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I. INTRODUCTION

A premium calculation principle is a general rule that assigns a
premium P to any given risk S. Intuitively, P is what the insurance
carrier charges (apart from an expense allowance) for taking over
the risk 5 (see [3], p. 85-87). Mathematically, S is a random variable,
and P depends on S through its distribution function. The value of
P may be finite or infinite; in the latter case we speak of an unin-
surable risk.

A premium calculation principle is called additive, if the premium
assigned to the sum of two independent risks is the sum of the
premiums that are assigned to the two risks individually. For
example, the variance principle, P = E[S] + (3 Var [S] ((3 > o), is
additive, because the variance of the sum of independent random
variables equals the sum of the variances. Additivity is a very
desirable property, from a theoretical as well as from a practical
point of view (as pointed out by Borch [2], p. 429).

The variance principle is not entirely satisfactory for various
reasons. For one thing it does not take account of the skewness of
S (a risk whose distribution is skewed to the right seems to be more
dangerous than one with a symmetrical distribution). Furthermore,
it produces in some cases a premium P that exceeds 5 with prob-
ability one (example: (3 = .3, S = o or 10, each with probability
1/2).

In the sequel we shall focus our attention on the -principle of zero
utility (see [3], p. 86). Thus we assume that the insurance carrier
bases his decisions on a utility function, i.e. a real valued function
u(x), — 00 < x < -f 00, having the following properties:

(i) u(x) is continuous and non-decreasing in x
(ii) the right side derivative u'(x) is non-increasing in x

(iii) u(o) — o
(iv) u'(o) = 1.
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2l6 ADDITIVE PREMIUM CALCULATION

Any such utility function generates a premium calculation prin-
ciple : P is defined as the solution of the equation.

E[u(P-S)] = o. (i)

Thus P is chosen such that the expected utility of the income
P — S is zero. Properties (i) and (ii) state that the insurance car-
rier is a risk averter, while (iii) and (iv) have the character of nor-
malizing conditions. Because of (i) and (iv) the solution of (i) is
unique. If (i) does not have a solution, S is uninsurable.

2. AN IMPORTANT EXAMPLE: THE FAMILY OF EXPONENTIAL

UTILITY FUNCTIONS.

In this section we consider utility functions of the form
»i(v\ l-vlriS IT p-ax\ n ~~> c\ (o\
M>\A'J yxjU-J I i. t- J, IAf ^ \J \ }

with the understanding that u(x) = x for a = o. In this case we can
solve (i) explicitly and find

P = (i/a) In E[eaS] = (i/a) In m(a) (3)

for a > o and of course P = E[S] for a = o, where m{.) is the
momentgenerating function of 5. Thus the premium is readily
found whenever one knows the momentgenerating function of 5.
For example, in the case where 5 has a normal distribution, In
m(a) = a\L -\- («2/2) <r2, and (3) reduces to the variance principle
with [3 = (a/2).

The parameter a is a measure of the insurance carrier's risk
aversion. The larger a, the larger is the premium for a given risk.
This follows from the lemma below, in which P[a) denotes the
premium, as a function of a, for a fixed S.

Lemma: If 5 is not a constant, and if P(a) is finite for o < a < A,
then P'(a) > o for o < a < A.

Proof: For 0 < a < A we have
E \SeaS]

P'(a) = - (i/a) P(a) + (i/a) — - ^ (4)

and
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The last expression is positive (it is the variance of the Esscher
transform of S). Therefore, a2P'(a) is an increasing function in a,
vanishing at a = o. Hence aaP'(a) and P'(a) are positive for
o < a < A. For a = o one finds from (5) that P'(o) = \ Var [5].*)

3. CHARACTERIZATION OF ADDITIVE PREMIUM

CALCULATION PRINCIPLES

Theorem: A utility function satisfying (i)-(iv) generates an ad-
ditive premium calculation principle, if and only if it is of the
form (2), i.e. if it is linear or exponential.

Proof: 1) If u(x) is of the form (2), then additivity holds

Let a > o and suppose that Si, S2 are two independent, insurable
risks with premiums Pi, P2 (all other cases are trivial). Then the
premium P of Si -f S2 is

P = (i/a) In £[e«(Si+<s2>] = (i/«) i n E[eaS*] + (i/«) In E ^ ] (6)
= Pi + P2

2) If additivity holds, then u(x) is of the form (2)

We prove this in two steps. First, we show that every Poisson
distributed risk S is insurable. Second, we derive a functional
equation whose solutions are necessarily of the form (2).

