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ABSTRACT. In this article the distribution of stress and velocities in glaciers and ice sheets is reinvestigated. 
We first derive the general equations governing non-linear viscous flow under pla ne deformations and 
formulate the relevant boundary conditions, including, in particular, a proper treatment of the accumulation­
ablation mechanism. It is then shown how the emerging set of non-linear equations for the established 
boundary-value problem can be separated into a system covering steady-state problems on the one hand, and 
transient, time-dependent processes on the other hand. This sepa ration is performed under the assumption 
that steady-state stresses are larger than the corresponding transient counterparts, suggesting a linearization 
of the transient equations with regard to the stresses. The steady-state equations are then analysed for the 
special case of an infini tely long, nearly parallel-sided slab. Wi th the assumption that bottom undulations 
are small as compared to the glacier thickness it is shown that the original non-linear boundary-value problem 
can be d ecomposed into an infini te hierarchy of boundary-value pro blems defined on the simpler domain of 
the exac tly parallel-sided slab, all of which are linear except for the lowest order one. Since its solution is 
readily available, the determination of the velocities and stresses due to bedrock protuberances is basically 
a linear problem, even though the constitutive response may be non- linear. 

Assuming harmonic bedrock undulations we show for a Navier-Stokes fluid that the transfer of the 
bedrock undulations to the surface strongly depends on the mean inclination of the slab, but, more impor­
ta ntly, does now show a maximum when plotted as a function of wavelength A. This result is contrad ictory 
to the corresponding results ofBudd (1970[aJ) and implies serious drawbacks to his calculations oflongitudinal 
stresses and strain-rates in his subsequent article (Budd, 1970[b] ). Yet, it is not true that for maximal transfer 
of bottom protuberances to the surface a distinct wavelength would not exist. The calculations of Budd must 
rather be extended to include non-linear constitutive behaviour, variations of temperatu re with depth, and 
sliding at the bed. It then turns out that under certa in circumstances maximal transfer of bottom undulations 
to the surface in a distinct wavelength domain (3 < A < 5) may indeed exist. Sliding at the bed and vertical 
temperature variation thereby play a decisive role. 

Equally important is the stress distribution at the base, in particular the influence of the longitudinal 
strain effects on the latter. Rheological non-linearities, vertical temperature variations, and the sliding law 
at the bed play an important role and are investigated in detail. 

For non-linear constitutive behaviour and spatially dependent temperatu re-variation solutions must be 
sought numerically. The finite-difference scheme used suggests a generalization of Glen's flow law so as to 
account for a nearly linear behaviour at low strain-rates. 

We conclude with a perspective of possible extensions of the general theory to various other time-dependent 
and time-independent problems. 

R ESUME. La distribution des vitesses et des tensions de l'ordre superieur dans les glaciers et les calottes de glace. Le 
present article est une reinves tigation de la distribution des vitesses et des tensions dans les glaciers et les 
calottes de glace. Nous eta blissons d'abord les equations generales du mouvement visqueux non lineaire dans 
les cas de deformations planes e t formulons les conditions aux limites en tenant compte des phenomenes 
d'accumulation et d'ablation. Nous montrons ensuite que le systeme d'equations differentielles non lineaires 
obtenu peut etre dissocie d'une part en problemes stationnaires, d'autre part en problemes transitoires. 
Cette dissociation suppose que les tensions stationnaires prevalent suffisamment sur les tensions transitoires, 
ce qui permet une linearisation des equations transitoires relatives a ux tensions. Les equations de l'etat 
stationnaire sont ensuite examinees dans le cas special d'une couche presque parallele et infiniment longue. 
Dans l'hypothese ou les inegalites du sol sont petites par rapport a l'epaisseur du glacier, nous montrons que le 
probleme non lineaire des conditions aux limites peut etre divise en une hierarchie infinie d e problemes, qu i 
eux sont definis dans le domaine plus simple de la couche exactemen t parallele et qui sont to us lineaires, a 
l'exception de celui du plus bas ordre. La solution de ce dernier etan t facile a trouver, la determination des 
vitesses et des tensions dues aux inegalites du sol es t ramenee a un probleme lineaire, bien que les lois de la 
mecanique des materiaux ne soient pas necessairement lineaires. 

Dans le cas d'ondulations sinusoidales du sol, nous montrons que, pour un liquide Navier-Stokes, la 
transmission de ces ondulations a la surface du glac ier depend fortem ent de l'inclinaison moyenne de la 
couche, mais aussi, et ceci est plus important, que la fonction de transfer t dependant de l'ecartement des 
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ondulations, n'a pas de maximum. Ce resultat contredit nettement les resultats de Budd (1970[aJ) et suscite 
des doutes en ce qui concerne ses calculs de tensions et de vitesses de deformation (Budd, 1970[b] ). Ceci ne 
veut pas dire qu'une longueur d'onde determinee n'existerait pas pour un transfert maximum des inegalites 
du sol a la surface. Les calculs de Budd devraient plutot etre developpes afin d'y indure les lois de la 
mecanique non lineaire des materiaux, les variations de temperature et le glissement au sol. It en decoule que 
dans certaines conditions un transfer maximum des inegalites du sol a la surface peut exister en effet pour une 
certaine longueur d'onde (3 < ,\ < 5). Le glissement au sol et la variation verticale de la temperature y 
jouent cependant un role decisif. 

La meme importance revient a la distribution des tensions au sol, en particulier l'influence des deforma­
tions longitudinales sur ce d ernier. Un comportement rheologique non linea ire, les variations verticales de la 
temperature et la loi de glissement au sol jouent un role important et sont anal yes en detail. 

Pour un comportement non lineaire de la matiere et une variation de temperature dependent du lieu 
les solutions doivent etre trouvees d'une maniere numerique. A cause du schema des differences finies 
employe dans ce travail il etait cependant necessaire de generaliser la loi de Glen et de tenir compte du 
comportement lineaire des materiaux sous faible tension. 

En fin d'article nous donnons une vue du developpement de la theorie generale appliquee a differents 
autres problemes comportant ou ne comportant pas la variable temps. 

ZUSAMMENFASSUNG. Spannungen und Geschwindigkeiten hOherer Ordnung in Gletschern und Eisschilden. In der 
vorl iegenden Arbeit wird die Geschwindigkeits- und Spannungsverteilung in Gletschern und Eisplatten 
einer neuerlichen ()berprufung unterzogen. Zuerst werden die allgemeinen Gleichungen fur nichtlineares 
zahes Fliessen unter ebenen Deformationen hergeleitet sowie die relevanten Randbedingungen einschliesslich 
der Akkumulation-Ablation formuliert. Es wird dann gezeigt, wie das daraus hervorgehende System von 
nichtlinearen Differentialgleichungen fur das aufgestellte Randwertproblem aufgespalten werden kann in 
stationare Probleme einerseits und zum anderen in die transienten Probleme zeitabhiingiger Prozesse. Diese 
Aufspaltung wird unter d er Voraussetzung vorgenommen, dass die stationaren Spannungsanteile die 
transienten hinreichend uberwiegen, was eine Linearisierung der transienten Feldgleichungen bezuglich 
der Spannungen ermoglicht und nahelegt. Die Gleichungen des stationaren Zustandes werden dann fUr den 
Spezialfall einer fast parallelen unendlich langen Schicht untersucht. Vnter der Annahme dass die 
Bodenunebenheiten klein sind im Vergleich zur Dicke des Gletschers wird gezeigt, dass das nichtlineare 
Randwertproblem in eine unendliche Hierarchie von Randwertproblemen aufgespalten werden kann, die 
ihrerseits auf dem einfacheren Bereich der exakt parallelen Schicht definiert sind und alle mit Ausnahme der 
niedrigsten Ordnung linear sind. Da dessen Losung leicht bestimmt werden kann, wird die Bestimmung der 
Geschwindigkeiten und Spannungen zufolge der Bodenunebenheiten im Wesen auf ein lineares Problem 
zuruckgefUhrt, obwohl die Materialgesetze auch nicht-linear sein konnen. 

Unter der Annahme harmonischer Bodenwellen wird fur eine Navier-Stokes-Flussigkeit gezeigt, dass die 
()bertragung der Bodenwellen auf die Oberfliiche stark von der mittleren Neigung der Schicht abhiingt, 
aber, noch wichtiger, dass die Transferfunktion in Abhangigkeit von der Wellenlange kein Maximum 
aufweist. Dieses Resultat steht im Widerspruch zu entsprechenden Resultaten von Budd (1970[a]) und 
erweckt Zweifel an seinen Berechnungen von Spannungen und Verzerrungsgeschwindigkeiten in seiner 
Arbeit (Budd, 1970[b] ). Es istjedoch nicht so, dass fur maximalen Transfer von Bodenunebenhei ten auf die 
Oberflache keine ausgezeichnete Wellenlange existierte. Vielmehr sind die Buddschen Rechnungen auf 
nichtlineare Stoffgleichungen, Berucksichtigung der Temperaturvariationen und Gleiten am Bett zu 
erweitern. Es zeigt sich dann, dass unter bestimmten Voraussetzungen in der Tat maximale ()bertragung 
von Bodenunebenheiten auf die Oberflache fUr einen " bestimmten Wellenliingenbereich (3 < ,\ < 5) 
moglich ist. Gleiten an der Soh le und vertikale Temperaturvariation spiel dabei eine entscheidende 
RoUe. 

Von ebensolcher Wichtigkeit ist auch die Spannungsverteilung an der Sohie, insbesondere der Einfluss 
longitudinaler Verzerrungseffekte auf die letztere. Rheologische Nichtlinearitiiten, Temperaturverteilung 
und das Gleitgesetz der Sohle spielen dabei eine wichtige Rolle und werden im Detail untersucht. . 

Fur nichtlineares Materialverhalten und ortsabhangige Temperaturverteilung mussen die Losungen auf 
numerischem Wege gesucht werden. Es war wegen des verwendeten Differenzenschemas aber notig das 
Glen'sche Gesetz zu verallgemeinern und das lineare Stoffverhalten bei kleinen Spannungen zu berucksich­
tigen. 

Wir schliessen mit einer Perspektive zur Ausdehnung der allgemeinen Theorie auf verschiedene and ere 
sowohl zeitabhangiger wie zeitunabhangiger Probleme. 

I. INTRODUCTION 

The distribution of stress and velocities in glaciers and ice sheets has been treated previously 
by several authors. The effect oflongitudinal strain on the state of stress at the base of a glacier 
or ice sheet was studied by Robin (1967) and Budd (1969) and has found its theoretical basis 
in the articles of ColI ins (1968), Nye (1969), and Budd ( 197o[a] ). In these articles attention 
is focused on the significance of the longitudinal stresses set up by the flow of ice over pro­
tuberances on the bed. The idea is to improve the basal shear-stress formula, which, to 
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zeroth order, is independent of the material behaviour of ice and only involves the local glacier 
depth and the local inclination of its surface. 

Steady-state stress and surface variations in infinite ice slabs with small undulations of 
their beds have equally been treated, notably by Yosida (1964) and Budd (1970[b]) who also 
gives further information on the pertinent literature. Yosida considered Newtonian viscous 
flow with no slip of a medium of uniform thickness down a uniform slope with small harmonic 
undulations superimposed on it. Budd generalized this solution by allowing perfect slip along 
the bed and by using an approximate solution technique to account for a non-linear viscous 
behaviour. His method gave answers to the question of how small bedrock irregularities are 
transferred to the surface topography and in what way they influence the stress distribution. 
In particular Budd (197o[b]) was able to give precise statements regarding the significance 
of the longitudinal stresses set up by the flow. He could explain under what circumstances the 
basal shear stress fluctuates in sympathy with the surface slope. 

