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Abstract. The quotient of a real analytic manifold by a properly discontinuous group action is,
in general, only a semianalytic variety. We study the boundary of such a quotient, i.e., the set of
points at which the quotient is not analytic. We apply the results to the moduli siagg of
nonsingular real algebraic curves of genug¢g > 2). This moduli space has a natural structure

of a semianalytic variety. We determine the dimension of the boundary of any connected component
of M, r. It turns out that every connected component has a nonempty boundary. In particular, no
connected component &1, i is real analytic. We conclude thad, / is not a real analytic variety.
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1. Introduction

Let M,r be the moduli space of nonsingular real algebraic curves of ggnus
whereg is an integer greater than or equal to 2. It is well known thglr has

g+ 1+ [%(g + 2)] connected components [11]. These connected components
correspond to the different topological types a nonsingular real algebraic curve can
have.

Any connected component @f,,r has a natural structure of a semianalytic
variety. This can be seen by Teichmdller theory: Xebe a nonsingular real al-
gebraic curve of genus. Then, there is a connected real analytic manifb{),
called the real Teichmiiller space &fof marked real algebraic curves modeled
on X (cf. [4, 6, 11] or Section 5). Also, there is a group Mad, called the real
modular group ofX, which acts properly discontinuously adh(X). The quotient
R(X) = T(X)/Mod(X) is the moduli space of the real algebraic cukeln fact,

R(X) consists of the isomorphism classes of all nonsingular real algebraic curves
Y of genusg having the same topological type EsHence,R(X) is the connected
component of the moduli spadé, r that containsx.
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Since the action of Mod) on the (3g — 3)-dimensional real analytic mani-
fold T (X) is properly discontinuous, the moduli spak€éX) of the real algebraic
curveX is a semianalytic variety of the same dimension. Therefore, any connected
component ofM,r — hence, alsaV,r itself — acquires a natural structure of
a semianalytic variety of dimensiorg 3- 3. In fact, equipped with this structure,
M, r is the coarse moduli space of nonsingular real algebraic curves of g¢éius

In general, one can define, for a semianalytic variétyts boundand N as the
subset of points at which the germ dfis not real analytic. It is known that the
boundaryd N is itself semianalytic [7], Proposition 16.1, so that it makes sense to
speak of its dimension.

We concentrate on the following situation. L&t be a real analytic manifold
andG a group acting properly discontinuously o Let N be the quotiends/G.
Then, N is semianalytic. This is the statement of Proposition 3.1. We determine
the boundaryd N in terms of the action oG on M (see Proposition 3.2). As an
example, in the case thaf is connected and acts faithfully, the image iV of
an elemenk of M belongs to the boundary of if and only if there is an element
« of order 2 inG such thatr - x = x.

We also determine the dimension of the boundavin terms of the action off
on M. When applied to the moduli spad& X) of any nonsingular real algebraic
curve X of genusg > 2, it will follow that the boundaryd R(X) is of positive
dimension (cf. Theorems 5.2 and 5.4). Consequently,

THEOREM 1.1. Letg > 2. No connected component of the moduli spater
of nonsingular real algebraic curves of gengiss real analytic. In particular, the
semianalytic variety, g is not real analytic.

This result refutes [11], Theorem 2.2, to the effect that all connected compon-
ents ofM, r would be real analytic (cf. Remark 3.4).

The paper is organized as follows. In Section 2 we address the question when
real guotient singularities are analytic. In Section 3 we apply the results of Section 2
to quotients of real analytic manifolds by properly discontinuous group actions.
The main result there determines the boundary of such quotients, and expresses
its dimension in terms of the group action on the manifold. In order to apply the
results of Section 3 to real Teichmuiller spaces, we need to study automorphisms of
real algebraic curves of order 2, or what amounts to the same, morphisms of real
algebraic curves of degree 2. This is done in Section 4. Section 5 is then devoted
to our main result concerning the dimension of the boundary of any connected
component of the moduli spadé, k.

Conventions and notation

An analytic variety is not necessarily nonsingular. An analytic manifold is a nonsin-
gular analytic variety. Algebraic curves will always be nonsingular complete and
geometrically irreducible. If5 is a cyclic group generated kyythen by an action
of ¢ we will mean an action of;. If g acts on a sek then X¢ is the subset of
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fixed pointsX? for the action ofG. Furthermore X /g will be the quotientX/G.
The Galois group of°/R will be denoted byx. Of course,x = {1, o} whereo

is complex conjugation. Wheh is said to act on a complex analytic variety then
it is understood that acts antiholomorphically. For a real number, the greatest
integer less than or equal tois denoted byx].

2. Real Quotient Singularities

Let G be a finite group acting linearly on a finite-dimensional real vector space
We show that the quotierit /G is a semianalytic variety, and we study the ques-
tion when this quotient is a real analytic variety. First, we need to introduce some
notation and to establish a preliminary lemma.

Let W be the complexificatio® ®g V of V. Then, there is an induced action
of G on W, and the canonical may — W is G-equivariant.

Since W is the complexification o, there is also a canonical action of the
Galois groupX on W. We considerV as a real subspace & by means of the
canonical mag/ — W. Obviously, the set of fixed point# * is equal toV'.

