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Abstract

A Berry-Esseen type result is given for the conditional distribution of a weighted sum of i.i.d.
integer-valued r.v.'s given that their unweighted sum equals its expectation. The examples include the
case of sampling without replacement from a finite population.

1980 Mathematics subject classification (Amer. Math. Soc): 60 F 05.

1. Introduction and main results

Let X[,... ,X'n be independent and identically distributed integer-valued random
variables with maximal span 1. Suppose EX[ = \i, E{X[ — /x)2 = a 2 > 0 , and set
Xk = (X'k — \i)/o, k = 1,...,«, p = £|^il3- Let a1,...,an be real constants satis-
fying T,kak = 0,T.kal = n. We seek bounds on the quantity

A = sup
x

for A to be well defined, of course, «/i must be integral, so that the distribution of
X[ itself may depend on n. In general our bound on A is a rather "unnatural"
one, involving an estimate of the absolute value of the characteristic function
g(w) = Ee'wX\ which is provided by the following basic lemma. However in- the
special cases considered later, the estimate is easy to calculate and manipulate.
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LEMMA 1. For any b e [0, IT) there exists a constant i)b e (0, \) such that
\g(w)\ < e-""1"2, 0 < |w| < (w + b)a.

Setdn = (2von1/2P(LkXk = nju))"1 and T = n3/2(pZk\ak\
3)-\

THEOREM. / / e, 8 and y are positive constants with e < 2"1/2, y < ^(^5 - 1),
b = 28/y < IT, then

(1 ) A ^ (4a - 2)AQl + Ql + Q + Q + ""1/2g)
where, choosing H so that

Ql = \.596aH/8,

2dn\\{\e2 = 4 \ U +

2fii
 + 0* + 2/J3*

4 + 3 + 4 133 \ L06K

(! - !/„ )5/2
£ '

~ y ~ 72, a2 = 1 - Y2 - Y3, a*2 = a2-2/n,

fit = OLX/2C%/2, PS-arf, ft = aY
and

c6 = exp(27,fe8
2/7

2).

The theorem is given in this cumbersome form to facilitate computation of the
bound in particular cases (see Section 2). The following corollaries may suffice in
some applications.

COROLLARY 1. There exists a constant C such that A < CdJT.

The factor dn may also be removed in many situations, where the distributions
under consideration are " uniformly aperiodic", as the following corollary shows.

COROLLARY 2. 7/TJ0 > i\% > 0, then A < C/T.
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Finally we remark that if X[ has maximal span X > 1, then the above results
can be applied to the variables X~lX'k. In the next section we look at some
examples, and in Section 3 we provide proofs.

2. Two examples

First we show how Corollary 2 can be used in a simple example. Suppose

P(X'k = + 1) = P(X'k = -1) =p < h, P{X'k = 0) = 1 - 2/>

for k = 1, 2, Then g(w) and TJ0 > 0 do not depend on n, and with ak = {-\)k,
Corollary 2 gives

A = sup
In In

\1/2

£ < 2(np)1/2x\ £ X'k = 0 -(lm

For a given value of p, the theorem itself could be used to find a numerical
constant Cp such that A < Cpn~1/2, by methods which we will now demonstrate
in a different context.

Suppose P(X[ = 1) = p, P(X[ = 0) = q = 1 — p. The problem is then equiva-
lent to that of approximating the distribution of a sample of size np drawn
without replacement from the finite population (alt... ,an). Hoglund (1976) has
shown that the order term is C^T"1); we will use our theorem to show A < 145/T.
The characteristic function satisfies |g(w)|2 = 1 + 2pq(cos(w/a) — 1), so

\g(w)\ < eMC**-/*)-!) ^ exp(_7,*M,2)) |vv| K (w + fo)a>

where rjj = (1 — cos(w + fe))/(w + b)2. Bhattacharya and Ranga Rao (1976,
Lemma 12.3) show that it is always the case that A < 0.5416. So we may take
T > 200, whereby the bound (21) below (which is used in proving CoroUary 2)
gives dn < 0.416. A numerical integration of (2) was performed (this can also be
evaluated from one of the many tables of Si(x), since /<f((sin y)/y)2 dy = Si(2x)
- ( s in 2 * ) /* . See for example Abramowitz and Stegun (1965, page 236) for
references to tables), and the right hand side of (1) was minimized (with Q5 = 0)
over the range 0.86 < H < 3; the resulting minimum of 144.4 was found at
H = 2.16, a = 0.876, e = 0.45, 8 = 0.04, y = 0.22. Here Q5 < 84 and it follows
that A < 145/7.

