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Abstract. We use a result of Y. Furuta to show that for almost all positive integers
m, the cyclotomic field �(exp(2π i/m)) has an infinite Hilbert p-class field tower with
high rank Galois groups at each step, simultaneously for all primes p of size up to about
(log log m)1+o(1). We also use a recent result of B. Schmidt to show that for infinitely
many m there is an infinite Hilbert p-class field tower over �(exp(2π i/m)) for some
p ≥ m0.3385+o(1). These results have immediate applications to the divisibility properties
of the class number of �(exp(2π i/m)).

2000 Mathematics Subject Classification. 11N25, 11R17, 11R37.

1. Introduction. For any integer m we let ζm = exp(2π i/m) and consider the
cyclotomic field �m = �(ζm).

In a number of works, see [3, 5, 6, 7, 10, 13, 14, 15] and references therein, one can
find various conditions which guarantee that, for a prime p, cyclotomic fields (and also
some other fields) contain an infinite Hilbert p-class field tower, see [4] for terminology.
For example, it follows from a result of [8], that under some mild conditions on a field
� that the p-rank of the Galois groups in any tower of unramified p-extensions of �

tends to infinity.
Here, we show that a sufficient condition for the existence of such a tower over �m,

given by Y. Furuta [5], combined with a result of K. K. Norton [11], implies that for
almost all positive integers m, �m has an infinite Hilbert p-class field tower for every
prime p of size up to about (log log m)1+o(1). Moreover, for each of these primes p, the
Galois group at each step is of p-rank at least (log log m)1+o(1). Thus in the case of �m

this complements a result of [8] which applies to sufficiently large steps.
This also implies that for almost all m the class number hm of �m is divisible by all

primes p of size up to about (log log m)1+o(1).
We also combine a certain characterisation of B. Schmidt [13] of cyclotomic

fields having infinite Hilbert p-class field towers with a result of R. C. Baker and
G. Harman [1] about shifted primes with a large prime divisor, to show that for
infinitely many m, the field �m has an infinite Hilbert p-class field tower for a rather
large p. Moreover, a different construction (based on a combination of [2] and [5])
allows us to control the p-rank of the corresponding Galois groups.

Throughout this paper, for any real number x > 0 and any integer ν ≥ 1, we write
logν x for the function defined inductively by log1 x = max{log x, 1} (where log x is the
natural logarithm of x), and logν x = max{log(logν−1 x), 1} for ν > 1. When ν = 1, we
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omit the subscript in order to simplify the notation; however, we continue to assume
that log x ≥ 1 for any x > 0.

In what follows, we use the Landau symbol O, as well as the Vinogradov symbols
�, � and � with their usual meanings, where all implied constants are absolute. We
recall that the notations A � B, B � A and A = O(B) are equivalent, and that A � B
is equivalent to A � B � A. We always use the letters �, p and q to denote prime
numbers, while m and n always denote positive integers.

2. Results. We start with establishing a result for almost all m.

THEOREM 1. Let x be a sufficiently large real number. Them for all m ≤ x except
possibly O(x(log2 x)−0.08) of them, �m has an infinite Hilbert p-class field tower, such that
the Galois group at each step is of p-rank at least

sp =
⌈

(log2 x)2

9(p − 1)2

⌉

for all primes

p ≤ log2 x
10 log3 x

.

Proof. For a prime p and an integer m ≥ 1, we denote by ωp(m) the number of
distinct prime factors q of m such that q ≡ 1 (mod p). It follows immediately from
Theorem 6.27 of [11] (applied with L = {1} and α = 1/2) that for p = o(log2 x), the set
Ep(x) of m ≤ x with

ωp(m) ≤ log2 x
2(p − 1)

is of cardinality at most

#Ep(x) ≤ x exp
(

− (ϑ + o(1))
log2 x
p − 1

)
,

where

ϑ = 3
2

log
3
2

− 1
2

= 0.10819 . . . .

On the other hand, by Theorem 4 of [5], we have that if

ωp(x) ≥
⌈

4 + 2
√

s + 4
⌉

then �m has an infinite Hilbert p-class field tower, such that the Galois group at each
step is of p-rank at least s. Thus for every p = o(log2 x) and m ≤ x which is not in
Ep(x), we see that �m satisfies the required property with s = sp, provided that x is large
enough.

It remains to note that for

y = log2 x
10 log3 x
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we have

∑
p≤log2 x/10 log3 x

#Ep(x) ≤ x
∑

p≤log2 x/10 log3 x

exp
(

− (ϑ + o(1))
log2 x
p − 1

)

≤ x(log2 x)−10(ϑ+o(1))π (log2 x/10 log3 x)

≤ x(log2 x)−0.08.

where we used the trivial bound π (y) ≤ y on the number of primes p ≤ y. �
Since for a sufficiently large x we always have sp ≥ 9, as in Theorem 4 of [5], we

derive the following statement about divisibility of the class number hm of �m.

COROLLARY 2. Let x be a sufficiently large real number. Them for all m ≤ x except
possibly O(x(log2 x)−0.08) of them, hm is divisible by all primes

p ≤ log2 x
10 log3 x

.

In particular

ω(hm) � log2 x
(log3 x)2

for almost all m ≤ x, where ω(k) denotes the number of distinct prime divisors of
k ≥ 1.