The actions of and G on W commute with each other. Therefore, there is
an induced action ok on the set-theoretical quotiedt/G. The inclusion ofV
into W induces an injective mag/G — (W/G)*. We will identify V /G with its
image in(W/G)*.

LEMMA 2.1. LetV be a finite-dimensional real vector space. Iebe a finite
group acting linearly and faithfully ofv. Denote byW the complexification o¥ .
Then, the quotienY /G is equal to(W/G)* if and only if the order ofG is odd.

Proof. Suppose that the order @f is even. Then, there is an elemente G
of order 2. Since&5 acts faithfully onV, « acts nontrivially onV. Hence, there is
an element € V, v # 0 such thav = —v. But then,w = +/—1-visin W
and satisfiesw = ow. Therefore, the image af in W/G is a fixed point for the
action ofx. This fixed point is clearly not an element B G.

Suppose that the order ¢f is odd. Letw € W be such that its image in the
quotientW/ G is afixed point for the action df. That is, the orbiGw of w in W is
X-stable. Since the order df is odd, the cardinality oG w is odd too. Therefore,
%, being a group of order 2, has a fixed pointGhw. But then,Gw C V. In
particular,w € V. a

Remark2.2. The hypothesis of faithfulness of the actiorGobn V in the state-
ment of Lemma 2.1 is only made to simplify the exposition. In fact, the general
case of a not necessarily faithful action is a consequence of Lemma 2.1. Indeed,
suppose a finite grou@ acts linearly, but not necessarily faithfully on a finite-
dimensional real vector spadé Let againW be the complexification of/. Let
K be the kernel of the representation morphi§m— GL(V). Then, the quotient
G /K acts linearly and faithfully orv. Applying Lemma 2.1 to the action @f /K,
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one concludes that/ G is equal toW/G)* if and only if the indexG : K] of K
in G is odd.

Let againV be a finite-dimensional real vector spacga finite group acting
linearly onV, andW the complexification o¥/.

We now consider the real vector spaéeawith the Euclidean topology. Endow
V /G with the quotient topology. Let: V — V/G be the quotient map. LeR
be the sheaf of real analytic functions &n The groupG acts on the real analytic
variety (V, R). Therefore, we get &-action on the sheaf, R onV/G. Let R’ =
(m.R)°. Then,(V/G, R’) is the quotient of(V, R) in the category of locally
ringed spaces. We simply denote this spacé/by:. We will see thatV /G is, in
fact, a semianalytic variety (cf. Lemma 2.4).

Similarly, we endow the complex vector spadewith its Euclidean topology
and its sheaf of complex analytic functions. Ther; acts onW, and the quotient
W/G of W is a complex analytic variety [2], Théoréme 4. L&tW — W/G
be the quotient map. Denote &y the structure sheaf of/G. Then, in fact,
0" = (p,0)°.

Clearly, we have an induced action of the Galois graumn the complex
analytic varietyW/G. In particular, we have a real analytic action®fon W/G
considered as a real analytic variety. Therefore, the sudg¢tG)* of W/G is
a real analytic subset d¥/G. Hence,(W/G)* acquires the structure of a real
analytic variety. Denote its structure sheaffy. This sheaf is, in a natural way,
the surjective image of the she(a[1>|’(W/G)E)E on (W/G)*. This natural surjective

morphism((Q‘/(W/G)z)2 — R” is not injective at the stalks over the pointsof

(W/G)* at which the local dimension dipaW/G)* is strictly smaller than the
global dimension dirctW/G)*. At the other stalks, the map is an isomorphism.

Remark 2.3. The inclusion:V/G — (W/G)* is a map of locally ringed
spaces. Since dipdW/G)* at any pointx of V/G is equal to dinitW/G)%, the
morphism of sheaves: R” — i, R’ is an isomorphism at the stalks over the points
of V/G. To put it differently,i is a closed embedding of locally ringed spaces.

LEMMA 2.4. LetV be a finite-dimensional vector space and (@tbe a finite
group acting linearly onv. Then, the locally ringed spadé/G is a semianalytic
variety.

Proof. By Remark 2.3, it suffices to show th#tY/ G is a semianalytic subset of
(W/G)E. Itis well known thatW /G is actually a complex algebraic variety [2],
Proposition 4, on whiclt acts. The set of fixed pointd¥/G)* is then a real al-
gebraic variety, and the map — (W/G)* a morphism of real algebraic varieties.
Therefore, its imagée’/G is a semialgebraic subset 6/ /G)*. In fact, V/G is
basic closed, i.e., a finite intersection of subsets of the férga 0, wheref is a
polynomial map onfW/G)* (cf. [9] and also [1]). In any casé&;/ G is a fortiori a
semianalytic subset gW/G)*. O
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The following proposition is the main result of this section as it describes exactly
when the real semianalytic quotient singularity G is analytic.

PROPOSITION 2.5.Let V be a finite-dimensional real vector space. kebe a
finite group acting linearly and faithfully ofr. Denote byW the complexification
of V. Then, the following conditions are equivalent:

(1) V/G is areal analytic variety;

(2) the germ(V /G, 0) is real analytic;
@) V/G=W/G)%

(4) #G is odd.