Step a) Let S9 be the Bernoulli risk with parameter q: Prob
[Sq = o] = 1 — q, P[SQ = 1] = q. Let Pq denote the corresponding
premium. By linearizing u(x) to the right of x = 0 and x = — 1,
one recognizes that

lrm — =—»(—1). (7)

Now let 5W8 denote the Binomial risk with parameters n, q and
let PK(? be the corresponding premium. Because additivity holds,
we have Pm = nPq. Thus (1) reads

£ (ll)q*(i-q)»-*u(nPg-k) = o. (8)

*) For a more extensive discussion of the exponential utility functions
the reader is referred to [6]. Also, there he will find an alternative
characterization of this family.
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Let X > o and let n —> oo, q~^o with nq = \ = constant.
Taking this limit in (8), using (7), and dividing by e"x we obtain

k\
t - o

This shows that a Poisson distributed risk 5^ (with parameter X)
is insurable and has premium i \ = —Xw(— 1). From (9) we see
also that the values of the function u[x) for positive arguments are
completely determined by the values for negative arguments.

Step b) For z > o let Szx = zS^. By arguing as in a) one sees that
Szx is insurable and has premium Pz\ = — XM(— z). Consequently,

Z — u(— Xw( — z) — zk) = 0 (10)
ft!

for all X > o, z > o. If we differentiate (10) twice with respect to X
from the right and set X = o, we obtain the functional equation

U( 2Z) 2W( Z) U'( Z) + u"(0) U( Z)2 = 0 (il)

for z > o. Such an equation has a unique continuous solution (for
z > o) satisfying the boundary condition u{6) = o. Hence u(x) is
necessarily of the form (2) with a = — u"(p).

4. CONNECTION WITH THE COLLECTIVE THEORY OF RISK

Encouraged by the result of the preceding section we shall from
now on assume that an insurance carrier determines premiums on the
basis of an exponential utility function. Thus suppose that a com-
pany consistently applies formula (3) for a certain constant value
a > o. What is the resulting probability of ruin ? Of course, the
answer to this question depends on various factors, such as the
initial surplus, the definition of ruin, and the distribution of the
risks included in the portfolio. However, if we settle for the know-
ledge of the adjustment coefficient R (in [1] it is called "insolvency
constant"), and the resulting inequality for the probability of ruin,
the answer is surprisingly simple: A comparison of (3) with formula
(12.15), p. 144, in [1], reveals immediately that R = a. Thus if a
company uses (3) consistently, it simply means that it choses the
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premiums in order to maintain a constant adjustment coefficient
R = a for the portfolio, which guarantees a probability of ruin less than
e~Rx [x = initial surplus).

5. CREDIBILITY THEORY

In this section we assume that a risk is an element of a heter-
ogeneous collective (see [3], chapter 4), each risk having an un-
known label 6. Let S<e> denote the risk for known value of 6, and
let dW(Q) be the distribution of 6 in the collective. Applying the
principle of zero utility with exponential utility function we
obtain

P(6) = {i/a) ]nE[easm] risk premium (12)

P = (i/a) In { J£[e«<s<e)] dW{Q)} collective premium. {13)

Notice that P— J P(6) dW(Q) is positive (Jensen's inequality).
This difference might be interpreted as the "fluctuation part" of
the loading contained in P (the part that is due to the randomness
of 6).

Credibility premiums are obtained by replacing dW(Q) in (13) by
a conditional distribution, determined by whatever information is
available about a given risk. To illustrate this, let us discuss the
special case "credibility for frequency".