Budd's careful analysis requires the knowledge of a mean velocity across the depth of the 
ice slab. More precisely, in his work the velocity boundary conditions are determined by the 
shape of the base contour, the mean down-slope velocity, and the equation of continuity 
formulated as an integrated mass balance. This equation contains the accumulation rate, so 
that, in principle, the effect of the accumulation rate on the topography could be determined. 
Moreover, for a time-dependent accumulation rate, one would expect the surface undulations 
to be a direct result of the accumulation rate rather than the bedrock topography. The 
corresponding time-dependence of the surface topography will, under certain circumstances, 
result in surface waves travelling down the glacier akin to those treated by Nye (1960, 
I963[a], [b]) in his kinematic-wave theory. 

It is possible, if one so desires, to challenge the above work by, first, extending the analysis 
to include steady-state and transient accumulation rates and, secondly, to improve it by 
replacing the velocity boundary condition by a kinematic condition at the top surface. For it 
is quite clear that accumulation and ablation should enter the problem through a condition 
regarding the time-evolution of the glacier surface rather than an integrated mass balance. 
Moreover, the boundary condition at the ice- rock interface treated by Yosida as a no-slip 
condition and by Budd as a perfect slip could be generalized to account for velocity dependent 
friction. In other words, the determination of stress and velocities in glaciers and ice sheets and 
the propagation of surface waves should be unified and be derivable from a single general 
concept. 

There exists a rational approach which delivers this unification, and explicit calculations 
can relatively easily be performed for an infinitely long slab with almost parallel sides. The 
method roughly proceeds as follows: As a first step, the general governing equations consisting 
of the balance laws of mass and momentum, the constitutive relations (Glen's flow law in 
Nye's three-dimensional extension), and the boundary conditions are derived. The latter 
include a statement about the sliding mechanism at the base, they express the stress tensor at 
the top surface in terms of the atmospheric conditions and involve a statement about the rate 
of change with time of the surface geometry in terms of the accumulation rate. These 
equations are perfectly general and no assumptions need to be invoked regarding the geometry 
of the ice sheet. The solution of a boundary-value problem is rather complex at this generality, 
however, due to two circumstances, first, Glen's law is non-linear, and, secondly, the geometry 
of the top surface is part of the solution of the boundary-value problem to be solved. The 
second step in attacking the complex problem is thus a restriction to simple geometries and 
simple flow configurations, or at least to patterns close to such situations. A realistic model 
for glaciers and ice sheets is the parallel-sided infinite slab of which the flow pattern and stress 
distribution was determined by Nye (1953, 1957). Problems, to which its steady-state 
behaviour can be considered as a first approximation can, among others, be formulated as 
follows: 
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(i) What is the influence of small bedrock undulations on the stress and velocity 
distribution and on the surface topography? 

(ii) How does steady-state position-dependent accumulation rate influence the stress 
distribution and the surface geometry and, can this effect be separated from that of 
the bedrock undulations? 

(iii) What are the characteristic features of surface waves? In other words, does the 
kinematic wave theory suffice for the description of these waves, or does it have to be 
extended? 

(iv) Would such an extended wave theory perhaps give rise to a possible explanation of 
seasonal and surge-type waves? 

Of these questions only question (i) has been sufficiently treated; no systematic study of the 
effect of steady accumulation rate is known to us, and the transient response is uninvestigated 
except for some remarks made by Budd (1970[b]). Moreover, since Budd's solution is based 
on an approximate integration technique, and because he does not seem to treat the influence 
of the inclination of the ice slab and of the sliding mechanism systematically, it is justified to 
reinvestigate item (i) at least from this restricted point of view. 

The aim here is an attempt to provide answers to the above-stated questions. In the 
present paper we shall derive the basic governing equations, but shall deal in detail only with 
the steady-state response. The transient behaviour and, in particular, surface wave problems 
are reserved to another paper (Hutter, 1980) as is a direct approach to the longitudinal strain 
effects on basal shear (Hutter, Ig81). Hence, only items (i) and (ii) above will be treated 
here. Attention will exclusively be focused on the nearly-parallel-sided slab. This restriction 
is tantamount to the neglect of effects of accumulation on the geometry of the ice slab, which 
therefore limits consideration to length scales which are not asymptotically large as compared 
to glacier thicknesses. The results of the present paper, however, are meaningful on length 
scales over which ice thicknesses do not change considerably. 

The rationale in achieving an analysis of the nearly-parallel-sided slab is, first to establish 
field equations and boundary conditions for stress and velocity in a suitably non-dimensional 
form, secondly to replace the boundary-value problem as stated for the true geometry by an 
approximate one of the strictly parallel-sided slab and, thirdly to solve this approximate 
boundary-value problem by a regular perturbation approach. The non-dimensionalization 
is different from the usual ones in liquid-film theories; contrary to the latter, it is valid for all 
inclinations y of the slab, including y = o. In the application of the perturbation procedure 
we shall, however, restrict considerations to values of y which are bounded away from zero, 
but nevertheless indicate how calculations should proceed for small y or y = o. 

2. BASIC GOVERNING EQUATIONS 

The model of a glacier or ice sheet is depicted in Figure I. It shows a vertical cut through 
an infinitely wide glacier; the upper surface and bed are thus cylindrical. In the mean these 
surfaces are assumed to be plane over most parts of the glacier. Apart from the glacier head 
and the region at the snout, the bottom and top surfaces are thus approximately parallel, or 
for a distance that is large compared with the ice thickness may be regarded as approximately 
parallel. The Cartesian coordinate system is taken such that the x-axis is parallel to the mean 
direction of the top or bottom surface and the local depth is measured perpendicular to the 
x-axis. Both top and bottom surface are inclined with respect to the x-direction so that, in 
general ex and f3 do not vanish. Yet, we shall assume that the deviation of the glacier surface 
from its meany = D and of the bottom topography from the liney = 0 are small. Denoting 
the distances of these surfaces from the x-axis by Ys and Yb, respectively, we thus may assume 
iYbi and iYs-Di to be small in comparison with the glacier thickness. 
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We restrict considerations to plane strain and presume the ice to be isotropic, but generally 
we shall not strictly assume it to obey Nye's extension of Glen's flow law. The reason is the 
singular behaviour of Glen's flow law at small stress deviators, which leads in certain problems 
to mathematical singularities, which can be removed by a realistically modified constitutive 
relationship. As for Glen's flow law this constitutive relationship is an incompressible non­
linear viscous fluid model. We do not presume that temperature 'effects are negligible, but 
allow for a variation of temperatures perpendicular to the main flow. The glacier may thus be 
cold or temperate. For most of the analysis the latter will be assumed. 

direction of 
gravity 

Glacier surface 

Fig. I. Nearly parallel-sided slab. Definition of geometry. 

2. I. On an extension of Glen's jlow law 

Glen's power law carries the disadvantage that stress deviators grow infinitely fast at small 
stretchings. In some of the numerical solutions to be presented below this turns out to lead to 
singular behaviour. Rather than deal with these singularities mathematically, we shall, when 
necessary, replace Glen's flow law by another one that does not show this singular behaviour. 
The idea is not new and has independently been presented by Hutter (1979) and Thompson 
(1979). To introduce this more general constitutive relation, let d be the stretching tensor 
and t' the stress deviator. The class of constitutive relationships given by 

in which A and n are constants and B is a function of the second stress deviator invariant 
tn2 = tt' : t', embraces Glen's flow law as well as its extension 

The constant k introduces a nearly linear Newtonian behaviour at small stretchings and 
removes the singularity mentioned above. For brevity we shall call Equation (I) with the 
specification (2) the generalized Clenjlow law. A and n are known from the usual law and k can 
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be determined from creep experiments at low strain-rate. Glen's flow law is obtained for 
k = 0.* 

Below we shall introduce a non-dimensionalized version of the function B, denoted by ~ 
and defined by 

For the generalized Glen flow law this function reads 

(X2) (n-I)/2+1t 
~(X2)= 1+1t ' 

. h k 
Wlt It = (D) . pg n-I 

To find a numerical value for It consider the material responses Ak = i /a and Aan- I = i/a 
for a linearly viscous and a Glen-type behaviour respectively. Both of these are balanced 
if k = an-I. Linear behaviour is more important if k > an-I. According to recent work of 
Duval, Budd, and Thompson (private communication from L. Lliboutry) Glen's flow law 
is valid down to 2 X 104 Pa, so that we may safely assume that the linear stress part and the 
non-linear stress part share equal contributions in the stress-strain-rate relationship at 
roughly 104 Pa. This then yields 

for n = 3, 
for n = 2, 

k = 104 Pa2 -+ It ~ 10- 3-10-4, 

k = 108 Pa -+ It ~ 10-2 • 

In the subsequent calculations we shall therefore choose n = (2, 3) and correspondingly 
It = (10-2,10-3). 

In cold ice the temperature varies very nearly with a distinct coordinate, say y; such a 
dependence can be approximately taken into account by assuming A to bey-dependent. For 
such a case the function 1S is defined as 

A(y) B(p2g2D2TU2) 
JjI( TII,Y) == A(yo) B(p2g2D2) . 

A (y) is obtained, ifin the Arrhenius law A = ~ exp (-Q /(kT)) , in which ~ is a constant, Q 
the activation energy, k the Boltzmann constant, and T the absolute temperature, the latter 
is substituted as a function ofy, Yo is a reference point, usually the surface. 

Before proceeding a word of caution seems to be in order. In what follows, perturbation 
solutions for small bedrock undulations with amplitude € will be sought, and these perturbation 
solutions will be constructed considering € -+ 0, keeping It fixed and finite. In fact, were we 
to consider also the limit It -+ 0, our numerical solution technique would result in mathe­
matical singularities (at the free surface). Clearly, a solution procedure for which both limits 
€ -+ 0 and It -+ 0 could be pursued, would be more appropriate. We shall not proceed along 
these lines, but the reader should be aware that some of our results might become invalid, 
whereas they would still be valid were the proper asymptotic analysis to be undertaken. We 
shall explicitly point out where this happens. 

2.2 . Field equations 

In order to simplify the subsequent analysis, the governing field equations will be written 
in dimensionless form. To this end a characteristic length D and a characteristic time 't" will be 
introduced. Stresses are then non-dimensionalized with the reference stress pgD and velocities 
with V = D/'T: . With these scales and with the plane-strain assumption, the balance laws of 
mass and momentum and the constitutive relations assume the form 

• Incidentally, Equation (2) has also been introduced from a material-scientist point of view, see Colbeck 
and Evans (1973). 
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OU OU 
-+-=0 ox ay , 

oaz aT {ou OU OU} 
-+-;;-+sin y = Rz = jf -+u -+u -ox ay at ox oy' 

aT oay {OU ou Ou} 
-+--cos y = R = jf -+u -+u -ox ay y at ox oy' 

OU ou -+- = 2~Ji'( TIlz) T 
ay ox ' 

where an explicit dependence of ~ on y is omitted and where 

TII2 = Haz-cry)2+T2, 

233 

is the second invariant of the stress deviator. Moreover, jf and ~ are a dimension less Froude 
and a "Glen" number, 

Uz D 
jf = gD = g't2 ' 

whose values depend on the selection of D and 't (or U). Choosing for D the mean glacier 
thickness guarantees that the dimensionless stresses vary between - I and 1. It is then 
straightforward to see that jf is very small ( < 10- 6) for even unrealistically large values of the 
velocity U. This justifies the neglect of the local and convective acceleration terms and allows 
for a relatively free choice of the characteristic velocity U or time 'to Three different choices 
are directly suggested by the problem, namely, 

(i) to simply assign a specific value to ~ (= I); 
(ii) to choose U according to realistic longitudinal surface velocities; 

(iii) to scale velocities with the accumulation rate. 