Finally, we note that other applications may be found in Hoist (1979), where a
corresponding central limit theorem is proved.
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3. Proofs

First we prove Lemma 1. Since Xx has maximal span a"1, there exists for any
e > 0 a number kt > 0 such that |g(w)| < e~k\ e < |w| < lira — e (Gnedenko
(1963), page 297). Also, if e < e0 = min(1.5/p, 21/2), then for |w| < e, \g(w)\ < 1
— \w2 + lp\w\3 < e'w /4. Assume without loss of generality that e~k' > e~e2/4.
Then for b = ir — a~1e > b0 = IT — a'le0, the lemma holds with Tjfc =
^e/C"1 + b)2a2. If b0 > 0 then for b < b0 the lemma holds with f]b = j]bo.

We now turn to the proof of the theorem. Let

10, otherwise.

This is the characteristic function of the probability measure with density

8 T ( s i n ± \ 2

Taking H and a as in (2), Lemma (12.2) of Bhattacharya and Ranga Rao gives

(3) L4—L-U

where ^ ( 0 = E{exp(itn-l/2LkakXk$:kXk = n/i)}. It follows from Bartlett (1938)
that

/ / \ i

(4)

k k \ d x
k I

<n1"- k

where gk(t, v) = g(n~1/2(tak + v)). For t > 0,

\ ) \V\ ) e \~ e \JQ dse

and similarly this inequality also obtains for t < 0. We will use (4) and (5) to
bound the integral in (3).

The next lemma is due to Hoglund (1976).

< \t\e-'2/2 sup

LEMMA 2. Let Ky= {k: 1 < k *£ n, y\ak\ < E,|a,|3/w}, 0 < y < 1.
T.kf=K(akx + .y)2/" > ai^:2 + a.2y

2, where aj a«rf a2 are defined in the theorem
and are positive if 2y < ^5 - 1.
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PROOF. Holder's inequality gives Hk^K^ > (1 - Y3)«, Hk<=Ka2
k > (1 ~~ Y)">

a J < y2n. So

E ( a , x + y ) 2 / « > ( l - Y ) ^ 2 + ( l - Y 3 ) > ' 2 - 2 £

> ( 1 - Y ) x 2 + ( 1 -y3)y2-2\xy\y2

>{\-y-y2)x2+(\-y2-y')y2.

LEMMA 3. Let (dj, -oo <_/ < oo) be constants, dj < dj+lfor ally, let Z be a r.v.
with P(Z = dj) = Pjfor allj, ZjPj = 1, EZ = p, min/rf,. - dj_l) = e > 0. 77I«J

H 2 2

PROOF. Let « be the integer such that dn < ja < dn+1; let a = ju - dn, y8 = dn+1

- n, S = a + 0, a' = a/8, $' = )8/S. Then £ (Z - ju) = 0 implies

j<n j>n+1

Since a' 4- /T = 1,

«'V, + /S'Vn + i = («'2 + )8'2)(a'Vn + )8'Vn + 1) + «'y8'(«'
so

E\Z - ,x|3 = «V« + P3pH + 1 + E Irfy - tfPj

> 53{(a'2 + P'2)(a'2Pn + (l'2pn + l) + a'fi'(a' - /?

(a'2 + )8'2)8{«Vn + p*Pn + 1} - 82a'P'(a' - P

+ E I ^ - H V , (if«>)3)

\8{a2pn + p 2
P n + 1 ) +{e + a- 8fi'(a' - p')}

/ > n + 1

j<n j>« +1

A similar argument applies if a < /?.
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REMARK. This inequality is sharp when e = 1 for a r.v. Z with P(Z = 0) =
/ > ( Z = 1 ) = \.

LEMMA 4. For \s\ < 8T, \v\ < iran1/2, flkgk(s, v)\ < exp(-T)6(a15'2 + a2v
2)) so

long as b = 28/y < m.

PROOF. If A: e Ky, then

(6) n-^2\sak\ < 8/py < fi/Y,

so n'1/2\sak + v\ < (26/y + w)a from Lemma 3. So Lemma 1 gives

n -i\h

and the result follows from Lemma 2.

We can now consider the integral in (3). Let

(7) h = r Vn + U) - e"1/2\dt < dfeUe-'2/2(Jn(,) +Jn(t)) dt
J-eU J-eU

J-eU

using (4) and (5), where 0 < e < 2'1/2, U = n1/2/maxk\ak\, and

= f
•/tn1/2<|ti|<i7on1'

sup ds'
dv.