Proof. By Lemma 2.1(3) and(4) are equivalent. The implicatiof8) = (1) is
clear since, under assumption @, the morphism is an isomorphism from the
semianalytic varietyy /G onto the real analytic variety /G)* by Remark 2.3.
The implication(1) = (2) is obvious. We only need to show the implicati@) =
).

The morphismsr, p’, i induce maps of germs at 0 which will be denoted by the
same symbols:

7 (V,0) — (V/G,0),
p' (W, 00 — (W/G,0),
i:(V/G,0) — (W/G)E,0).

Suppos€V /G, 0) is a real analytic germ. Then, there is a complexificati&n.x)

of (V/G, 0). Since(W, 0) is a complexification ofV, 0), the mapr induces a map
of complex analytic germs’ from (W, 0) into (X, x). Similarly, since(X, x) is a
complexification of(V /G, 0), the map induces a map of complex analytic germs
i’ from (X, x) into (W/G, 0). Moreover, sincep’ is X-equivariant,p’ induces a
morphism of real analytic germs from (V, 0) into (W/G)*, 0). Consider the
following two diagrams.

(V,0) (W,0)
VG0 o) (X)L (/6,0)

7 i

The two diagrams of solid arrows are commutative. Indeed, the one to the
left clearly is commutative. It follows that the map of germs frgm, O) into
((W/G)%, 0) induced byi’ o ' is equal top. Sincep’ is the uniquex-equivariant
map of complex analytic germs frogW, 0) into (W/G, 0) inducing p, the dia-
gram of solid arrows to the right is commutative too.

The map of germg’ is obtained as follows. Letting act trivially on(X, x), the
map of germse’ is G-equivariant. Since’ is the quotient of W, 0) by G, there is
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a unique map of germg from (W/G, 0) into (X, x) such thay’ o o’ = n’. Since
¢’ is automaticallyz-equivarianty’ induces a map of germsfrom (W/G)*, 0)
into (V/G, 0).

Now, one has’ o ¢’ o p’ =i’ o’ = p’. Sincep’ is the quotient of W, 0) by
G, this impliesi’ o ¢’ = id. Which, in turn, implies o ¢ = id. Therefore,V/G
contains an open neighborhood of O(i¥/ G)*. Using the inducedR*-action on
(W/G)*, itfollows thatV /G = (W/G)*. 0

Remark2.6. Of course, the equivalences between the conditions 1, 2 and 3 of
Proposition 2.5 do also hold when the actiontbbn V is not faithful.

Remark2.7. Proposition 2.5 also holds when every occurrence of ‘analytic’ is
replaced by ‘algebraic’.

3. Quotients of Real Analytic Manifolds

In this section we show that the quotient of a real analytic manifold by a properly
discontinuous group action is a semianalytic variety. We study the boundary of
such a quotient and, in particular, its dimension.

PROPOSITION 3.1. Let M be a real analytic manifold and le be a group
acting properly discontinuously oM. Then, the quotient aff by G as a locally
ringed space is a semianalytic variety.

Proof. Denote byN the quotient oM by G, and denote byt the quotient map
M — N.

Let x be an element oM. SinceG acts properly discontinuously, there is an
open neighborhood of x in M such that

(1) Uis G,-stable, i.e., foral € G, we havex - U C U, and
(2) foralla € G\G,,we have(a - U)NU = 0.

Here,G, denotes the stabilizer af, i.e., the subgroup of all elementsof G such
thate - x = x. Then, the imager (U) of U is an open neighborhood af(x) in
N, and is isomorphic to the quotiebt/ G .. Hence, in order to prove thaf is a
semianalytic variety, it suffices to prove tHay G, is semianalytic.

ReplacingU, if necessary, by a smaller open neighborhood eétisfying the
two conditions above, the action 6f, on U can be linearized (see [2], Section 4).
This means that there is a linear action®f on a finite-dimensional real vector
spaceV having the following property. There is an open neighborhbowf the
origin in V which is stable for the action of7,, such thatU and U’ are G,-
equivariantly isomorphic as real analytic manifolds. Under this isomorphism the
origin of vV and the points are supposed to correspond.

Observe that the groug, is finite since the action of; on M is properly
discontinuous. Therefore, by Lemma 2.4, the quot®pG, is semianalytic, in
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particular, U'/G, — and, hencel//G, — is semianalytic. This shows that the
quotientN is semianalytic. O

In general, one can intrinsically define the boundakyof any semianalytic variety
N as

dN = {x € N |the germ(N, x) is not real analytig.

Our main result in this section concerns the boundary of the quotient of a real
analytic manifold by a faithful and properly discontinuous group action.

PROPOSITION 3.2.Let M be a connected real analytic manifold and @tbe a
group acting faithfully and properly discontinuously #f Denote the quotient by
N, and the quotient map/ — N by .

(1) The imager(x) of an element of M belongs to the bounda@N of N if and
only if the stabilizerG, of G at x is of even order. Equivalently,

IN= | ] =M.
aeG
ord(a)=2
In particular, the semianalytic variety is real analytic if and only if all
elements of orde2 of G act fixed point-free oM.

(2) The local dimension of the boundady of N at the imager (x) of an element
x of M satisfies

dim;ydN = sup dim(7T,M)*,
aeGy
ord(a)=2

whereT, M is the tangent space t at x. In particular, the dimension of the
boundaryd N of N satisfies

dimdN = supdim;,dN = sup sup dim(7,M)*.