The first choice is mathematically convenient, the second and third are physically suggested. 
For case (ii) emphasis is laid on a proper treatment of velocity profiles and accumulation is 
regarded as a secondary effect. In the third case, accumulation is regarded as important. 
Realistic values for surface velocities and accumulation rate are, perhaps, 100 m a-I and 
I m a-I, respectively. If we then choose D = 100, a = I m /a, n = 3, A = 10-19 

TABLE I. ORDERS OF MAGNITUDES FOR VARIOUS 

CHOIGES OF THE CHARACTERISTIC VELOCITY U OR 
TIME't' 

(i) 
(ii) 

(iii) 

U 
m/a 
104 

10' 

I 

dyn-n cm2n a-I the orders of magnitude shown in Table I are obtained. If one scales equations 
with the choice (ii) one guarantees that the dimensionless velocity U and the stresses (az, ay) 
are of order one. The dimensional quantities are then obtained from the non-dimensional 
ones according to 
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D 
(U, V)dim = - (U, V), .. (5) 

and realistic values for these are 

(u, V) dlm ~ (100-300, I) m a-I, (crx, cry, T,P)dlm >::: ( 10,10, 1,10) bar. (6) 
In what follows Equations (3), which form a set of five partial differential equations for 

five unknowns, will be solved neglecting inertial terms C:tf --+ 0). The emerging system then 
contains only one dimensionless number, namely~. It is possible, if one so desires, to absorb 
this constant in a new dimensionless velocity, by the transformation (u, v) --+ (u, v) /~, and 
it is readily seen that this simply corresponds to a non-dimensionalization of the equations 
according to entry (i) in the above table, needless to say one is not allowed in this case to 
assume that non-dimensional velocities are of order one. This is only a formal disadvantage 
because it is quite clear what physical solution one is trying to extract from the problem in 
hand. As far as computer adaptations of the equations are concerned, the imbalance in the 
orders of magnitude of dimensionless stresses and velocities is unlikely to cause round-off errors 
large enough to invalidate the numerical results. * Since moreover with the choice ~ = I 

the formulae are free from an unnecessary constant and it is anyhow clear how to bring the 
dimensionless velocities back to order I, we shall in the subsequent analysis use ~ = I and 
thus restrict considerations to row (i) in Table I. 

Frequently it is advantageous to work with the stress deviator rather than with stresses. 
Denoting the former by primes these are related by 

crx' = t(ax-cry), cry' = t(cry-crx). (7) 
Introducing the dimensionless pressure P as an unknown, the momentum equations read in 
this case 

a;:' + ~; -rx +sin y = Rx , } 

aT oay op 
ox + ay -ay -cos y = R y • 

(8) 

When written in terms of the stress deviators the field equations (3) comprise six equations 
for six unknowns, the new unknown being the pressure. 

Finally, we mention that there are still other possibilities for the non-dimensionalizations. 
For instance, one may non-dimensionalize stress using a reference .stress pgD and may 
introduce a dimension less pressure p according to 

Pdlm = patm - pgD cos y( I - j) + pg sin y p. 
Denoting dimensionless quantities by overhead bars, it can be shown that the field equations 
(2) become in this case 

oil OV 
ox +oy = 0, 

oax' Of op of Oay op 
Tx+ ay -ox +1 = 0, ox +ay-oy = 0, 

oil OV 
ox =:= ~~ (fIl2) ax', ay = ~J£l ( fII2) ay', 

(9) 

ou OV --
ay + ox = 2~~( 1'112) 1', 

* The word length of the computer used in the evaluation of the numerical results is 14 digits in the decimal 
system when single precision is used and 28 in double precision. According to the table on the preceding page, 
velocities vary only by two decimals in cases (i) and (ii) . 
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j(p2g2D2 sin2 y TIl2) 
j(p2g2D2 sin2 y) 

i = ~ApgD sin yj(p2g2D2 sin2 y). 
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} (10) 

This is the non-dimensionalization used in the theory of viscous liquid films. The system of 
Equations (9) has the advantage of being better adjusted to the fact that the flow is gravity 
driven. Certain spurious singularities which occur for small y with Equations (3) can be 
shown to be removable when using Equations (9) yet Equations (9) are definitely improper 
for y = 0, whereas Equations (3) remain valid. The subtleties shall be pointed out at the 
appropriate places. 

2.3. Boundary conditions 

To complete the formulation of the problem, the field equations must be complemented 
by boundary conditions. At the base the latter will be expressed in either one of the following 
two ways. At first, we assume perfect slip with no cavity formation and thus may write 

u = :~B} aty = YB(X)' (I I) 
V = dx u, 

Here i1 is assumed to be a prescribed sliding velocity, which as we shall see must be independent 
of time and space, see below. I t is not the same as the tangential speed, but is proportional 
to it. For i1 = 0 Equation (J J) includes the no-slip condition. 

There is another possibility of formulating the boundary conditions at the base of a glacier 
without cavity formation. In this case one sets 

v = dYB u,} 
dx 

u. = 'ifTum. 

The first of these is the tangency condition. The second, on the other hand expresses a velocity­
dependent friction law akin to that ofWeertman (1957). For re = 0 it includes the no-slip 
condition. A proper regelation mechanism (Nye, 1970; Kamb, J 970) will not be treated here. 

At the top surface we require that stress is continuous and that the conditions of a kinematic 
surface are satisfied. As regards the latter, it should be pointed out that the free surface is not 
a material surface, since due to accumulation and ablation particles are added or removed. 
If F : = rs(x, t) -Y = 0 is the equation of the surface we must thus have 

ars ars Tt+Tx u-v = a(x, t), aty = rs(x, t), (13) 

where a(x, t) is the dimensionless accumulation rate, which is positive as an accumulation 
rate and negative as an ablation. 

The boundary conditions of stress on the other hand read 

C1x sin2 CC+C1y cos2 CC+T sin 2cc = -P,} 
T-HC1y-C1x) tan 20: = 0, 

Here cc is the surface inclination so that 
drs 

tan cc = - dx . 

aty = Ys(x, t). (14) 

( IS) 
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The minus sign stems from the definition of positive angles ex; p is the dimensionless atmo­
spheric pressure, which, in general, is a function of x and t. We shall neglect this variation and 
assume p to be constant. 

With the inclusion of the boundary conditions at the base and at the top surface a well-set 
boundary-value problem has been obtained, in which Ys(x, t) must also be considered as 
unknown. The equation for its determination is Equation (13). 

Before proceeding further it is worthwhile to give an order of magnitude for the accum1,lla­
tion rate. For this purpose note that 

D 
ad1m = -a. 

't' 
( 16) 

With adim = 10 m a-I, D and 't' as before, a value of a ~ 10-3 to 10-4 is obtained. Hence the 
dimensionless accumulation rate is very small, and to zeroth order it may safely be neglected. 
Clearly, these values are hinged to the choice of the characteristic time ; it precludes analysis 
of accumulation effects on glacier geometry. lVloreover, the friction constant in the first of 
Equations (12) is related to its dimensional counterpart by 

't' 
CC = CCd1m D (pgD)m, 

and is an appropriately chosen constant. 

2.4. Decoupling of the governing equations into steady-state and transient problems 

One of the major questions raised in this article is the same as that asked and already 
answered to a high degree of satisfaction by Budd (Ig68, 1969, Ig70[a], [b]) namely to 
evaluate the influence of the bedrock undulations on the surface topography. Another is to 
estimate the effect of the accumulation as a function of position or time or both. This second 
problem will lead to surface waves travelling down the glacier, akin to the kinematic waves 
studied by Nye (Ig60, Ig63 [a], [b]). 

Below, the separation of the total fields into steady-state and time-dependent fields will be 
demonstrated although ultimately in this paper only the steady-state problem will be treated, 
because this paper will serve as a reference for others (Hutter, 1980, Ig81) . 

To separate the time-dependent from the time-independent problem, let 

etc., (18) 

be the decomposition of the total fields into steady-state (circumflexes) fields and quantities 
which are deviations from this state (tildes). By introducing the separations (18) in the field 
equations and boundary conditions, boundary-value problems for the steady-state and the 
purely transient part of the problem can be obtained. This decomposition being straight­
forward, we shall give below the resulting equations only. 

(a) Steady-state problem 

Formally, the steady-state equations are obtained from Equations (3), (I I), (12), (13), 
and (14) by merely dropping local time derivatives and using circumflexes. This essentially 
amounts to formal changes in the kinematic boundary condition at the top surface, which 
now becomes 

of's~. ~ 
ox u-v = a(x), aty = fs(x), ( Ig) 

and in appropriate changes of the momentum equations, if Rx and Ry should be kept. 
For brevity the equations will not be repeated here. 
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(b) Transient problem 

For the solution of the transient problem the solution to the steady problem is assumed 
to be known. In the transient problem we then only search for the deviations from the total 
fields. This process of separation is straightforward in principle, but somewhat messy if no 
resort is made to a simplifying assumption. We shall do this and postulate that the steady-state 
stresses are much larger than the corrections due to a possible time-dependent ~fJect . Based on this assump­
tion the constitutive relations in the fourth and fifth of Equations (3) can be linearized. This 
linearization in the stresses cannot be over-emphasized. In particular, it does not imply that 
fi and fJ need be small. A linearization in these quantities might indeed be inappropriate. 

The basic governing equations are: 

oaz aT 
-+-=0 ox ay , 

aT Ouy 
-+-=0 ox ay , 

ofi ofJ 
-+-=0 ox ay , 

ofi ofJ 
-+- = 21li'(fuz) f+2;8'(fuZ)(fuz) f ay ox ' 

in which 1S'(x) = d1li'/dx and 

are a steady-state and a transient second stress-deviator invariant. On the other hand, the 
boundary conditions become: 

At the base: 
fi = fi, 

dYB '" 
V = -er;- u, 

fi = ~mfm-IT'} 
_ dYB_ 
v=-u 

dx ' 

The formulae on the left apply when the boundary condition is of kinematic nature, those on 
the right when a velocity-dependent sliding condition is used; 11 is assumed to be known. 

At the top surface: 

for the kinematic condition 

ors ofa ors ors 
Tt+a; fi+Tx 11+ ox fi-fJ = 5, aty = fs(x)+rs(x,t), 

and for the boundary condition of stress 

(az+az) sinz a+(ay+ay) COSZ a+(f+f) sin 21X = 0, } 

f+f+ Haz -ay+ax-ay) tan 21X = 0, 

aty = fs(x)+rs(x, t). 
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In these equations IX is the total angle of surface inclination, IX = &+&, so that 

sin2(&+&) = (sin & cos &+cos & sin &)2, etc. 

Equations (24) complete the formulation of the problem. In the following sections a systematic 
approach will be shown which allows us to attack various problems occurring in the velocity 
and stress distribution of glaciers and large ice sheets. 

3. STEADY-STATE SOLUTION FOR THE NEARLY PARALLEL-SIDED SLAB 

The equations of the steady-state problem will now be subject to an approximate solution 
scheme. The key idea in this is the assumption that the glacier surface and the bottom 
topography do not deviate considerably from the infinite or semi-infinite parallel-sided slab. 
On this presumption an iterative scheme will be developed which allows us, first, to calculate 
the influence of the bottom topography on the surface geometry and, secondly, to estimate the 
influence of a steady accumulation or ablation rate on the stress and velocity distribution as 
well as on surface topography. Some of these questions have already been answered by Budd 
(I970[a], Cb]), however his solution is approximate, and here we aim at a justification or 
disproof of his approach. 

3. I. Steady-state behaviour of an infinite slab on a bed with small undulations 

(a) Perturbation scheme 

The fundamental assumption on which the following perturbation approach is based is 
that amplitudes of the base are small in comparison to the mean glacier thickness. Conse­
quently, we may write 

where 0 < E ~ I. 

In this equation A (x) and its derivative A' (x) are O( I). The representation (25) suggests 
searching for a perturbation solution in the form 

<Xl (v) (v) 

(a:l;' ay, f, 71, fs) = 2>v(ax, .. . , r s), 
co (v) 

f) = L EVV, 
v=o v=1 

(o) 

in which rs may be set equal to I, since the depth is presumed determined from the solution 
of the flow problem over length scales much larger than this depth. In the second of Equations 
(26) it was further assumed that v = O(EU), which is in agreement with observed speeds. 
Furthermore, lowest-order stresses are all assumed not to be small. As we shall see later on 
(o) 

'T will be proportional to sin y, implying that y should not become small if the representations 
(26) are meaningful. It is obvious, however, how the perturbation approach can be rectified 
for small mean inclination angles y without the introduction of the alternative non-

. (o) 

dimensionalized equations (9) . One simply sets 'T = 0 and starts the perturbation expansion 
for 'T with first- (or even higher-) order terms. In view of the results to be presented in Section 
4, this remark is important. 