Here and in the sequel we assume that b = 28/y < <n as in Lemma 4.

LEMMA 5. For |s| < min(eU, 8T), \v\ < enl/1,

l - 2 e 2
- 7}b(alS

2 + a2v
2)).

PROOF. First, note that

(8) \gk(*> o) " II = \E{cxp(iXk(sak + v)n-

(9)

vf/n

Let h(s, v) = E*log gk(s, v) + \s2 + \v2. Then
(10)
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say, and

(11) Ax =

The remainder in a conditional CLT 81

- x ^ + ̂ n-V
2 - 1 - iXk(sak + v)n

From (8) and (9),

(12)

~ gk(s, v)\ jsgk{s, v)

Since

ds

= e'
2/2

(s,v)-v2/2

— h (? 7)
ds K ' '

T~\e (s i>)
k

ds'

the lemma follows from (10)-(12) and Lemma 4.

LEMMA 6. For \s\ < min(eC/, 8T), en1/2 < \v\ < •nonL/1,

. \eh(s,u)-v2/2

ds'
a2v

2))

(\s\ + \v «2 - 2/n)v2)).

PROOF. We have

ds'

+ e*' = B, + B2,
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say. Lemma 4 gives Bx < |.s|exp(^.s2 - Tj6(ax.s
2 + a2v

2)), and as in the derivation
of (12) we get

B2 < n-1e'2/2Y.\aJ\ • \saj + v\

\saj

, v)

-ri^a^2 + a2v
2) + 7jfcmax (sak + vf/n\;

keKy I

the lemma follows from (6), since p > \.

The assumption y < \(/5 — 1) ensures av a2 > 0. So using Lemmas 5 and 6
on (7) gives

(13)

eU Jtnl/2 < \v\ < nanl/2

'U ( (\t\
eU Jen1/2 <\v\<ironl/2

Xexp(-ij6(a1r2 + a2^2)

«2^2)) dv dt

-7,,(a1r2 + (a 2 - 2/n)v2)) dv dt

-3/2
+

•7T- +
irch

If eU < ST we have also to consider the integral

(14) I2= f
JeU<\t\<

= f
e(J<\t\<8T

( IT1!
JeU<\t\<ST

eU<\t\<ST J-van \~k

t\-l{J2l{t)+J22(t))dt,
U<\t\<ST

dt
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where

The remainder in a conditional CLT 83

and

The

(15)

integrand

k

J22{t)

in/21(Oi

t,v)-Y
k

-iz
s

on1'2

anl/1 Us
k

"*/2
e-t

2/2

+ »)>/(In)

dv

n 7 - 1

We have

(16) gj(t, v) - e-(">j+<>)2A2»:

i(^. + vf/n

For k G ATy, M"1/2!^^ + v\ < (25/Y + "0° as in the proof of Lemma 4, so with b
as before,

(17)

exp

exp< -T)fc

u)V« - i E ('«* + «)V«

+ r)bmax (tdj + v) /n

<cftexp(-T?i(a1/2

from (6) and Lemma 2. From (15)-(17),

(18)

^'2 + a ^ dv.
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Now consider J22(t). Since \vn'1/2\ < mo, (1) gives |g(wT1/2)| < e'nov2/", and
setting / = 0 in (16) gives

So since \a" - 0"\ < n\a - 0|(max(|a|,

(19) J22(t) < «e-'2

,-3/2 37T1/2*-2

6T,2(1 - \/n)

Combining (14) with (18) and (19) gives
(20)

[\n\im 1,n2

\V2 '

71/2

- 2 . --5/2J
yl/2 i -
l̂ j P* «*2

2 4eUa*5/Wb
/2

6T,2(1 - l/«)2et7

Using (3), (13) and (20) and the inequalities p > 1, L\ak\ < Za2
k < Ela^j3,

T < n1/2, U > 1, maxt|a^| < «1/2, we obtain the bound given in the theorem.

PROOF OF COROLLARIES. Corollary 1 is obtained simply by choosing specific
values for a, e, 5 and y; for example a = \, e = y = S = \. Corollary 2 is
proved as follows. Setting t = 0 in (4) gives

SO

dv

= Kx + K2,

say. Kx is just /22(°)' which from (19) is bounded for n > 2 by 2/(3T/2
)r) +

7.52/(T)5/2«) , whilst AT2 < 2/(-rranl/2) < 1.3/rfromLemma3. So if TJ0 ^ TJJ > 0,
then for T > To,
(21)

and Corollary 2 follows on choosing a, e, 8 and y as before.
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