XeEM XeM 4G,
ord(a)=2

Proof. Let x be an element o#. SinceG acts properly discontinuously, there
is an open neighborhodd of x in M such thatU is G,-stable anda - U)NU =@
foralla € G\G,. SinceM is connected an@ acts faithfully onM by real analytic
automorphisms, the group, acts faithfully onU.

As in the proof of Proposition 3.1, one can linearize the actio pfon U,
replacingU by a smaller neighborhood if necessary. Hence, one reduces to the
case thatM is an open neighborhood of the origin in a finite-dimensional real
vector spaceV, that x is equal to the origin of, and thatG is a finite group
whose action o/ extends to a linear and faithful action & In fact, one might
as well suppose tha is all of V.
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Statement 1 then follows immediately from Proposition 2.5.

In order to prove statement 2 of the proposition, one applies what we have
proven so far to the quotierit/G, to conclude that its boundary is equal to the
image inV/G of the unionl,, ¢ orga)—2 V- Then, statement 2 of the proposi-
tion follows from the natural identification df with its tangent spac&,V at the
origin. O

Remark3.3. The hypotheses of Proposition 3.2 tivatis connected and that
the action ofG on M is faithful, are only made to simplify the exposition. In
fact, the general case of a not necessarily connected real analytic manifold and
a not necessarily faithful action follow from Proposition 3.2. Indeed,Mebe
such a manifold and leG be a group acting properly discontinuously, but not
necessarily faithfully ord/. Denote again the quotieM /G by N, and the quotient
mapM — N byn. Letx € M and letC € M be the connected componentMf
containingx. Let G¢ be the stabilizer of the connected compor@énite.,G¢ is the
subgroup ofx € G such thatx - C C C. Let K be the kernel of the representation
morphismG¢ — Aut(C). Then, the quotienti-/K acts properly discontinuously
and faithfully on the connected real analytic manifdldThe stabilizeG¢/K),
of x is equal toG, /K. Applying Proposition 3.2, one concludes thatr) is in
the boundary oV if and only if the indexG, : K] of K in G, is even. To put it
differently,  (x) is in the boundary ofV if and only if there is an element € G
havingx as a fixed point, such thatdoes not act trivially in a neighborhood .of
whereasy? does act trivially in a neighborhood of

One can similarly generalize the other statements of Proposition 3.2.

Remark3.4. The argument that made one conclude that the moduli 3page
would be real analytic was that the quotiédy G would be real analytic under an
additional hypothesis [10], Theorem 1. This additional hypothesis consisted of
being a real analytic subset of a complex analytic manifoklch that the action of
G on M is the restriction of a properly discontinuous actiontobn X. However,
it is false that this implies that the quotied /G is real analytic, as shows the
staggeringly simple counter-exampleMf= R, X = C andG the multiplicative
group{+1} acting linearly onM in the natural way.

The flaw in the ‘proof’ of [10], Theorem 1, is of an interesting subtlety: Denote
by X.an the induced real analytic structure on a complex analytic vafetiyet G
be a group acting properly discontinuously &nThis induces an action @ on
Xran- Denote this action b . Then, in generak X an) /(Gran) is Not isomorphic
to (X/G)ran! Indeed, let us take agaiki = C andG = {+1}. Then,X/G = C,
hence(X/G)an = R? and is real analytic. Howevek ., = R? and the quotient
R?/{#£1} is not real analytic according to Proposition 2.5. In fact, this quotient is a
semicone (see Figure 1).

The example shows that,,, as defined above, is not the right thing to consider.
One should rather consider restriction of scalars a la Weil of the complex analytic
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Figure 1. In solid lines: the quotient of the real analytic manifdid by the linear group action
of {£1}, embedded ifR3 as the semicon@? = uv, u > 0, v > 0. The embedding is given by
(u, v, w) = (2, y2, xy).

variety X with respect to the field extensidd/R. This means that one should
define X an as the complex analytic variety x X endowed with its canonical-
action, whereX is the complex conjugate variety. One gets an induced action of
Gran, NOW defined asian = G x G, on Xan, and, this time, one has, indeed, a
canonicalx-equivariant isomorphismX an) /(Gran) = (X/G)ran

4. Morphisms of Degree 2

We start this section by recalling some facts concerning the topology of real algeb-
raic curves.

Let X be a real algebraic curve. Tiapological typeof X is the homeomorph-
ism class of the paifX (C), X (R)).

Denote byg = g(X) the genus ofX, and denote by = ¢(X) the number
of connected components of the set of real poxit®) of X. The real algebraic
curve X is said to bedividing if X(C)\X(R) is not connected. It is well known
that these data, i.e., the genusXgfthe number of connected componentXaR),
and whether or no¥ is dividing, determine completely the topological type of
X. In other words, ifX andY are real algebraic curves, then the topological pairs
(X(©C), X(R)) and(Y (C), Y (R)) are homeomorphic if and only #f(X) = g(Y),
c(X) = c(Y),andX andY are either both dividing or both nondividing.

Yet another way to formulate that the real algebraic cu¥esndY have the
same topological type is to say that the topological surfac&s) andY (C) are
X -equivariantly homeomaorphic.