If the representations (26) are substituted into the field equations and boundary conditions 
of the steady-state problem and if, in the respective equations, terms of equal powers in E are 
collected, a hierarchy of boundary value problems is obtained. For instance, the zeroth- and 
first-order field equations are as follows: 
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(i) zeroth-order field equations 

(0) 

ou 

(0) (0) 

oax OT . 
-+-+smy=o, ox oy 

(0) (0) 

OT oay 
-+--cos y = 0 ox ay , 

(0) (0) (0) 

ox = 0, o = HS (Tu2)(ax-cry), 
ou (0) (0) 

- = 2~(TU2) T ay , 

(0) (0) (0) (0) 

TU2 = t(crX-cry)2+T2, 

(ii) first-order field equations 

(1) 

(1) (1) 

ocrx OT 
-ax+oy = 0, 

(1) (1) 

OU OV 

(1) (1) 

OT oa 
ox + ay = 0, 

-+-=0 ox oy , 

OU (0) (I) (I) (0) (I) (0) (0) 

ox = HS(TU2) (ax-crll) + HS'(TU2)(TU2) (crX-crll)' 

(I) (0) (0) (I) (I) (0)(1) 

TII2 = 2[Hcrx-cry) (crx-cry) +T TJ. 

239 

Higher-order equations could also easily be deduced. They are of little interest, however. 
The derivation of the approximate boundary conditions is based on the idea that the 

condition valid on the boundary surface is replaced by an appropriate condition on the mean 
bed and mean surface respectively. To explain the procedure, consider Equation (I I), in 
which il andYB(x) must be regarded as known functions of x; 11 and V, on the other hand are 
functions of the form 

11 = l1(x,YB(x)) = l1(x, eA(x)), ...• 

Developing these functions in terms of Taylor series expansions of the second variable and 
substituting the resulting series into the equations results in new forms of the boundary 
conditions in which all functions are evaluated at Y = 0, rather than at the actual bed. 
Hence we may say that the simple relations (I I) on the complex geometry YB(X) are replaced 
by formally more complex equations on a much simpler geometry, namely y = o. The 
complexity of the new equations is not really increased as compared to Equations (I I), 
however, because the small parameter E will enter and allow us to make use of the expansions 
(26). If this is done the kinematic boundary conditions at the base read, to first order, 

(0) 

u = it, 

(0) 
(I) oU 
u+-A = 0 oY , 

(1) dA 
v--il 

- dx ' 

ony = o. 
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In much the same way the conditions (12) can also be handled. To first order this gives 

(0) (0) 

u = 1i'Tm, 

(0) 

(I) OU (0) (aT (I») 
u+- A = 1i'mTm- 1 -A+T ay ay' 

(I) dA(o) 
v = dx u, 

ony = o. 

Again, higher-order equations are easy to obtain. In what follows we shall either use Equations 
(29) or (30 ). 

Next, the boundary conditions at the glacier surface are transformed to appropriate 
(0) 

conditions at a mean surface,Ymean = Y8 = I. We begin with the kinematic condition (19). 
If we follow the same approach as with the boundary condition at the base, then Equation 
(19) must first be replaced by 

d fs (A oa ~ ) ( A OV "'" ) c.r;- u+ ay (Y8- I) + ... v+ ay (1 s-I) + ... = a(x), aty = 1. 

In view of Equations (26) this can be transformed into a hierarchy of kinematic boundary 
conditions. Because a is of the order of 10-2 to 10-4 it is also justified to write 

a = eA, 

so that A is of order I at most. With the aid of Equations (32) and (26), the above boundary 
conditions to first order thus become 

(0) 

v = 0, 

(I) 
(o)dYs (I) 

u--v=A 
dx ' 

aty = I. 

Next, the boundary conditions of stress, Equations (14), in which all quantities carry a 
circumflex, must be expressed as a condition on the mean surface. To this end, notice that all 
quantities on the left are evaluated at the surface, while p, on the right is a given function of x. 
Proceeding as before we may replace the first of Equations (14) to zeroth order by 

(0) (0) 

ay = -p, T = 0, aty = I, 

and to first order by 
(0) (I) 

(I) oay (I) (0) dYs 
ay+lY Y8 - 27" cl; = 0, 

(0) (I) 
aty = I. 

(I) aT ( I) (0) (0) dYs 
T I + ay Y8+(ax-ay) cl; = 0, 

Summarizing, Equations (27), the first of Equations (29) or (30) and of (33), and Equations 
(34) comprise together the zeroth-order boundary-value problem. The solution to this 
problem is assumed to be readily available. Knowing it, the solution to the first-order 
boundary-value problem can then be constructed using Equations (28), the second of 
Equations (29) or (30) and of (33), and (35) . This boundary-value problem is linear. 

(b) ;:,eroth-order solution 
(0) 

Consider a doubly infinite strip of thickness Y = I. For such a case it is reasonable to 
(0) 

assume that neither stresses nor velocities depend on x and, furthermore, that v = o. The 

https://doi.org/10.3189/S0022143000015379 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000015379


FIRST-ORDER STRESSES AND DEFORMATIONS 

(0) (0) 

fourth of Equations (27) then tells us that crx = cry and the first, second, and fourth of Equations 
(27) can immediately be integrated to yield 

(0) (0) (0) 

T = sin Y(I -y), crx = cry = -cos Y(I -y) -p, (36) 

in which the boundary conditions (34) have already been incorporated. The solution in 
(0) 

Equation (36) is independent of the constitutive response. Notice also that T becomes small 
for small y. This should be borne in mind when higher-order solutions are constructed. To 

(0) 

determine the velocity field notice that v was set to zero from the outset by the very assumption 
(0) 

of the perturbation scheme (26). * The u-field, on the other hand, follows from an integration 
of the fifth of Equations (27) which yields 

(I-Y) sin y 

(0) 2 J (0) 
u = U--. - ~(g2) g dg = U+Uf(Y) 

sm Y 
sin y 

I {2 sinll 
Y } = U+-- [I -(I _y)n+I] +k sin y[I -(I _y)Z] . 

I+k n+I 

In view of the third of Equations (27), U must be a constant. 
The solution in Equation (37) is based on a purely kinematical boundary condition. If, 

at the base use is made of the first of Equations (30) instead, U in Equation (37) must be 
replaced by 

U = «f sin m y. (38) 

Hence, to zeroth order, the two types of boundary conditions at the base are equivalent. 

(c) First-order solution 

To construct a solution of the first-order boundary-value problem, it is advantageous to 
introduce stress and stream functions. Accordingly, we set 

(I) oZ</> (I) oZ</> (I) oZ</> 
crx = oy2' cry = oxz ' T = -ox ay' 

(I) or/; (I) or/; 
U = ay' v = - ox ' 

thereby satisfying the first three of Equations (28) identically. The remaining equations then 
transform into the system 

} 
(0) 

* The assumption v = 0 is somewhat restricted and only justified on the basis that a poskriori no inconsistency 
(0) 

in the governing equations is found. It is possible to start without such an assumption and to prove that v = o. 
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Equations (41) are a second-order system of linear partial differential equations for 4> and '" 
withy-dependent coefficients. For a Newtonian fiuid,j(y) = t, g(y) = 2, so the coefficients 
are constant in this case. Note that the function ~ may in addition carry an extra y­
dependence which originates from the position dependence of the material response. 

The system (41) must be complemented by appropriate boundary conditions. These are 
at the base: if Equations (29) are used 

: = -2 sin y 1IiI(sin2 y) A(X)'} 
0'" dA_ ----u oy- dx' 

and if Equations (30) are used instead, 

0'" . 024> -+'G'msmm-I y--ay ox ay 

aty = 0, 

= -['G'msinmY+ 1:
k 

{sin1l y+ksin y}] A, aty = 0. 

0'" dA . -= --f(j'smm y . ox dx 

At the top surface the second of Equations (33) and Equations (35) must hold. When written 
in terms of stream and stress functions, these conditions read 

where 

(I) 

0'" (0) dYe 
-+[U+Ur(I)] - = A ox dx' 

024> (I) 

-;;;-+cos y Ye = 0, 
ux2 

024> . (I) 

oX ay +sm y Ye = 0, 

sin y 

aty = I, 

(0) 2 f I {2 sinn y } Uf(I) = -. - ~(g2) g dg = +1. + +k sin y . 
smy I 1\ n I 

(0) 

Before we attempt to find a solution to the above problem we would like to emphasize that the 
difference in the boundary conditions at the base, Equations (43) and (44), is now explicit 
and, perhaps, also visible after integration. Note further, that the surface topography enters 
the formulation and must be determined along with the determination of the entire problem. 
The explicit occurrence of the accumulation rate complicates this problem slightly. It becomes 
easier if one sets 

with 

" 
(I) (0) f 
rea = [U+Ur]-1 A(x') dx' +A(o). 

o 
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This choice transforms Equation (45) into 
(r) 

00/ (0) dTso 
ox +[u+ur] dx = 0, 

(r) 

in which YsB. is a known function of x. 

aty = I, 

243 

Before we proceed, we indicate how the gener~l steady-state problem with steady-state 
accumulation rate can be solved. To this end, it is not hard to see that the influence of the 
bedrock undulations and that of a steady accumulation rate can be fully separated. Indeed, 

(r) (r) (r) 

let</> = rp,,+</>A,..p = o/,, + o/A, TsO = Y"o +YAo, where the functions with index A are solutions 
to Equations (41), (43) or (44) and (48) if A = 0, whereas those with index A are the corres­
ponding solutions for A#-o but A = 0. Adding these solutions then gives the general 
solution for the general steady-state problem. Thus question (ii) posed in the introduction 
can be answered in an affirmative form. 

(d) Approximate integration scheme 

The differential equations (41) are not easy to integrate, in general; it is thus appropriate 
to reserve a separate section for this integration. Here we would like to demonstrate, how the 
first-order equations can be integrated approximately. Such an approximate scheme was 
introduced by Budd (I970[a]) without any mention of its approximate character. Because 
of the prominence of his article and our conclusions in this article as to the falsity of the 
approximate integration scheme, it will be briefly outlined here. To this end we write 

(0) (0) (r) (r) 

Equations (28) in terms of deviator stresses crx', cry', T and pressurep, rather than stresses (see, 
(r) 

e.g. Equations (7) and (8)). Postulating that the perturbation pressure vanishes p = 0, the first-order 
momentum equations can be satisfied identically, provided that 

(r) ,024>' (r) ,024>' (r) 024>' 
crx = Of ' cry = OX2 ' T = - ox oy . (49) 

(r) (r) 

From the continuity equation and the constitutive relations involving cr/ and cry' it then 
follows also that 

(r) (r) 

crrJ;' + cry' = 0, or 11</>' = 0, 
(r) 

whereas the constitutive relation for T implies that 

02..p' 020/' 02rp' 
OX2 - Of = g(y) ox oy 

(50) 

where 0/' is the stream function of this approximate problem (primes will indicate that the 
(r) 

perturbation pressures p have been set to zero). The boundary conditions are the same as 
(r) (r) 

before, and all we need to do is replace rp, 0/ and Ts by rp', 0/' and Ts', respectively. 
The differential equations which must be solved in this approximate approach are 

Equations (50) and (51). As compared to Equations (41) they carry the advantage of being 
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separated insofar as the general solution of the Laplace equation for the stress function can be 
constructed in advance and may, in a second step, then be used as a forcing function in the 
wave equation (5 r) for the stream function .p'. Of course, the suitability of the approximate 

(I) 

boundary-value problem in which p = 0, must be tested. It is not correct, in general, as we 
have clearly outlined above. Budd's approach is less systematic also in other points. For 
instance, his treatment of the boundary conditions is quite different. 