We now consider extremal values.

THEOREM 3. There are infinitely many m such that �m has an infinite Hilbert p-class
field tower for some prime

p ≥ m0.3385+o(1).

Proof. For two integers r and s with gcd(r, s) = 1 we denote by ordrs the
multiplicative order s modulo r.

It is shown in Corollary 5.9 of [13] that if m = kq where k is an integer and q is a
prime with

q ≡ 1 (mod p), gcd(k, q) = 1, qn 	≡ −1 (mod k), (1)

for n = 1, 2, . . . (that is, −1 is not a power of q modulo k), and also such that

ϕ(k)
ordkq

≥ 8p + 12, (2)

where ϕ(k) is the Euler function, then �m has an infinite Hilbert p-class field tower.
We now show that there are infinitely many pairs (m, p) which satisfy (1) and are

(2) and are such that p ≥ m0.3385+o(1).
Let P(k) denotes the largest prime divisor of k ≥ 1 (with P(1) = 1). By [1] we see

that for any y > 1 we have P(q − 1) ≥ q0.677 for at least A(y) � y/ log y primes q ≤ y.
On the other hand, by the Brun sieve (see Theorem 2.2 in [9]) the number of q ≤ y

for which q − 1 does not have an odd prime divisor � in the interval log2 y ≤ � ≤ log y
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is

B(y) � y
log y

∏
log2 y≤�≤log y

(
1 − 1

�

)
� y log3 y

log y log2 y
,

by the Mertens formula (see Theorem 3.1 of Chapter 1 in [12]). Therefore, B(y) =
o(A(y)) and there are infinitely many primes q such that P(q − 1) ≥ q0.677 and q ≡ 1
(mod �) for some prime log2 q ≤ � ≤ log q.

Put p = P(q − 1) and m = kq where k = �(q + 1). Since q ≡ 1 (mod �), we
obviously have (1). To verify (2), we note that ordkq = 2. Then

ϕ(k)
ordkq

≥ ϕ(�(q + 1))
2

= (� − 1)ϕ(q + 1)
2

� �q
log2 q

,

by the well-known lower bound on the Euler function (see Theorem 5.1 in Chapter 1
of [12]).

Since p ≤ (q − 1)/� and �≥ log2 q we see that (2) holds as well.
It remains to note that

p � q0.677 ≥ (m/�(q + 1))0.677 = m0.3385+o(1)

since q = m1/2+o(1). �
We now immediately obtain the following conclusion about the largest prime

divisor P(hm) of the class number hm of �m.

COROLLARY 4. There are infinitely many m such that P(hm) ≥ m0.3385+o(1).

Finally, we show an analogue of Theorem 3 for towers of a prescribed p-rank of
their Galois groups.

THEOREM 5. For any integer s, there are infinitely many m such that �m has an
infinite Hilbert p-class field tower such that the Galois group at each step is of p-rank at
least s for some prime

p ≥ mαs+o(1),

where

αs = 17

128 + 64
√

3 + s
.

Proof. Let

t =
⌊

4 + 2
√

3 + s
⌋

.

By Theorem 4 of [5] it is enough to construct a square free m with ωp(m) ≥ t, for some
prime satisfying the inequality of the theorem, where, as before, ωp(m) denotes the
number of distinct prime factors q of m such that q ≡ 1 (mod p).

Also, as before, we use P(k) to denote the largest prime divisor of k ≥ 1 (with
P(1) = 1). Given two positive constant η and c, we consider the set of primes

Pa,η,c(z) = {p ≤ z : p = P(q − a) for some prime q with pη < q < c pη} .
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By Theorem 1 of [2] for any η with 32/17 < η < (4 + 3
√

2)/4, there is a constant cη

such that

#Pa,η,cη
(z) = (1 + o(1))π (z)

as z → ∞. Let us fix some ε > 0. Then we see that for any η in the interval 32/17 <

η < (4 + 3
√

2)/4 and sufficiently small ε > 0 (to satisfy η + (t − 1)ε < (4 + 3
√

2)/4)
and sufficiently large z, there is a prime p such that z/2 ≤ p ≤ z and

p ∈
t−1⋂
ν=0

Pa,η+νε,cη+νε
(z).

Thus there are t distinct primes qν ≡ 1 (mod p) with qν � pη+νε ≤ pη+νε, ν =
0, . . . , t − 1. Then for m = q1 . . . qt we clearly have ωp(m) ≥ t. On the other hand

m ≤ ptη+t2ε

and since η > 32/17 and ε > 0 are arbitrary, the result follows. �

3. Concluding Remarks. It would be interesting to find some arithmetic
conditions on m which imply that �m does not have an infinite Hilbert p-class field
tower, and thus try to get some lower bounds on the size of the exceptional set of
Theorem 1.

It is clear that any refinement of Theorem 3 is possible only if a result of [1] is
improved. However, Theorem 5 in the case s = 1 does not give Theorem 3 and thus
there could be some more realistic opportunities for further improvement.

Finally, one can probably find some other parametric families algebraic number
fields having an infinite Hilbert p-class field tower provided the corresponding
parameters satisfy certain concise arithmetic conditions. This may potentially lead
to some interesting number theoretic problems.
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