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Birkhoff and Pierce [2] introduced the concept of an f-ring and showed
that an [-ring is an f-ring if and only if it is a subdirect product of totally-
ordered rings. An l-ideal of an f-ring R is an algebraic ideal which is at the same
time a lattice ideal of R. Structure spaces (i.e. sets of prime ideals endowed with
the so-called hull-kerne] or Stone topology) for ordinary rings have been studied
by many authors. In this paper we consider certain analogues for f-rings, and
give characterisations of f-rings for which these structure spaces are discrete.

DEeFINITION 1. A proper l-ideal I of an f-ring R is said to be l-prime if it
satisfies the condition a AbelI implies ael or bel. We shall write I is an
Ip-ideal, following Pierce [ 6], if this condition is satisfied; the set of all Ip-ideals
of R will be denoted by LP(R), or simply LP if no confusion is likely.

DEerINITION 2. A proper l-ideal P of an f-ring R is said to be a P-ideal if it
satisfies the condition ab € P implies ae P or b e P, 1.e. if it is an (algebraic) prime
ideal; the set of all P-ideals will be denoted by AP(R), or simply AP.

We now give some characterisations of Ip-ideals and P-ideals, which will
be used without reference in this paper.

LemMA 1. If I is an l-ideal of an f-ring R then the following conditions
are equivalent:
(1) I is an Ip-ideal,
(2) if A, B are l-ideals and I2 ANB then I2 A or I 2 B,
(3) if A, B are l-ideals and I= A and I = B then I «c AN B;
(4) if a, beR*\I then a ANbe R*\I;
(%) if a, beR*\I then a ANb>0;
(6) R/I is totally-ordered;
(7) the l-ideals containing I form a chain;
8 aAb=0 implies aecl or bel,
®) a;ANa, A Aa, =0 implies a;el for some i,
(10) a; Aa, A - Na,el implies a;el for some i,
104

https://doi.org/10.1017/51446788700019169 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019169

2] Discrete structure spaces of f-rings 105

Proor. Conrad [3] proves the equivalence of (1)«7) for I-groups while
Subramanian [7] does likewise for (8)~(9). The proofs for f-rings are identical.

The following result, characterising P-ideals, appears in Johnson [4].

ProposITION 1. If I is an l-ideal of an f-ring R then the following condi-
tions are equivalent:

(1) abel implies ael or bel;

(2) if A, B are (I-)ideals of R, AB =11 implies A<I or BS I;

(3) R/I is totally-ordered and has no divisors of zero.

LemMA 2. In an f-ring R, any P-ideal I is an lp-ideal.

Proor. This may be deduced from part (3) of proposition 1 and part (6)
of lemma 1, or deduced directly as follows: suppose a A b = 0; then since
R is an f-ring, ab = 0el, so ael or bel.

It is now clear that both LP(R) and AP(R) can be given the well-known
hull-kernel topology — see, for example, Kist [5] for details of this topology.
The following result is then immediate.

LEMMA 3. The inclusion mapping i:AP — LP is continuous.
NotaTioN. If £ < LP(R) we define the kernel of X, denoted by k(Z), as
kX)) = N{P:PeX}.
If A = R we define the hull of A, denoted by h(A), as
h(A) = {JeLP :J=A4}.
If £ < LP(R),
X, = {PeZ:a¢P}

for each a e R. It is well-known that the sets (LP), (where a e R*) form a basis
for the open sets of LP. In this paper R will always denote an f-ring.

DEeFINITION 3. For a non-empty subset A < R put
At = {xeR:|x|A|y| = Oforall ye4}.

We write a* for {a}*. An l-ideal I is said to be a polar if I = I'**, where I*™
stands for (I'Y)*.

Two preliminary results which will be used in the sequel have their analogues
proved in Kist [5], and are stated here for ease of reference.

PROPOSITION 2. If ¥ is a dense subset of LP(R), (i.e. if k()= (0)), then
or any non-empty set A < R, A* = k(Z\h(A)). In particular, for a € R, a*= k(ZT,).
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PROPOSITION 3. Suppose X is a dense subset of LP(R) and that any proper
l-ideal of R is contained in some element of . T hen an l-ideal I of R is a direct
summand if and only if h(I) is open-closed in Z.

Since any direct summand is obviously a polar, we may deduce the following
result.

LeMMA 4. Every polar of R is a direct summand if and only if LP(R)
is extremally disconnected.

Proor. It follows from proposition 2 that the polars are precisely those
I-ideals which are kernels of open subsets of LP(R). If each polar is a direct
summand then for each open subset I' < LP(R), h(k(I')) is open-closed by
proposition 3, and this means LP(R) is extremally disconnected. The converse
is obvious.

We now give a characterisation of those f-rings R for which LP(R) is
discrete, and subsequently this result will be sharpened.