3.2. Harmonic perturbations from uniform flow for zero accumulation rate 

In this section we shall solve the boundary-value problem for the special case that 
A(x) = o. We assume that A(x) is given as a Fourier series, 

00 

A(x) = L Bv cos(wvX)· 
v=1 

It suffices only to look at a single frequency, and so we will simply write 

A(x) = cos wx. 

We also expect the surface topography to be sinusoidal, but shifted with respect to Equation 
(53), so that 

(I) 

Yso = hI cos wx+hz sin wx. 

The functions 

1F(W) 

<pew) 

= (hlz( w) +hz2
( w)) 1, } 

= tan- l (hz(w)/hl(W))' 

will be called the filter function and the phase shift, respectively. The former determines that 
fraction of the protuberance amplitude that is, at a certain frequency, carried over to the 
surface. It could also be interpreted as the ratio of the surface to the basal amplitude of the 
inclination. According to the observations and the calculations of Budd (r 970[ a]) this function 
should have a maximum for wavelengths which are between 3 to 4 times the glacier thickness. 
The phase shift, on the other hand, is close to 7T/2. · 

Because the Equations (50) and (51) will be shown to lead to false results and the approxi­
mate solution will only be used to demonstrate this point, the derivation of the solution will 
not be presented here. Interested readers may consult the first author (Hutter). Here we 
only list the relationships for hI and hz which will allow the evaluation of the filter and the 
phase-shift functions when Glen's flow law is used. One obtains 

(0) { 2 (sin y) Jbl(sinZ y) sin w}j 
hI = {(sin y) Vp(r) +[u+ur]} u cos w+ w J 1::., 

( ) ( [
_ 2(sin y) ~(sinZ y) sin w] j 

hz = - cos y V m r) u cos w+ 1::., 
w 

in which 
(0) 

I::. = [(sin y) Vp(I)+U+UrJz+(cosz y) Vm(I). (58) 

Vp(y) and Vm(y) are the functions 

n sinn- l y 
Vp(y) = n+z [In-I(W, W(I -y)) -In_I(W(I-Y), W(I -y))], (59) 

w 

n sinn- I y 
Vm(y) = n+z []n_I(W,W(I-y))-](W(I-y),W(I-y))J, (60) 

W 
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where 

Io(~, x) = sin(~-x) sinh ~-cos(~-x) cosh ~, } 

Jo(~, x) = -sin(~-x) cosh g+cos(~-x) sinh g, 
II(~' x) = ~ sin(g-x) cosh g-cos(g-x) sinh g(g+ I), } 

JI(g, x) = -g sin(g-x) sinh ~+cos(~-x) cosh g(g- I), 

Iz(g, x) = 2g cos(g-x) sinh g+sin(g-x) sinh g(gZ-I)-
-cos(g-x) cosh g(~Z+I), 

Jz(~, x) = -2gcOS(~-x) cosh g-sin(~-x) cosh g(~Z_I)+ 
+cos(~-x) sinh g ( ~z+I). 

245 

With these formulas the evaluation of the filter function :F becomes a routine matter. We 
shall postpone the presentation of numerical results until the next chapter. 

(b) Exact solution for a Navier-Stokes fluid 

Unfortunately, an exact integration of Equations (41) is hardly possible for general non­
linear material behaviour. This case, although being of a somewhat academic nature, is 
nevertheless important because it allows a check of the numerical scheme needed for the 
non-linear fluid. Since for this case f(y) = t and g(y) = 2 the coefficients in Equation 
(41) are constant. With 

cp = <I>I(Y) cos wx+<I>z(Y) sin wx, '" = '¥I(Y) cos wx+,¥z(y) sin wx, (64) 
the emerging differential equations for the coefficient functions assume the form 

d'YI dZ<I>z d<I>I dZ'¥z } 
·-2w -- = wz<I> +-- 2w - = wZ'¥ +--dx z dyZ' dx z df' 

(65) 
d'Yz dZ<I>I d<I>z dZ'¥I 

2W-
d 

=W2<I>I+--' -2W-
d 

=wz'¥I+-d-' x dyZ x ~z 

The boundary conditions (43) and the second and third of (45) on the other hand become: 
aty = 0, 

d'YI . 
do/, } dy = -2 sm yB, -=0 dy , 

'YI = -iiB, 'Yz = 0, 

(66) 

aty = I, 

hI cos Y <I>z = hz cos y 

} Il>I = ---, , 
W Z W Z 

dll>I hz sin y d<I>z hI sin y 
------ dy -dy w w 

The form of Equations (65) suggests searching for exponential solutions. Indeed, the reader 
may check himself that 

'¥I = (aO+aIy) exp (wy) + (aO+aIy) exp (-wy), } 
'¥z = (bo+bIy) exp (wy) + (lio+liIY) exp (-wy), (68) 
<I>I = (bo+b1y) exp (wy) - (lio+liIY) exp (-wy), 
<I>z = - (aO+aIy) exp (wy) + (aO+aIy) exp (-wy), 
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is the most general solution of Equations (65). The eight unknown coefficients are deter­
minable from the eight boundary conditions (66) and (67). The corresponding calculations 
are very tedious, even though they are straightforward, so that it does not seem to be 
appropriate to present them explicitly. After lengthy manipulations one obtains: 

and 

where 

and 

ao = -hIQI sin '1-h2Q2 cos '1-BQ3 sin '1-tBU(Q4+I), } 
iio = hIQ I sin '1+h2Q2 cos '1+BQ3 sin '1+tBU(Q4-I), 
aI = hIQs- sin '1+h2Q6- cos '1+2BQ7- sin '1+BuwQs-, 
iiI = -hIQ6+ sin '1+h2Qs+-2B sin '1 QS++BuQ7+w, 

0.1 = cosh W/(2Wl5.), 
0.2 = (cosh w+w sinh W)/(2W 215.), 
0.3 = w/l5., 
0.4 = (w-cosh W sinh w)(iS., 

Qs± = (cosh w+w exp (±W))/(2wl5.), 
Q6± = (cosh w-w exp (±W))/(2wl5.), 
Q7± = (w-exp (±w) cosh W)/(215.), 
Qs± = (w+exp (±w) cosh W)/(215.), 

(69) 

With the stress and stream functions being determined as functions of the surface and bottom 
amplitudes hI' h2 and B = I, the former two follow from Equations (48) by mere substitution. 
If this is done, we obtain 

The filter function :F and the phase lag angle f{J are therefore given by 

14wQI sin '1+2uw2Q21 } 
:F = [(sin y+U)2+(COS2 '1) Q42/w4]l' 

0.4 cos y 
tan f{J = w2(sin y+I1)2 . 

This completes the construction of the exact solution. 

(c) Numerical solution for non-linear rheology 

For the harmonic bed undulations (Equation (53)) the stream and stress functions may be 
assumed to have the form of Equations (64) . When substituted into Equations (41 ), the 
following system of ordinary differential equations for the unknown functions <D}) <D2, 'YI 
and 'Y 2 are obtained: 
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w d'P'r 
f(y) dy 

dZ'P'r d<1>z 
dyz = -wg(y) dy -WZ'P'H 

dz'P' z d <1>r 
dyz = wg(y) dy -wz'P' z· 
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These must satisfy the boundary conditions (43) and (48), which with the aid of Equations 
(54) and (64) may be written 

d'P'r . . 
dy = -2 sm y ~(smZ y), d'P'z } -=0 dy , 

and 

'P'r = -U, 

d<1>r 
w dy -hz sin y = 0, 

(0) 

'P'r+[u+urJ hI = 0, 

Introducing the vector 

'P'z = 0, 

d <l>z • 
w dy +hI sm y = 0, 

(0) 

'Y 2+[U+Uf] hz = 0, 

aty = 0, 

aty= 1. 

f = (fl> ··· ,fs)T = (<1>1> <1>2' 'YH 'Y 2 , <1>r', <1>/, 'Yr', 'P'z')T, 

it can readily be shown that Equations (76) correspond to the linear vector differential 
equation 

where A is given by 

A= 

o 

df 
- = A(y)·f 
dy 

I 

-wz w/J(y) 
-wZ -wlf(y) 

-wZ -wg(y) 
-wZ wg(y) 

(80 a) 

(80 b) 

The boundary conditions (77) and (78), on the other hand, can be written as follows: 

Aty = ° 
17 = -2 sin y ~(sinZ y), Is = 0, (81) 

and aty = I: 
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cos Y 
gl = -w2j;-~.h = 0, 

U+Ur 

cos Y 
gl = -w2fz-~f4 = 0, 

U+Ur 

sin y 
g3 = -wfs-~.h = 0, 

u+ur 

To solve the boundary-value problem (80), (81), and (82), it is best to integrate it numerically 
with, say, a Runge-Kutta scheme. Because of the linearity of the problem the principle of 
superposition can be used. Accordingly, we solve Equation (80) with the following five 
different initial conditions: 

foo = (0,0, -u, 0, 0, 0, -2 sin y ~(sinl y), 0), } 
fol = (1,0,0,0,0,0,0,0), 
fol = (0, 1,0,0,0,0,0,0), 
f03 = (0,0,0,0, 1,0,0,0), 
f04 = (0,0,0,0,0, 1,0,0). 

(83) 

For each of these initial conditions the values of gu ... , g4 in Equations (82) can be evaluated; 
they are 

The correct solu tion is obtained if 

i,j = (1,2,3,4) , 

which is a linear system of four equations for the unknowns Xj. Once they are determined 
we may integrate Equation (80) once more with the initial condition 

fo = (XI' Xl' -11,0, X3, X4, -2 sin y ~(sinl y), 0), 

to obtain the final solution for the stress and stream functions. First-order stresses and velocities 
are then obtained by simple differentiations. A program was written solving the boundary­
value problem in the indicated manner. Solutions of it can be obtained for various different 
physical situations, some of which we shall discuss below. 

3.3. Effect if steady accumulation rate 

In the last s.l}bsection accumulation was set to zero, but bottom undulations were present. 
Here we shall assume a non-vanishing accumulation rate, but shall set all bottom undulations 
aside. If both are small their effects can be superimposed, as we have already seen above. 

It was mentioned earlier that the zeroth-order solution constructed in the Equations (36) 
and (3 7) did not account for geometric effects of steady-state accumulation rate. This limits 
considerations to length scales which are not asymptotically large as compared to glacier 
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thicknesses. The effect of accumulation rate on length scales somewhat larger than glacier 
thickness may, however, still be analysed. 

To solve the boundary-value problem described by Equations (41 ), (43), and (4B) we shall 
(I) 

set A = ° and, further assume that ysa be given in terms of a Fourier cosine series. It then 
suffices to restrict considerations to the single component 

(I) 

ysa = R cos wX. 

(I) 

Stress and stream functions may then be given as shown in (64) and yso as shown in Equations 
(54). Substituting these into Equations (41 ), (43), and (48) it is then easily seen that the 
following boundary-value problem must be solved: 

df 
dy = A(y) f, 

h = h = 17 = 18 = 0, aty = 0, 

gx = -cos yR, g4 = -sin yR, aty = I. 

In these equations f is defined in Equation (79), A(y) in (80 b) and g" ... , g4 in (B2). The 
construction of numerical solutions to the above boundary-value problem follows essentially 
the approach of Section 3.2(c) and will not be repeated here. 

For a Navier-Stokes fluid, an analytical solution to the boundary value problem (B4) can be 
constructed, which, in approach is very similar to that in Section 3.2 (b). These solutions 
were used as a further check of the numerical integration scheme. For brevity they will not be 
presented here. 

3+ Influence of differences in boundary conditions at the base 

All the foregoing calculations are based on the kinematic boundary conditions (29). We 
have seen that, to zeroth order, this condition is equivalent to (30); but when first-order 
equations are considered, (29) and (30) differ from each other. It is interesting to investigate 
in what respect the difference in boundary conditions results in differences in the state of 
first-order stresses and velocities. 