It is also well known that the integergs = g(X) andc = ¢(X), for a real
algebraic curveX, satisfy the following relations. IX is dividing thenc = g + 1
mod 2 and 1< ¢ < g + 1. If X is nondividing then &< ¢ < g.

In fact these are the only relations satisfieddognd g. More precisely, given
a nonnegative integey and an integer satisfyingec = ¢ + 1 mod 2 and 1<
¢ < g + 1, then there is a dividing real algebraic cu¥esuch thatg(X) = g
andc(X) = c. Similarly, given a nonnegative integgrand an integet satisfying
0 < ¢ < g, then there is a nondividing real algebraic cuk/euch thatg(X) = ¢
andc(X) = c.
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Recall also that a real algebraic cut¥as calledhyperellipticif the genus ofX
is greater than or equal to 2 aixdadmits a morphism ontB* of degree 2.

It is known [5], Proposition 6.3, that iX is a hyperelliptic real algebraic curve
then eitherX is nondividing, orX is dividing andc is equal to 1, 2 og + 1. Thus,
one suspects a relation between the topological type of a real algebraicXurve
and the least integérsuch that there is a morphism of degree 2 fr&mnto a real
algebraic curver of genusi.

Letus puti(X) = inf{g(Y)|3f: X — Y with deq f) = 2}. Of course, if there
are no morphisms of degree 2 fraxnto any real algebraic curve, théeX) = oco.
For a real algebraic curv& of genus less than 2, the inde&X) is equal to O.
For a curveX of genus greater than or equal to 2, the inde€X) measures how
nonhyperellipticX is, i.e.,i(X) = 0 if and only if X is hyperelliptic.

PROPOSITION 4.1.Letg be a nonnegative integer.
(1) Let X be a dividing real algebraic curve of genys Letc = ¢(X) be the
number of connected componentsi@iR). Then,
i(X) = min{3(g +1—0).[3(c+ D] - 1}.
(2) Letc be an integer satisfyingj < ¢ < g+ 1andc = g+ 1 mod 2. Then, there
is a dividing real algebraic curv& of genusg such thaic(X) = ¢ and
i(X)=min{3(g+1—0¢), [3(c+D]—1}.

Note that this proposition generalizes [5], Proposition 6.3. IndeeH, if hy-
perelliptic then, by definition;(X) = 0. The real curveX is either nondividing or
dividing. In the latter case, according to Proposition 4.1.1, one has éi(tgeﬂfl—
co)=00r[3(c+1]-1=0,ie,c=12o0rg+1.

For the proof of Proposition 4.1 and also for the applications we have in mind,
it will be convenient to change slightly our point of view.

To give a morphism of degree 2 froXi onto a curveY is equivalent to to
give an automorphisra of X of order 2. Then, by Riemann—HurwitzX#C)* =
2g + 2 —4g(Y). Putting

A(X) = SU#X (C) |a € Aut(X), ord(a) = 2},

one has\(X) = 2¢ + 2 — 4i(X). Therefore, Proposition 4.1 is equivalent to the
following one.

PROPOSITION 4.2.Let g be a nonnegative integer.

(1) Let X be a dividing real algebraic curve of genys Letc = ¢(X) be the
number of connected componentsXaiR). Then,

AMX) < max{2c, 2g + 6 — 43 (c + D1}

(2) Letc be an integer satisfyingj < ¢ < g+ 1andc = g+ 1 mod 2. Then, there
is a dividing real algebraic curv& of genusg such thatc(X) = ¢ and

AMX) = max{2c, 2g + 6 — 43 (c + DI}
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Proof. (1) Leta be an automorphism aof of order 2. Putt = X/«. Leth be
the genus of. We show that eithet > 3(g +1—c)orh > [5(c + 1] — 1, so
that, in fact, we are showing Proposition 4.1.1.

Let F C X (C) be the closure of a connected componenX ¢€)\ X (R). Then,

F is an orientable manifold with boundary and its double is homeomorphic to
X (C). Let g’ be its genus. Then,g2+ ¢ — 1 = g. Sinceqa, considered as an
automorphism oX (C), commutes with the action &f, we have eithest(F)NF =

dF ora(F)NF = F.

If «(F)NF = F then all fixed points of are in the interio® = F —9 F of F.
The induced map on the real poift§R) — Y (R) is then a topological covering
and each fiber consists of exactly 2 points. The nhumber of connected components
of Y (R) is then necessarily greater than or equa{l%t(r + 1)]. The genug: of Y
then satisfieg > [3(c + 1] — 1.

If «(F)N F = 0F, thena has all its fixed points o F. That is, the map
F9 — Y(C) is a diffeomorphism onto an open subsetr@fC). The complement
of this open subset df (C) is the image ob F. Therefore, the genusof Y then
satisfiesh > ¢’ = 2(g +1— o).

(2) Let S be an orientable connected comp&tP-surface of genug. Let
3 act onS such that complex conjugation € X acts orientation-reversingly.
Moreover, this action is such th&t S* is not connected, and the number of con-
nected components 6 is equal tac. We are going to construct twib-equivariant
orientation-preserving automorphisms$bf order 2, sayx and 8, such that the
number of fixed points o& is equal to 2, and the number of fixed points @fis
equalto 2 + 6 —4[3(c + 1)].