Suppose that the distribution of 5 is obtained by weighting
compound Poisson distributions, where the weighting takes place
with respect to the Poisson parameter 6 > 0 alone:

Prob [S < x] = > e-B—F'k(x)dW{Q). (14)
J Z—1 k\

Thus we assume that the underlying collective is homogeneous
with respect to the claim amounts (their distribution F{x) being
independent of 6 and of time), but inhomogeneous with respect to
the claim numbers. The structure function W(Q) plays the role of a
prior distribution on 0. Furthermore suppose that <f> = J eax dF{x)
is finite. From (13) and (14) we find that the collective premium is

P = (i/a) In {J e6^-1] dW{Q)}. (15)

Now suppose that we are faced with a risk of which we know the
total number of claims, say N, that occurred in the last t periods
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(all other information is irrelevant under our assumptions). For the
posteriori distribution W(Q; t, N) we find that

dW{Q;t, N) ~e-6tQNdW{Q). (16)

By substituting this in (15) we obtain the credibility premium
P{t, N)

P(t, N) = (i/a) In ~ . (17)

Let us now examine the question of insurability, i.e. the question
whether the expressions in (15) and (17) are finite. Two cases have
to be distinguished. Let

w{t) = J e61*-1-1* dW{Q).

a) w(t) < 00 for all t > 0.

In that case (15) and (17) are finite and the risk is insurable at
any time.

b) w(t) < 00 for t > to > o, w(t) = 00 for t < ta-
in this case the risk is not insurable before time to, and it is in-

surable any time after to (no matter what the claim experience is).
The question of insurability at time to cannot be answered without
making any further assumptions about W(Q). (Observe that the
finiteness of cf> implies that w[t) is finite for large enough values
of*).

Thus our results can be summarized as follows:

A risk may or may not be insurable at the beginning. But if it is in-
surable at one point in time, it will stay insurable forever.

In the special case where W(Q) is the Gamma-distribution with
parameters c and y,

dW{Q) ~«-c eeY-1rf6 (18)

we obtain very neat formulas. A glance at (16) shows that W(0;
t, N) is also a Gamma-distribution, with parameters C( = c -\- t and

https://doi.org/10.1017/S0515036100006061 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006061


ADDITIVE PREMIUM CALCULATION 221

yN = y -)~ N. Using the momentgenerating function of the Gamma-
distribution, we obtain from (15)

» • • - ( I 9 ,

P(t, N) = 1 I ?
In 1 — —7—•

c -f t
So if c > (f> — 1 the risk is insurable at any time. However, if

c < <j>— 1, we find ourselves in case b), and the risk is insurable
only after time to = (j> — 1 — c

6. COOPERATION OF n INSURANCE COMPANIES

In this section we utilize an idea of Buhlmann which he devel-
oped in connection with quadratic utility functions (see p. 197-200
of [3] or [4]). Here we assume that each of n companies works with
an exponential utility function, say with parameter a-i = (i/oc<).
Thus

Ui(x) = a* — OCJ ex>a' (i = 1,2, . . . , n) (20)

Let S be an arbitrary risk. How should the n companies split up
the risk among themselves in order to be as competitive as pos-
sible, i.e. in order to minimize the total premium ?

Let fi(S) be the share that is taken over by company no. i.

Obviously we must have 2/j(S) = S for all outcomes of S. The

premium P$ of company i is the solution of E\u%(Pi —/«)] = o,
and we want to minimize P = Pi -f- P2 + . . . + Pn- The ar-
rangement {Pi—/i(5), Pa—/a(5), ...,P«—fn{S)} must be a
Pareto optimal partition of P — 5 (if it was not Pareto optimal
we could replace it by a partition

{Pi —/ i , P2 —fa, ..., Pn —fn) such that E{Ul{Pi —/1)] > o and
E[ui(Pi —ft)] > o for i = 2, . . . , « . Thus Pi, and hereby P, could
be reduced). In the case of exponential utility functions, all the
Pareto optimal partitions of P — 5 are of the form

{ki — £iS, £2 — 2̂-S, . . ., kn — ~QnS} where ki, k*, . . ., kn are ar-
n

bitrary constants with S ki = P and

X,i = («.il«.) with a = ai + as + . . . + tx.n (21)
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as shown on p. 202 [7] (it might also be derived as a consequence of
Borch's theorem, see [2], [3], or [5]). In our context, the kt's are of
course not arbitrary, but h% = Pi and

Pi = «< In E[e^)s] (22)

Thus the minimal total premium of S becomes

P = oc In E[eims] (23)

So we find: / / the n companies cooperate in order to minimize the
total premium, company no. i will take over (a«/a) S, and the resulting
total premium can be interpreted as the premium of one single company
working with an exponential utility function with parameter x. This
result corresponds to Buhlmann's result concerning additivity of
levels of saturation (see [3], p. 197-200) in the case of quadratic
utility functions.
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