The boundary-value problem that must be solved is now Equations (41), (44), and (48). 
For vanishing accumulation rate and harmonic solutions (54) and (64) the system (Bo) 
evolves as do the boundary conditions (82), but Equations (81) must be replaced by 

r.. = 0, 

17+'*16 = -mU-2 sin y ;Il(sin2 y),} 
18-'*15 = 0, 

aty = 0, (B5) 

where,* := muwJsin y and u = ~ sinm y. The form of the third and fourth of Equations (85) 
suggests the introduction of a new vector §' by 

It is then straight forward to show that the differential equations (Bo) may be written as 

d§' 
dy = W(y) §', 
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and 

cos 'Y 
~l := -w2iFl---c.o>!F3 = 0, 

u+Ut 

cos 'Y 
~2 : = -w2iF 2 --z<j) iF 4 = 0, 

~3 

u+ut 

sin 'Y 
-wiFs----roi iF" = 0, 

u+Ut 

sin 'Y 
~,,:= +wiF6--z<j) iF3 = 0, 

u+Ut 

aty = I. (go) 

The boundary-value problem (87) to (go) agrees formally with that of Section 3.2 (c). The 
technique for numerical solution therefore also agrees with the one presented there. 

4. RESULTS 

Several interesting features can be obtained from a numerical exploitation of the 
theoretical results derived above. These will be discussed now in due order. W e begin with 
the effect of bottom undulations, continue to discuss the influence of accumulation rate and the 
effects of sliding at the bottom, and end by discussing the effect of temperature variations on 
the longitudinal strain effects in cold ice. In the following, accumulation is n eglected except 
where explicitly stated. 
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4. I. Transfer of bottom protuberances to the surface 

We begin with the presentation of the filter function :F and the phase lag angle rp. 
Analytical expressions were obtained for a Newtonian fluid and for the case that no simplifica­
tions were introduced in the stress representations. It was shown, moreover, that analytical 
solutions for the first-order stresses and velocities could also be obtained when first-order 
pressure corrections were discarded. Figures 2 and 3 show the corresponding results. In 
Figure 2a the filter function :F is plotted against a dimensionless wavelength A = 27T/W for 
the case when there is no slip along the basal surface. It is clearly seen that the transfer of 
bottom undulations depends strongly on the mean inclination y of the ice slope. Generally, JF 
grows with growing A, and from the graph it appears that it does so in a mono tonic way. 
Consequently, small-wavelength protuberances are filtered out, but large wavelengths are 
transferred to the surface, even though in an attenuated form. This result is surprising as it is 

(a) 

2 .0 t-------------~------------_1--------------+_-------

0. 5 t---------~~~~~--------_1--~~~~----+_-------

5 10 15 

-0.0 ~~--------_t------------+------------+_-----

' 0.4 

- 0.5 tt"~~-I----'---_T_-___:::::::::~=~--

--l.------T~" y. 0.2 

' 0.05 

- 1.5 t--~ ......... ==i===----+_,~~=~::::::=== 'y. O,01 

-2 .0+----------1---------'--______ +-_ ___ __ 
o 5 10 15 

Fig. 2. (a) Filter function ff: plotted against dimensionless wavelength A = 27r/W for a Navier-Stokes liquid and parameterized 
for various mean inclinations y. No slip at the bottom. (b) Phase lag angle <p for the same situation as in (a). 
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entirely different from Budd's (I97o[aJ) prediction. His results look qualitatively like those 
in Figure 3 in which the filter function .fF, as obtained from the approximate solution of 
Section 3.2(a) shows a clear maximum at a preferred wavelength A. The similarity of this 
curve with that of Budd stems from the fact that both Budd and we neglect the perturbation 
pressure in the calculations leading to Figure 3. Quantitative differences, on the other hand, 
emanate from differences in the boundary conditions at the free surface. Incidentally, the 
behaviour of g; at wavelengths which are below A = 0.7 is somewhat awkward, because .fF 
does not mono tonically decrease with decreasing A but shows an intermediate maximum at 
A ~ 0.45. This indicates that the approximate solution must fail at small wavelengths. Since 
the least approximations have been made in the calculations leading to Figure 2 we must 
reject both Budd's and our approximate solutions. We have also shown in Figure 2b the phase 
lag angle cp. Except for small wavelengths it is nearly independent of wavelength and depends 
on the inclination y. For very small y this phase lag is close to -7T/2. 

0.5+-------------,-------------.-------------,-----------

0.4+-~--~~-~.-+_------------+_------------+_----------

0 .3 

0 .2 

0.1 

o+-~----------+_~ __________ ~ ____ --____ --~ ____ --__ _+ ___ 

o 5 10 15 

Fig. 3. Filter function S; plotted against dimensionless wavelength A = 21T/wfor a Navier-Stokes liquid and parameterizedfor 
various mean inclinations y. Approximate solution as derived in Section 3. 2a. No slip at the bottom. The spike at small 
values of A indicates a failure of the approximate integration procedure at small wavelengths. 

Results have also been calculated for an ice slope sliding down its bed. As far as .fF and cp 
are concerned these are virtually indistinguishable from those obtained with the no-slip 
condition, hence no further results need be presented. 

There is still the possibility of a dominant transfer of bottom undulations to the surface 
at a certain dis'tinct wavelength when non-linear constitutive behaviour is considered. That 
this possibility can also be excluded is demonstrated in Figure 4. In Figures 4a and 4b the 
filter function g; is displayed as a function of A = 27T/W as obtained by use of the numerical 
integration scheme described above for a generalized Glen flow law with exponent n = 2 and 
3 (the value of It is 10-2 for n = 2 and k = 10- 3 for n = 3). As can be seen from a comparison 
of Figures 2a and 4a and b, g; grows mono tonically with increasing A. lVloreover, transfer of 
bottom undulations to the surface is enhanced with increasing n. Hence here too, pre­
dominance of certain wavelengths at the top surface cannot be correlated with bedrock 
undulations. Their cause m ust be searched for elsewhere. 
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a: 
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1.0 

~ 0.5 
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o 5.0 
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10.0 
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GAMMR = 0.20 
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EXP0NEN T N = 3 

10.0 
LRMBDR 

15.0 

GRMMR = O. os 
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Fig. 4. Filter function .fF plotted against ,\ = 27T/W for various mean inclinations y and for a generalized Glen flow law with 
n = 2, (a), and n = 3, (b). The value rif It was ( 10-2, 10-3) for n = (2,3). At small wavelengths (not plotted) the 
value of 9' is nearry zero. No slip at the bottom. 

Phase lag angles could also be shown for the above cases, yet differences from Figure 2b 
are insignificant so corresponding graphs are not shown. 

Finally, the influence of the k term in the generalized Glen flow law may be estimated 
from Figure 5, which shows the filter function for n = 3 and y = O. I for various values of k. 
It is seen that fF depends significantly on It provided that k > 10- 4. This points to the 
importance of the quasi-Newtonian behaviour of the material response introduced in Section 
2. I and does not point to a possible failure of the numerical scheme, which is stable for most 
wavelengths even for very small values of k. 

l O 

F I LTERFUNCT 10N 

a: 
W 
~ 0.5 

CL. 

EXP0NEN T N = 3 

GAMMA = 0.10 

1\ = t. DE- OB 
IK = I.OE- OS 

IK = I . OE-O; 
I( = 1. 0E-03 

0 +----.---.----,----,---,----,----.---,,­
b 5.0 lO.O 

LRMBDR 
15.0 20 .0 

Fig. 5. Filter function 9' plottedfor y = 0.1 against ,\ = 21T/W parameterizedfoT various values rif It. 
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4.2. Basal stresses 

The effect oflongitudinal strain can be estimated by evaluating the stresses tangential and 
perpendicular to the boundary at the base. It is easily seen that 

(0) } T/T = 1 +€0 cos(wx-4>.r) +O(€2), 
(9 1 ) 

(0) 

cry/ay = 1 +€~ cos(wx-4>u) +O(€2), 

where 

~ = W2(f12+fz2)i } 
- cos Y(I-Y)+P' 

tan 4>u = J2/f1' 

o and ~ depend ony, ,\ = 27r/ W, p, y, and ii (which through Equation (38) may be expressed 
in terms of'i!i' and m). P is very small; at the base y = 0 we may therefore set P = o. Conse­
quently, 

0(y = 0) = 0 0 = 0 0 ('\, y, _it = 'i!i' ~inm y), } 

~(y = 0) = ~o = ~o('\, y, u = 'i!i' smm y). 

These functions are indicators for the significance of the effect of longitudinal strains upon 
basal shear and for the limitations of the mathematical approach applied herein. Within 
errors O(€Z), the second of Equations (91) gives the pressure normal to the base. Thus, we 
must necessarily have (00 , ~o) = 0 (1). The functions 0 0 and 4>T are plotted for no slip and 
for various inclination angles y, in Figures 6 and 7 against,\. It is clearly seen that perturba­
tion amplitudes for the shear stresses grow with decreasing wavelength. They are generally 
larger the smaller y. Of course, this property is directly traceable to the first of Equations (92). 
The singularity associated with the limit y ---70 is, however, spurious as explained previously 
already. At large '\, 0 0 grows with decreasing y, but at small wavelengths, where the shear 
stresses become large and a singularity seems to develop, it is the reverse. The singularity is 
not a numerical peculiarity, because it has also been obtained for n = 1 using the analytical 
solution represented by Equations (64) to (74) . It follows, therefore, that the perturbation 
solution must break down for wavelengths .:\ < c. I. The reader should be aware of this 
limitation of our perturbation scheme; that it develops is not surprising, however. For if at 

4.0 

3 .0 
::0 
IT 
f-

2.0 

I. G 

0 
0 5.0 

SHEAR STRESS 

EXP0NENT N = 2 

10.0 
LAMBDA 

15.0 

GAMMA = 0.01 

GAMMA = 0.05 
GAMMA = 0.10 

GAMMA = 0.20 
GAMMA = 0. 40 

20.0 

Fig. 6. First order amplitude of shear stress 0 0 plotted against .:I andfor various values of the inclination angle y. The exponent 
in the generalized Glen flow law is n = 2, and k = 10-2 • No slip at the bottom. 
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4.0 SHERR STRESS 
EXP0NENT N = 3 

3.0 
(a) GAMMA = 0.01 

::J 
a: ..... 

2.0 GAMMA = 0.05 
GAMMA = 0.10 
GAMMA = 0.20 

1.0 GAMMA = 0. 40 

0 
0 5.0 10.0 150 20.0 

LAMBDA 

1.5 

- GAMMA : O. 20 PHRSE LRG RNGLE 
GAMMA : 0.40 

10 GAMMA: 0.10 EXP0NENT N : 3 

I GAMMA : 0. 05 
CL 

05 - GAMMA: 0.01 

(b) 

0 
0 5.0 10.0 15.0 20.0 

LAMaDA 

Fig. 7. (a) Same as Figure 6, butfor n = 3 and 11 = 10-3 . (b) Phase lag angle <PTfor the basal shear stresses plotted against ,\ 
and for various values of y. The exponent in the generalized Glen flow law is n = 3 and 11 = 10-3• No slip at the 
bottom. 

fixed amplitude undulation wavelengths become smaller and smaller, their higher derivatives 
will correspondingly increase and eventually no longer satisfy the assumptions of small 
perturbation theory. Of course, the validity also depends on the value of Eo 

For ii = 0 phase lag angles cPT are shown in Figure 7b. They are all nearly independent of 
A and close to zero. Similar results have also been obtained for n = (1,2) for which reason 
the corresponding graphs will be omitted. 