Let us first show how this proves Proposition 4.2.2. K&k be the quotient of
S in the category o€°°-manifolds. It is easily seen, after locally linearizing the ac-
tion of «, that such a quotient exists. ThefYw is an orientable connected compact
C*-surface. Since is X-equivariant, we have an action Bfon S/« such that the
guotient mapr: S — S/« is X-equivariant. Clearlyy acts orientation-reversingly
onS/a.

There is a complex structure dfya such thats acts antiholomorphically on
S/a. This can be easily seen as follows. LLétbe any Riemannian metric &fy«.
Then,u = i’ 4+ o* 1’ is aX-equivariant Riemannian metric diY«. The action of
o on S is then antiholomorphic with respect to any of the two complex structures
on S/« that are compatible witj.

By local considerations, there is a complex structureSasuch that the map
.S — S/a is holomorphic. Then, the diffeomorphismof S is biholomorphic
and the action of on S is antiholomorphic. Indeed, let be the endomorphism of
the real tangent bundI€S of S corresponding to multiplication by/—1. Let J’
be the one foS/«. Then,

TroTaolJ =TnoJ=J oTn=J oTnoTa=TnolJoTa.
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Figure 2. The arrow designates the action of the automorphisimhe topological circles form the
set of fixed pointss=.

Hence,Ta o J = J o Ta, i.e., the diffeomorphismx of S is biholomorphic.
Similarly, To o J = —J o To onT S. Hence, the action af is antiholomorphic.

Let X’ be the complex algebraic curve such that the Riemann sukfgé€e is
equal toS. The action ofz on X’(C) is then algebraic, i.e., this action is induced
by an action ofX on X’. Let X be the quotienX’/X. Then,X is a real algebraic
curve satisfyingX g C = X’. In particular,X (C) = S.

There is an automorphisgr’ of X’ such that the biholomorphic automorphism
of X’(C) itinduces is equal ta. Sincex is X-equivariant,y’ is X-equivariant too.

It follows that there is an automorphismof X such that the automorphism &f it
induces is equal tp’. In particular,« is equal to the biholomorphic automorphism
of X(C) induced byy. Sincey is an automorphism of of order 2 and & (C)” =
2¢, one has.(X) > 2¢. In particular, there is a dividing real algebraic cutveof
genusg with ¢(X) = c andA(X) > 2c.

One similarly shows that the automorphighof S gives rise to a real algebraic
curve X equipped with an automorphismof order 2 such that ¥(C)Y = 2¢ +
6— 4[%(c + 1)]. In particular, there is a dividing real algebraic cuxef genusg
with ¢(X) = c andA(X) > 2g + 6 — 4[3(c + D).

It then follows that there is a dividing real algebraic cueof genusg with
¢(X) = c such thatl(X) > max{2c, 2g + 6 — 4[%(0 + 1)]}. Hence, by statement 1
of the proposition, this inequality is, in fact, an equality. Therefore, in order to
prove Proposition 4.2(2), it suffices, indeed, to construct the automorphisnd
B having the required properties.

We construct the automorphisinas follows. Choose on every connected com-
ponent of S* two different points. Then, there is ai-equivariant orientation-
preserving automorphisia of S of order 2 which has precisely the chosen points
as fixed points (see Figure 2). Hence, the number of fixed poinrtssodqual to 2.
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Figure 3. The arrow designates the action of the automorphsiihe topological circles form the
set of fixed pointss=.

Next, we construct the automorphistn Let F be the closure of a connected
component ofS\S*. Then, F is an oriented connected compat® surface with
boundary of genug’ = %(g + 1 —¢). The boundary of consists ot connected
components.

If ¢ is odd (resp. even) we can choosg 2 1 (resp. 2’ + 2) points onF such
that there is an orientation-preserving automorphghof F of order 2 having
precisely these points as its fixed points. Then, defing — S by

B'(x), ifxePF,
oc-B(o-x), fxeo-F.

s |

(See Figure 3 for the caseis odd, the case is even is similar.) It is clear that
B’ can be chosen in such a way tifats of classC®. Then, 8 is a X-equivariant
orientation-preserving automorphism ®fof order 2 such that the number of its
fixed points is equal to2g’+1) (resp. 22¢’+2)). Since 22¢'+1) = 2g+4—2¢ =
2¢+6—4[3(c+1D)]if cisodd, and Rg'+2) = 2g+6—2c = 2g+6—4[3(c+1)]

if ¢ is even, the automorphisgh has the required number of fixed points. O

The situation for nondividing real algebraic curves is more simple.
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PROPOSITION 4.3.Letg be a nonnegative integer.

(1) Let X be a nondividing real algebraic curve of gengisThen,i(X) > 0 and
MX) < 2¢+2.

(2) Letc be an integer satisfyin@ < ¢ < g. Then, there is a nondividing real
algebraic curveX of genusg such thate(X) = ¢, i(X) = Oand A(X) =
2g + 2.

Proof. (1) This follows immediately from the definition aX) andx(X).

(2) Let P € R[T] be a separable polynomial of degree-2 2 having exactly
2c real roots and having a negative dominant coefficient. L&k the real algeb-
raic curve defined by the affine equatid = P(T). Then, there is an obvious
morphism f: X — P! of degree 2. Since the zeros Bfare precisely the points
over whichf is ramified, the curvX is of genusg, by Riemann—Hurwitz. Hence,
i(X) =0andir(X) = 2g + 2.

