i∗ : L1(G) → A
(

Gr(G)
)

. Therefore, in this case,
many of the algebraic properties of L1(G) will be satisfied by the Fourier algebra of
the intrinsic group as well.

There are many different equivalent characterizations of amenability for a locally
compact group. The question of whether the quantum counterpart of these condi-
tions are equivalent as well, remains unsolved in many important instances.

In the following, we present a few of those equivalent characterizations in the
group case which can be found for instance in [23].

Theorem 5.16 For a locally compact group G, the following are equivalent:

(i) G is amenable;
(ii) L1(G) is an amenable Banach algebra;
(iii) A(G) has a bounded approximate identity (BAI);
(iv) A(G) is operator amenable.

The equivalence (1) ⇔ (2) is due to Johnson (1972) [13], (1) ⇔ (3) is Leptin’s
theorem (1968) [19], and (1)⇔ (4) is due to Ruan [22].

Proposition 5.17 Let G be a discrete quantum group. If L1(Ĝ) has a BAI, then G̃ is
amenable.
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Proof Since Ĝ is compact, by Corollary 5.13, we have NG ∼= VN
(

Gr(G)
)

. If (ω̂α) is

a BAI for L1(Ĝ), then as easily seen
(

i∗(ω̂α)
)

is a BAI for A
(

Gr(G)
)

, whence Gr(G)
is amenable, by Theorem 5.16.

Proposition 5.18 Let G be a discrete quantum group. If L1(G) is operator amenable,
then G̃ is amenable.

Proof Since G is discrete, we have, by Lemma 5.15, a completely bounded surjective
algebra homomorphism from L1(Ĝ) onto A(G̃). Since L1(Ĝ) is operator amenable,
then so is A(G̃). Hence, by Theorem 5.16, G̃ is amenable.

Proposition 5.19 LetG be a discrete quantum group. If L1(Ĝ) is an amenable Banach
algebra, then G̃ is almost abelian.

Proof The argument is analogous to the one given in Proposition 5.18, but instead
of Theorem 5.16, we use [9, Theorem 2.3], stating that A(G) is amenable if and only
if G is almost abelian.
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