Besides shear, the other significant stress component is the stress normal to the surface. 
To order E2 this is given by cry. For no slip and n = (2,3) its first-order amplitudes Lo (see 
Equations (93) ) are plotted in Figures 8 and ga. Generally, a weak dependence of Lo on A 
can be observed, and, except for y > C. 0.2 and A < 3, Lo increases with increasing A. Only 
for y > C. 0.2 and A < 3 is a growth of L o with decreasing A observed. This seems to be a 
property of the non-linear material behaviour, because it did not occur for n = I. Particularly 
interesting in Figures 8 and ga is the fact that for all wavelengths A > 2, and for all inclination 
angles L < 1. Only at small wavelengths can the onset of a singularity be observed. Hence, 

(0) 

the sign of cry will, for E < I and for most wavelengths, be that of cry. Failure of the perturba­
tion scheme used above therefore does not occur because of a possible locally induced tension, 
but rather by the first-order shear stresses, which become infinitely large at smaller AS. It is 
interesting tha t in cold ice sheets, in which temperature variations are taken into account by 
appropria te variations of the Arrhenius factor, basal stresses are considerably reduced so that 
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0 5.0 10.0 15.0 20.0 

Lm1BDP 

Fig. 8. First-order amplitude rif normal stress 1:0 plotted against A andfor various values of the inclination angle y. The exponent 
in the generalized Glen flow law is n = 2 and k = 10-'. No slip at the bottom. 

the perturbation approach used here and valid for A > c. 2 holds even for wavelengths 
,\ ::::; 0.5, see Hutter and Spring (I 979). Quite unlike the shear stresses, whose phase lag 
angle was close to zero, the behaviour of phase lag angle for the cry stresses is different. Figure 
gb, in which, for n = 3, the phase lag angle for cry is displayed as a function of ,\ and para­
meterized for various y. This shows that this angle strongly depends on y; in particular, for 
small y, it is close to -7T/2. For larger inclinations and for large ,\ it increases and is close to 
zero for y > c. 0-4- At wavelengths A ::::; 5 and smaller, it depends strongly on A and all 
curves seem to converge to - 77/2 when A becomes unity. This same characteristic behaviour 
has also been observed for n = I and n = 2, which is the reason why results are not presented 
for these cases. 
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Fig. 9. (a) First-order amplitude of normal stress koplotted against A and for various values of the inclination angle y. The 
exponent in the generalized Glenjlow law is n = 3 and k = 10-3• No slip at the bottom. (b ) Phase lag angle q, .. corres­
ponding to 1:0 plotted against >.for various inclination angles y. The exponent in the generalized Glm jlow law is n = 3 
and k = 10-3• No slip at the bottom. 
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4.3. Surface velocities 

I t is interesting to see whether bed undulations could also be seen at the surface when 
velocities are looked at. Zeroth-order velocities can be evaluated from Equation (3 7) by 
setting y = I; they will not be plotted here. First-order velocities can easily be calculated 
from the stream function if! by mere differentiation. This allows the representation 

(I) (0) (I) (0) 

us/us = €Uo COS(WX-cpu) , vs/vs = €Vo COS(wx-cpv) , 

(0) 

where the index s signifies evaluation at the surface and Us is the zeroth-order surface velocity 
given in Equation (37) (for y = I). Clearly, first-order velocities will depend on the bottom 
boundary condition. Here, we present results for no slip and postpone corresponding results 
for sliding to Section 4.5. 

Results for n = 2 and n = 3 do not differ significantly, so that only those for n = 3 will 
be presented. In Figure 10 the first-order longitudinal velocitY amplitude Uo and the corres­
ponding phase lag angle cpu are plotted; generally, the amplitudes Vo grow with growing 
wavelength; they are larger, the smaller y. For small wavelengths they tend to zero. Since 
Vo = 0(1) for small y, it is the bottom protuberance amplitude € which indicates whether 
first-order velocity corrections should be accounted for. The phase lag angle cpu undulates, 
being positive at moderate wavelengths and negative for larger ones. For small y, cpu is nearly 
zero, so that bottom perturbations and longitudinal surface velocities are nearly in phase in 
this case. For steep glaciers this, however, is no longer so. 

The first-order surface velocity component in the y direction is plotted in Figure I I. 

Accordingly there exists a distinct wavelength ,.\ (which depends on mean inclination) for 
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Fig. 10. (a) First-order amplitude oflongitlldinal velocity Vo as afunction of wavelength A and plottedfor various inclination 
angles y. The exponent in Glen's j/ow law is n = 3 and k = 10-3• No slip at the bottom. (b) Phase lag angle q," 
corresponding to Vo as afunction of A,parameterizedfor various inclinations y. The exponent in Glen'sj/ow law is n = 3 
and k = 10-3• No slip at the bottom. 
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which Vo is maximized; moreover, Vo is 0(1) for large yand becomes negligibly small for 
small y. The phase lag angle <Pv is shown in Figure II b. For large ,\ it is nearly independent 
of wavelength, but shows a clear dependence on y. For small y, bottom undulations and 
surface velocity components are nearly out of phase. 
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0 
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Fig. I I. (a) First-order amplitude of normal surface velocity Vo as afunction of >. and y. The constants in Glen's jlow law are 
n = 3 and k = IO-3. No slip at the bottom. (b) Phase fag angle r/>v corresponding to Vo as a function of>. and y. 
The exponent in the generalized Glenjlow law is n = 3 and k = IO- 3. No slip at the bottom. 

4+ E,lfect of steady accumulation rate 

We showed in Section 3.8 how steady accumulation rate can be accounted for and also 
indicated that explicit solutions for a Navier-Stokes fluid were constructed. Calculations were 
performed for a sinusoidal variation of the accumulation rate. This could be regarded as one 

(0) 

term of a general harmonic analysis. We chose A = --Ao sin(wx), where Ao = w(u+ur). 
( J) 

This choice was taken, since for this case ys<a) = H cos(wx) , with H = I. The real amplitude 
Re H can then be obtained from real accumulation amplitudes Re A according to 

ReH= 
,\ Re A 

(0) • (95) 
27T(U+Ur) 

Dependent upon the value of Re A, wavelength (which is of the order IOD-IOz) and the 
surface velocity, Re H may be as large as O( I ) . Calculations for H = 1 thus lead to realistic 
results. We refrain from presenting all pertinent details, but shear-stress and normal-stress 
amplitudes 0 0 and ~o may be presented. They are displayed in Figure 12 and demonstrate 
that the effect of accumulation rate on basal stresses is of the same order as that due to bottom 
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protuberances (compare Figures 8 and 9a) . Neglect of accumulation rate in the evaluation of 
longitudinal strain iffects is therefore not in general permissible. Incidentally, this same inference can 
be drawn also from the longitudinal velocity amplitudes, which for H = I are even larger than 
those for bottom undulations. 
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(0) 
Fig. I2. (a) First-order amplitude qf shear stress e%r sinusoidal steady-state accumulation rate, A = -wur sin (wx), as a 

function 0/ ,\ and y. Parameters in the generalized Glen flow law are n = 3, k = IO-3. No slip at the bottom. (b) 
(0) 

First-order amplitude of normal stress Lofor sinusoidal steady-state accumulation rate, A = -wUr sin (wx), as a/unction 
of'\ and y. Parameters in the generalized Glen flow law are n = 3 and k = ro-3 • No slip at the bottom. 

4.5. The e.fJect of sliding at the bottom 

All previous numerical results have been presented using the no-slip condition at the 
bottom. The general theory has, however, been developed for two different sliding conditions, 
namely that 

(i) a sliding velocity it is prescribed and 
(ii) a Weertman-type sliding law, Uu = ~T llm, is used. 

There are at least two good reasons for studying both these cases. First, zeroth-order solutions 
are not different if we simply relate it and ~ according to it = C(f sinm y, where m = 2. 

Differences in the form of the sliding condition only occur in the first-order correction problem. 
Since longitudinal strain effects manifest themselves at this level, it is interesting to see to what 
extent these boundary effects can be seen in the transfer function of bottom undulations and 
in the basal stresses. This brings us to the second reason. As is well known, Weertman's 
sliding law is not universally accepted as the proper one. A sensitivity analysis of the solution 
to both the above sliding laws is therefore worthwhile. 

In the calculations described below, it has been varied, taking values between 10-5 and 
10-3. (If or = 5 d, D = 500 m, ii. = 10-3 then the sliding velocity is I m/d. it = 10-3 may 
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thus be regarded as a rea.sonable non-surging upper bound.) For each inclination angle y 
and for m = 2, the corresponding value of f'{/ was calculated using il = C(f sinm y; for ease of 
reference, this relation is shown in Figure 13. 

Fig. I3. Plot of i1 = ~ sinm y for m = 2. 

Before we present the results, it should be mentioned that, as was the case for no slip, the 
perturbation scheme applied will fail for small wavelengths. For no slip, the lower bound was 
roughly A = I; with sliding it increases and is as large as A ~ 5 when il = 10-3. The reason 

(I) 

for this behaviour is a rapid growth of cry as A becomes small. Failure is not numerical as a 
similar behaviour is also observed in the analytical solution for the N avier-Stokes fluid. (It is, ; 
however, not surprising that the finite-difference scheme reacts critically in these instances.) 

4.5. I. Transfer if bottom topography to surface 

Filter functions for the transfer of bottom undulations to the surface were plotted for both 
the sliding conditions mentioned above and for five different values of the sliding velocity il 
in the range IO-S :::;;; il ~ 5 X 10-3. For case (i) (il prescribed at the bottom) filter functions. 
do not change in character, when compared with those for no slip. Transfer of bottom 
undulations to the surface is very small for small wavelengths and increases with increasing A. 
In particular, no distinct wavelength exists for which transfer would be maximized. Moreover; 
with increasing il the dependence of the filter function on y becomes less and less. Corrobora­
tion for this is provided by Figure 14, in which at most the onset of an intermediate maximum 
of the filter function can be observed, and this only for specific values of y. For small y 
«0.01) and for A < 2 these results must not be taken for granted, since first-order stresses 
become large in this case and perturbation solutions must fail. 

The corresponding behaviour for the Weertman boundary condition is quite different! 
At small il (= IO- S, 10-4) filter functions show the same characteristic behaviour as they dQ 
for no slip. Maximum transfer occurs at very large wavelengths. At il = (5 X 10-4, 10-3) 

and for small mean inclinations y :::;;; 0.05 a clear maximum exists between 3 < A < 5, which 
is akin to the result obtained by Budd in an analysis we claimed to be invalid, see Figure 15. 
Our results seem to give the correct answer to the original problem tackled by Budd, but 
unlike Budd, who claims that a distinct wavelength for optimal transfer of undulations exists 
independent of the sliding law, we conclude that in order for this optimum to exist, sliding 
velocities must be right; if they are too low no clear maximum develops; if they are too high 
(il = 5 X IO- J, for instance, not graphically displayed here) such a maximum has disappeared 
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Fig. 14. Filter function for the transfer of bottom undulations. Dimensionless sliding velociry at the bottom is u = 5 X 10-. 
and the parameters in lhe generalized Glen flow law are n = 3 and It = 10-3• 

again. At il = 5 X 10-4 it exists for y = (0.01,0.05).· With D = I 000 m and 't = I d the 
corresponding basal sliding velocity would be 0.5 m/d. It thus appears that the cause of the 
predominant transfer frequency is Weertman-rype sliding paired with appropriate mean inclinations. This 
must be so at least for glaciers which are temperate throughout. Whether this behaviour 
persists also for cold ice sheets has yet to be seen. 
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Fig. 15. (a) Filter function SF plotted against wavelmgth )..for various inclination angles y. The dimensionless sliding velociry 
is u = 5 X [0-4 and the parameters in Glen's flow law are n = 3 and It = [0- 3• (b) Phase lag angle 'P~ corresponding 
to SF as a function of ).. and y. The dimensionless sliding velociry is u = 5 X [0- 4 and the parameters in the Glen flow 
law are n = 3 and It = 10-3• 

• The maximum for the curve y = 0.01 must be regarded with some caution because for 3 < ).. < 5 shear 
stresses are high, which requires € to be sufficiently small for the perturbation scheme to remain valid. 
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4.5.2. Basal stresses 

Differences in sliding conditions are also detectable, when first-order stresses are looked at. 
For the same range of sliding velocities and for both boundary conditions at the base the first­
order basal stresses were evaluated. The results may, perhaps, be summarized as follows: 
For boundary condition (i) first-order shear stresses react critically to sliding velocities, 
provided that mean inclinations are small. For larger values of y, the behaviour is very similar 
to that for no slip. Figure 16 may serve as evidence for this. I t shows the first-order shear 
stress amplitude and the corresponding phase angle for the case that u = 5 X 10-4. When 
compared with Figure 7, it is seen that both amplitude and phase angle depend more 
significantly on y than is the case for no slip. The perturbation solution becomes questionable 
for y = 0.01. This becomes even more pronounced for larger values of U. 