Let , < P, < --- < P, be the real roots of. Since P has a negative
dominant coefficient, the image by of the set of real points ok is a union of
intervals: f (X (R)) = Ji_;[ P2i—1. P21. Since the cardinality of any fiber ¢fy )
is at most 2, and since the connected componenks(®f) are topological circles,
the number of connected componentska@iR) is equal tac.

Finally, we show thak is nondividing. Suppose, to the contrary, tiaits divid-
ing. LetC; andC; be the connected componentsXfC)\ X (R). The restriction
of f to C; U C is a closed and open map onto its image. In fact, this image is

f(CLU Co) =PHON\|JIPoi-1, Pail.
i=1

In particular, f (C1 U C>) is connected. Thereforg,(C1) = f(C1U Cy) = f(C3).
Hence, all fibers off over f(C; U Cy) are of cardinality 2. But, sincec2 <
2g + 2, the polynomialP has a nonreal root whose fiber is necessarily a singleton.
Contradiction. O

5. Moduli of Real Algebraic Curves

We need to recall some facts on real Teichmdller theory. They can be easily ob-
tained from usual, i.e., complex Teichmdller theory (see [8] for complex Teich-
muller theory, and [4, 6, 11] for real Teichmuller theory).

Let g > 2 and letX be a real algebraic curve of gengs A marked real
algebraic curve modeled oK is a pair(Y, f), whereY is a real algebraic curve
and f: X(C) — Y(C) is a X-equivariant orientation-preserving quasiconformal
homeomorphism. Two such paitB, f) and(Z, g) arereal Teichmdiller equivalent
when there is an isomorphismn Y — Z such thag™* o g o f: X(C) - X(C)is
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homotopic to the identity. Theeal Teichmdller spacé& (X) of X is the set of real
Teichmuller equivalence classes of marked real algebraic curves modeled on

The setT (X) has a natural structure of a connected real analytic manifold
of dimension 3 — 3. The tangent space ©(X) at a point(Y, f) is naturally
isomorphic to the real vector spaég (Y, Q"), whereQ" is the dual of the sheaf
Q of differentials onY. Recall that by Serre dualityZ'(Y, Q) is canonically
isomorphic to the dual of°(Y, Q®2).

Let Mod(X) be thereal modular groupof X, i.e., Mod X) is the group ofx-
equivariant orientation-preserving quasiconformal self-homeomorphisxigey,
modulo the subgroup of those self-homeomorphisms that are homotopic to the
identity. The group ModX) acts onT (X) by letting (Y, f) - o« = (Y, f o @),
for (Y, /) € T(X) anda € Mod(X). This action is properly discontinuous. It is
faithful if ¢ > 2. Itis not faithful if g = 2. In fact, if g = 2 thenX is hyperelliptic.
Let be its hyperelliptic involution. Then,acts trivially on7 (X) and the induced
action of Mod X)/ (¢} is faithful.

The quotientR(X) = T (X)/Mod(X) is the moduli space of the real algebraic
curveX, i.e.,R(X) is the set of isomorphism classes of all real algebraic curves
such thatr (C) is X-equivariantly homeomorphic t& (C). Or, to put it differently,
R(X) is the set of isomorphism classes of all real algebraic cufvlaving the
same topological type as.

SinceT (X) is a connected real analytic manifold of dimensi@n-3, and since
Mod(X) (resp. ModX)/{(t)) acts properly discontinuously and faithfullygf > 2
(resp.g = 2), the moduli spac® (X) is a semianalytic variety of dimensiog 3 3,
by Proposition 3.1.

The stabilizer of a pointY, f) in T (X) for the action of ModX) is canonically
isomorphic to the group of automorphisms AXit of Y. Therefore, we have the
following consequence of Proposition 3.2.

THEOREMG5.1. Letg > 2 and letX be a real algebraic curve of genys LetY
be in the moduli spac®&(X) of real algebraic curves of genyshaving the same
topological type asX.

(1) If g = 2thenY is in the boundary oR (X) if and only if

#Aut(Y) =0 mod4
(2) If g > 2thenY is in the boundary oR (X) if and only if

#Aut(Y) =0 mod2

It follows already from Theorem 5.1 that the whole moduli spa£gr is not

a real analytic variety since there are, for gny= 2, real algebraic curveg of
genusg satisfying the conditions of the theorem (e.g., hyperelliptic curvgssif2,
and bi-elliptic curves iff = 2; see below). However, we will push our study of the

semianalytic structure a¥/, r a little further by determining the dimension of the
boundary of any connected componentMf . It then will easily follow that not
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only M, is not real analytic, but even every connected component is not real
analytic.

In order to determine the dimension of the boundanrok), we need to re-
call a result on the representation of a group of automorphisms of an algebraic
curve on quadratic differentials. L&t be a real algebraic curve of gengsLet
a be an automorphism of of order 2. Theng acts on the real vector space
HO(Y, Q®?) of quadratic differentials. The decomposition of the representation of
o on HO(Y, Q®?) into irreducible representations is known [3]. In particular, one
can determine the number of irreducible trivial representations, i.e., the dimension
of HO(Y, @®2)%. According to [3], dimH (Y, Q%) = 1(3g — 3) + 1¢, where¢
is the number of complex ramification points of the quotient rfiap>- Y/«, i.e.,
¢ = #Y (C)”.