LEMMA 5. LP(R) is discrete if and only if each of the following conditions
holds:

(1) each PeLP(R) is a minimal Ip-ideal; and

(2) each PeLP(R) is a direct summand.

PROOF. Suppose, firstly, that LP(R) is discrete. Then for each P e LP(R),
{P} is open in the hk-topology. Thus there exists x € R such that P e (LP), < {P},
i.e. P is the unique Ip-ideal not containing x. If M is any minimal Ip-ideal
contained in P —such an M exists by Zorn’s lemma — then x ¢ M so by the
uniqueness of P, M = P; so P minimal. Thus the /p-ideals are not comparable
(under set inclusion) and hence {P} = h(P) and proposition 3 implies P is a
direct summand.

Conversely, suppose conditions (1) and (2) hold, and suppose P e LP(R).
Then (1) implies {P} = h(P) and (2) implies h(P) is open. Thus LP(R) is discrete.

It shall be shown shortly that, in fact, condition (2) implies condition (1),
but firstly we give some properties of f-rings R for which LP(R) is discrete.

(A) Condition (1) implies that each Ip-ideal of R is a maximal [-ideal.
Hence each totally ordered homomorphic image of R has no proper I-ideals.

(B) If R is any f-ring then Max;(R) — the space of all maximal I-deals — is
a subspace of LP(R). If there exists ee R such that e is not contained in any
maximal /-ideal (e.g. if e is a multiplicative identity or a strong order unit) then
it can be shown that Max,;(R) is compact. Hence, if in addition R satisfies
the conditions of lemma 5, R has only a finite number of maximal l-ideals.
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(C) If LP(R) is discrete then for all xeR, {x) — the smallest [-ideal
containing x — is a direct summand. In fact each l-ideal is a direct summand
since h(I) is open. Thus R = {x) @ x" for all xeR, and this implies that
(x> = x*

(D) The two conditions in (C) imply that R is a projectable (or Stone)
fring, ie. x**@®x* = R for all xeR.

(E) The discreteness of LP(R) is not related to the existence of nilpotent
elements in R, as the following examples show.

(i) Consider R® with the usual pointwise operations and order. Then the
(minimal) Ip-ideals are (0) x R x R, R x (0) x R, and R x R x (0). These are
the only Ip-ideals and each is a direct summand. There are no nilpotents.

(ii) Consider R? with the usual pointwise order and addition and with
multiplication given by (ay, a,, a3)(by, b,, b3) = (0, a,b,, asb;). The [p-ideals
are the same as before : (1, 0, 0) is a non-zero nilpotent.

(iii) The ring C(N) of continuous real-valued functions defined on the
natural numbers can be shown to have a non-discrete structure space (making
use of remark (B)) and yet it has no non-zero nilpotent elements.

The next result shows which rings with discrete structure spaces have no
non-zero nilpotent elements.

LEMMA 6. Suppose LP(R) is discrete. Then R has no non-zero nilpotent
elements if and only if LP(R) equals AP(R) (see definition 2).

ProOF. If LP(R) = AP(R) then k(AP) = k(LP) =(0) and this implies
R has no nilpotents (Johnson [4]).

Conversely, suppose R has no nilpotent elements, Pe LP and xy e P. Since
LP(R) is discrete, P is a direct summand, and hence P is a polar. Thus

P = P_L_L o (xy)J._L — xLJ. ny_LL.
Since P is an Ip-ideal, x** < P or y** < P, thus xeP or yeP.

To improve Lemma 5, we shall use results concerning polars and Ip-ideals
which have some independent interest.

PROPOSITION 4. If A is a non-zero l-ideal of an f-ring R, the following
conditions are equivalent:

(1) A* is an Ip-ideal;

(2) each ae A\(0) has precisely one value;

(3) A is totally-ordered;

@) A* is a minimal Ip-ideal;
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(5) A** is a minimal polar;
(6) A* is a maximal polar;
() A = a*, for all ae A\(0);
(8) A is a maximal totally-ordered I-ideal;

Proor. Conrad [3] has proved the equivalence of these conditions in the
setting of I-groups. Since f-rings are characterised among the I-rings by the
property {a A by = {(a> N<{b) for a, b positive (unpublished result of the
author), the result for I-groups can be used to prove the analogue for f-rings.

As a corollary to this we have the following lemma which extends a result
of Anderson [1, lemma 5], but the method of proof here is different.

LeMMA 7. Let R be an f-ring and consider the following conditions for
an l-ideal 1 of R:

(D) I is a P-ideal and I* # (0);

(2 I is an Ip-ideal and I*# (0);

(3) I is a maximal (preper) polar in R.