THEOREM5.2. Letg > 2 and letX be a real algebraic curve of genys Let
¢ = ¢(X) be the number of connected component® @). Then,

max(3(3g — 3+c¢).2g — [5(c + D]}, if X is dividing

dimaR(X) = o -
2¢ — 1, if X is nondividing
In particular, the boundary) R(X) of the moduli spac® (X) is nonempty.
Proof. Let (Y, f) be an element of (X). According to Proposition 3.2 and the
preceding observations, the local dimension of the boungl&igX) of R(X) atY

is equal to
dimy dR(X) = sup dim(Tiy, T (X))*
O(EMOd(X)(y’f)
ord(a)=2

= sup dimHOY, Q®%)¢
aeAut(Y)
ord(a)=2

= sup 1(3g—3) + #Y(O)".
aeAut(Y)
ord(a)=2

By Propositions 4.2(2) and 4.3(2) there is a real algebraic ctirveR (X) admit-
ting an automorphism of order 2 such that

max{2c, 2g + 6 — 4[3(c + D]}, if X is dividing,

#Y (CO)F = N .
2¢g + 2, if X is nondividing

Then, it follows from Propositions 4.2.1 and 4.3.1 that

dimdR(X) = dimy dR(X) =3(3g -3 +1(2g +2 =2 -1

https://doi.org/10.1023/A:1001021411123 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001021411123

REAL QUOTIENT SINGULARITIES AND NONSINGULAR REAL ALGEBRAIC CURVES 59

if X is nondividing, and
dimdR(X) = dimy dR(X)

= %(38 -3+ %maX{ZC, 2g + 6 — 4[%(0 + D]

= max{3(3g —3+0¢),2g — [3(c+ D]}
if X is dividing. O

Next, we turn our attention to the moduli space of real algebraic curves of genus 2.
Recall that a real algebraic cunieis bielliptic if Y is of genus greater than or
equal to 2, and there is a morphism of degree 2 fibonto a real algebraic curve

of genus 1.

LEMMA 5.3. LetX be areal algebraic curve of gen@sThen, there is a bielliptic
real algebraic curvel having the same topological type &s

Proof. We construct a bielliptic real algebraic cur¥eas follows. LetP € R[T]
be a separable polynomial of degree 6 suchthatT) = P(T). Then, the affine
equations? = P(T) defines a real algebraic cur¥e= Y.

It is easy to see thdf is a bielliptic real algebraic curve of genus 2. Indeed,
applying Riemann-Hurwitz to the obvious degree 2 nfaf — P2, one concludes
that the curve? is of genus 2. LeQ € R[T] be such thaQ(T?) = P(T). Then,
the mapping S, T) — (S, T?) defines a morphism from the cur¥eonto the real
algebraic curve defined by the affine equatitfn= Q(T). The latter curve is of
genus 1 sinc® is a separable polynomial of degree 3. The morphism is obviously
of degree 2. This shows thétis a bielliptic real algebraic curve of genus 2.

Now, one chooses the polynomiilas above such that = Y has the same
topological type ax. We need to distinguish the 5 different topological types that
X can have. Let again = ¢(X) be the number of connected componentX @R).

If X is dividing andc = 3, then one chooseB to have only real roots. Since
P has six real rootsy (R) has three connected components. Siridég of genus 2,
the curveY is necessarily dividing.

If X is dividing andc = 1, then one chooseR to have no real roots and to have
a positive dominant coefficient. Then, the image fny¥ — P! of Y(C)\Y (R)
is equal toPY(C)\P(R). The latter topological space being nonconnected,
Y (C)\Y(R) is not connected. Henc#, is dividing. Clearly,c(Y) is either 1 or
2. Sincec(Y) = g(Y) + 1 mod 2, one has(Y) = 1.

If X is nondividing then one choosé&s with a negative dominant coefficient
and to have exactlycreal roots. Arguing as in the proof of Proposition 4.¥4s
nondividing and:(Y) = c.

In all cases, the bielliptic real algebraic curkéhat is constructed has the same
topological type ax. O

THEOREM 5.4. Let X be areal algebraic curve of gen@sThe boundary R (X)
of the moduli spac®(X) of X is of dimensior.
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Proof. Let X be a real algebraic curve of genus 2. Then, by Lemma 5.3, there
is a bielliptic real algebraic curvE belonging toR(X). Leta € Aut(Y) be the
bielliptic involution. Then, by Riemann—Hurwitz,Y4C)* = 2. As in the proof
of Theorem 5.2, the local dimension of the boundaR(X) of R(X) atY is at
least equal ta;(3- 2 — 3) + 7 - 2 = 2. Since the moduli spack(X) is itself of
dimension 3, we necessarily have ¢iaR (X) = 2, i.e., dimdR(X) = 2. O

Remark5.5. LetX be a real algebraic curve of gengiswhereg is an integer
greater than or equal to 2. It follows from Theorems 5.2. and 5.4, that the boundary
of the moduli spac&® (X) of X is of codimension 1 ig isequalto2or3.1g > 3
then the boundary aR (X) is of codimension strictly greater than 1.
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