Then (1) implies (2), (2) implies (3), and (3) implies (2). If in addition R has
no non-zero nilpotent elements then (3) implies (1), and hence in this case the
conditions are equivalent.

Proor. (1) implies (2), obviously.

(2) = (3). Since I* # (0) I"* is a proper Il-ideal, and since I = I'**, I is
an Ip-ideal. By the previous proposition, I** is a minimal Ip-ideal, so I = I**,
and again by that proposition, I is a maximal polar of R. (3) implies (2): This,
also, follows from the previous proposition.

Now suppose R has no nilpotents. To complete the proof it suffices to show
that (2) implies (1). Therefore suppose I* # (0), I is an Ip-ideal, and that abel.
Then I = I** 2 (ab)** = a** b+, and since I is an Ip-ideal it follows that
ael or bel.

THEOREM 1. If R is an f-ring the following conditions are equivalent:
(1) LP(R) is discrete;

(2) each Ip-ideal is a direct summand;

(3) R is a direct sum of totally ordered rings with no proper l-ideals;
(4) each l-ideal of R is a direct summand;

(5) each lp-ideal is a polar.

Proor. (1) implies (2): by lemma 5. (2) implies (3): For each Ip-ideal P,,
R =P, ® T, where T, is a totally ordered ring. We show that R is the direct
sum of these totally ordered rings. Firstly by proposition 4, each T, has no
has no proper Il-ideals. Thus the direct sum 2T, of these I-ideals is contained in
R. If there were an element r € R\(ZT,) then there would be an Ip-ideal P, 2 XT,
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such that » ¢ P,. By assumption P, is a direct summand, so R = P, ® T,, and
by choice of P,, T, < P,. Hence R = P,&® T, < P,, which is a contradiction.
Thus R = XT,.

(3) implies (4): If J is any l-ideal of of of R, and R = X, R,, where for each
ae A, R, is a totally order ring with no proper l-ideals, then J = Z(R,NJ)
and for each « R, NJ = R, or R, NJ = (0). Thus J = X,.R for some subset
AN e A

(4) implies (5): Trivial since any direct summand is a polar.

(5) implies (1): Let PeLP(R). Then by the previous lemma P*# (0).
Since P is a polar, proposition 4 implies P is a minimal Ip-ideal; hence LP(R)
equals .# — the space of minimal Ip-ideals. Also by proposition 4, P = P** = g*
for all aeP*\(0). So,

P = a* = k(LP),) = k().

Now, it is easy to show that .#, is open-closed (in .#), so h(P) = hk(A#,) = A,
which implies P is a direct summand. Hence, by lemma 5, LP(R) is discrete.

There is another characterisation, in terms of the lattice of all l-ideals of R,
of those f-rings R for which the structure space LP(R) is discrete, and we note
this result now.

DErFINITION 4. The set #(R) of all Il-ideals of an f-ring R is a lattice under
the operations + and M. It is well known that this lattice is distributive. (R) is
said to be complemented if for each I € #(R) there exists an l-ideal J such that
I+J =R and INJ = (0). Clearly, in this case I = J.

LeMMA 8. (R) is complemented if and only if LP(R) is discrete.
PrOOF. Obvious.

Theorem 1 can be strengthened for f-rings with no nilpotent elements which
also satisfy another fairly innocuous condition.

THEOREM 2. Suppose that R is an f-ring with no non-zero nilpotent
elements, and that each proper l-ideal of R is contained in a P-ideal. T hen
the following conditions are equivalent:

(1) AP(R) is discrete;

(2) each P-ideal is a direct summand,;

(3) each P-ideal is a polar;

(4) each P-ideal 1 is a minimal lp-ideal, and I* # (0);

(5) each lp-ideal I is a minimal lp-ideal, and I* # (0);

(6) LP(R) is discrete;

(7) R is a direct sum of totally ordered integral domains with no proper
I-ideals;

(8) each l-ideal of R is a direct summand.
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PrOOF. (1) implies (2): Since R has no nilpotents k(AP(R)) = (0), and
proposition 3 may be applied.

(2) implies (3): Obviously.

(3) implies (4): Follows from proposition 4.

(4) implies (5): Follows from the hypothesis.

(5) implies (6): Follows from lemma 7.

(6) implies (1): Obviously.
Clearly, by theorem 1, (6), (7), and (8) are equivalent.

REMARKS. (1) Any f-ring with identity satisfies the condition that each
proper Il-ideal is contained in a P-ideal.

(2) It is possible to have AP(R) = LP(R) even when LP(R) is not discrete.
Rings characterised by the property that AP(R) = LP(R) are the subject of
another paper.

The author takes this opportunity to acknowledge improvements to theorems 1
and 2 suggested by the referee.

The work for this paper was carried out while the author held a Common-
wealth Postgraduate Research Award at Monash University.
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