It is quite different for the Weertman-type boundary condition (ii) ! Here sliding seems to 
"stabilize" the perturbation scheme, as first-order corrections decrease in size with increasing 
sliding velocity. As an example we show the first-order shear stresses for u = 5 X 10- 3 (Fig. 17). 
For wavelengths ,\ > I shear-stress amplitudes are all O( I) irrespective of the mean inclination 
angle. Corresponding phase angles are very small. For smaller sliding velocities the behaviour 
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Fig. 16. (a) First-order amplitude of shear stress 8 0 as afunction of " and y. Note that results f or y = 0.01 are outside the 
range of the plot. Parameters in the generalized Glen flow law have the values n = 3, k = 10- 3 and sliding veloci~v is 
prescribed as ii = 5X 10-4• Slip according to condition (i ). (b) Phase lag angle 4>7 corresponding to Figure /6 (a). 
Notice that for y = 0.014>7 varies appreciably with" and y. Perturbation solution must f ail in this case. Conditions are 
otherwise the same asfor Figure 16(a). 
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Fig. 17. (a) First-order shear stress amplitude 0 0 as a/unction rif A and y. Notice the regular behaviour/or all A> I and all 

y. Parameters/or Glen'sfiow law are n = 3, h = 10-3 • Dimensionless sliding velocity is ii = 5 X 10-3 , but the sliding 
condition is that due to Weertman. (b) Phase log angle 'PT corresponding to Figure I7 (a). The choice rif the parameters 
and boundary condition is the same as that/or Figure Il(a). 

is similar with less pronounced independence of the shear stresses on y (compare with Figure 7) 
and with an increasingly singular behaviour at small wavelengths, ,\ < 2 say. 

As far as first-order normal stresses cry are concerned, results are reasonably insensitive to 
differences in boundary conditions ((i) versus (ii)), but the dependence on sliding conditions 
is pronounced. As was shown in Figure 9 for no slip, first-order normal stresses depend 
critically on y; when y is large and ,\ is small, ~a becomes large. With growing sliding 
velocity il, the dependence on y becomes smaller and smaller, but the singular behaviour at 
moderately small values of ,\ is also carried over to small inclinations y. As an example, we 
show in Figure 18 the first-order normal stress amplitude La for the Weertman-type boundary 
condition and a sliding velocity il = 5 X 10-3. As can clearly be seen, the perturbation scheme 
must fail at moderately small wavelengths at all indicated mean inclination angles. At smaller 
sliding velocities the behaviour lies between those shown in Figures ga and 18. 

We conclude by stating that first-order basal shear stresses must depend critically on the 
sliding law, in particular at small angles y. Of the two sliding laws, that due to Weertman (ii) 
leads generally to smaller first-order stresses at comparable sliding velocities. It implies that 
the perturbation analysis shown here remains valid for a wider range of wavelengths (down to 
,\ = I) and inclina tion angles y than is the case for the other boundary condition (i). Of 
course, condition (ii) is more reasonable than (i) , but this is no proof of the suitability of the 
former. Our analysis rather indicates that first-order shear stresses in a temperate ice sheet may 
depend critically on the basal boundary condition. As long as experts debate the superiority 
of one over the other, it seems therefore illusory to estimate longitudinal strain effects in 
temperate glaciers. 
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n = 3 and k = 10-3• Dimensionless sliding velocity is ii = 5 X 10-3 and the sliding condition is that due to Weertman. 
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Fig. 19. (a) First-order longitudinal velocity amplitude Uo as a function of A and y. The parameters in the generalized Glen 
flow law are n = 3 and k = 10- 3• Dimensionless sliding velocity is ii = 5 X [ 0-3 and boundary condition (i ) is used. 
(b) First-order amplitude of longitudinal velocity Uo as afunction of A and y. The parameters in the generalized Glen flow 
law are n = 3 and k = 10- 3• DimensionlcH sliding velocity is ii = 5 X 10-3 and the sliding condition is that due to 
Weertman. 
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4.5.3. First-order velocities 

It is now no longer surprising that differences in the boundary conditions manifest them­
selves also in the first-order longitudinal velocities. For the boundary conditions (i) the 
velocity amplitude Vo depends strongly on the value ofu; for the Weertman-type condition (ii) 
it does not. As an example, the graphs of Figure 19 may serve. They show the first-order 
longitudinal velocity amplitude Vo for a value of u = 5 X 10-3• In Figure Iga the results for 
boundary condition (i) are displayed. Only plots for y = (0.4,0.2) are shown as those for 
smaller y lie outside the range of the ordinate. This behaviour is quite unlike that for boundary 
condition (ii)! Here, Vo remains 0 (1) or smaller for all inclination angles 0.01 ~ Y ~ 004-
There is a smooth transition in this case from the behaviour for no slip (see Fig. 10) to that of 
Figure 19b, where sliding velocities increase with no indication of unusual behaviour. The 
distribution of Vo for boundary condition (i) is completely different. At certain sliding veloci~ 
ties it behaves qualitatively as shown in Figure Iga, at others more like that in Figure 19b. 

Interestingly, the vertical surface velocity is insensitive to the form of the boundary 
condition at the bottom. But sliding does affect the size and the wavelength behaviour of Vo 
and also its phase. For corroboration the reader may compare Figures I la and 20, the latter 
being valid for a Weertman-type boundary condition and a sliding velocity u = 5 X 10-3• 

Many more results could be shown, but space limitations prevent us from doing so. 

1.5 

1.0 

VEL0C I TY 

EXP0NENT N = 3 

05 

O+----.----r---,----,----r---,----.----,­
o 5.0 10.0 

LRMBDR 
15.0 20.0 

Fig. 20. Amplitude of normal velocity Vo as a functum of ,\ and y . Parameters in the generalized Glen flow law are n = 3 
and k = I 0-3• Dimensionless sliding velocity is that due to Weer/man. 

4.6. Temperature variations and the longitudinal strain dfects in cold ice 

All the foregoing calculations were performed for ice sheets with spatially independent 
material properties. For temperate glaciers such conditions are satisfied to a sufficient degree 
of accuracy, but in cold ice sheets such as Greenland and Antarctica, material properties 
change drastically with depth, because of the appreciable dependence of the Arrhenius factor 
on temperature. It is interesting to investigate to what extent the above analysis remains 
correct when temperature variations perpendicular to the main flow direction are taken into 
account. 

First, results for an ice sheet which is cold throughout and therefore adheres to the bed 
have been obtained by Hutter and Spring (I 979). They demonstrate that transfer of bottom 
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undulations, first-order basal shear and normal stresses, and first-order surface velocities, are 
all attenuated by vertical temperature variations. 

If the ice sheet reaches the pressure-melting point at the base, sliding is possible; the 
inferences drawn by Hutter and Spring may then change. Our analysis remains valid when 
material properties change with depth. All that is needed is an adjustment of the form of the 
function :11, which may be written as 

(96) 

where Qis the activation energy, k the Boltzmann constant, To the surface temperature, and 
T(y) the temperature distribution with depth. Calculations were performed for 

T(y) = 01{I+02 [erf(L*)-erf(L*y)]}, 

in which 01 = 258.8 K, O2 = 1.05, L* = 3.70, and erf is the error-function. This choice 
corresponds to an ice sheet I 400 m thick whose bottom boundary is at the melting point 
(272. I 2 K) and of which the upper surface is at the temperature 258.8 K; needless to say, 
Equation (97) is a solution of the heat conduction equation. 

In the zeroth-order solution, temperature variations manifest themselves in the longi­
tudinal velocity distribution; the first of Equations (3 7) remains valid as an expression for 
(0) 

u(y), but integrations must now be carried out numerically. In the analysis of the first-order 
(0) 

velocities (see Equation (94)), the surface velocity Us is used. Clearly, the numerical analysis 
of the first-order problem was based on this numerically-determined surface velocity. 

Calculations for the first-order problem were performed for sliding at the bottom according 
to both sliding laws (i) and (ii), and u was given the values 10-4 and 10- 3. The results may, 
perhaps be summarized as follows: 

(I) As regards the transfer of bottom undulations, filter functions are reduced in general 
by the vertical temperature variation. This is uniformly so for large wavelengths, but 
not necessarily so for smaller ones. Moreover, the effect of maximum transfer of 
bottom protuberances to the surface, which has been observed for some angles (see 
Figure 14), may be amplified by temperature variations. Corroboration is given by 
Figure 21, which shows the filter function for u = 10-3 and Weertman-type sliding 
(maxima for sliding law (i) are less pronounced). 
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Fig. 2I. Filter function .fF for a cold ice sheet plotted against )..for various values of y. The temperature distribution was 
according to Equation (97) and the parameters in Glel!'s flow law are n = 3, k = IO-3. The boundary condition at the 
bed was that due to Weertman and ii = ro-3• 
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(2) First-order shear-stress amplitudes are also reduced by the inclusion of temperature 
variations. This is uniformly so for all investigated sliding velocities and for either 
sliding law. As an example, we show in Figure 22 the shear-stress amplitudes 0 0 as 
obtained when the temperature distribution given by Equation (97) and a Weertman­
type boundary condition were used. The dimensionless sliding velocity was 11 = 10-4. 

For comparison, results are also shown for a temperate glacier and an ice sheet whose 
material properties are kept constant and which adheres to the bed. Figure 22 is 
sufficient proof of the importance of both sliding and temperature variation. 
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Fig. 22. First-order amplitude oJ shear stress as aJunction oJ,\ and y. The temperature distribution was according to Equation 
(97 ) and the parameters in Glen's flow law were n = 3 and k = 10-3• The boundary condition is that of Weertman 
with a sliding velocity ii = 10-4• Also shown are results for an ice sheet in which temperatures were kept constant (dashed) 
and, in addition, the no-slip condition (pointed) was used. 

(3) Equally interesting are results regarding first-order normal stresses ~o. Whereas 
sliding (as opposed to no slip) has not led to a reduction in the first-order normal 
stresses (see Figs 9a and I 8), the inclusion of temperature variations brings a reduction, 
especially at wavelengths I < ,\ < 5, at large mean inclinations y, and at small 
sliding velocities. For no slip it seems to be largest. Figure 23 may serve as an example, 
it shows results for ii. = 10-4 and the temperature distribution of Equation (97), and a 
comparison for constant temperature. 

(4) First-order velocities Uo and Vo are also changed considerably by the inclusion of 
vertical temperature variations. For y > o. I these changes s·eem to be insignificant, 
but for smaller values of the mean inclination y the changes are substantial. Figure 24 
may serve as an example. 
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The parameters in Glen's flow law are n = 3 and k = 10-3, and Weertman-type sliding was used. 
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ture distribution according to Equation (97). For comparison results are also shownfor a constant temperature distribution. 
The parameters in Glen's flow law are n = 3, It = 10-3, and Weertman-rype sliding was used. 

5. CONCLUDING REMARKS 

In this article, first-order stresses and deformations in an ice slope have been determined. 
The fundamental governing equations have been formulated on the basis of the continuum 
mechanics of slow viscous flow of non-linear fluids. In the solutions, efficient use has been 
made of perturbation approximations, first to separate steady-state from time-dependent 
problems, and, secondly, by assuming that bottom undulations deviate only slightly from a 
plane. Using the amplitude of the bottom undulations essentially as the perturbation para­
meter, first-order corrections of the velocities and stresses could then be determined from a 
linear boundary-value problem. A detailed analysis of the steady-state flow of a nearly 
parallel-sided ice slope has been given, and emphasis laid on the transfer of bottom undulations 
to the surface, on longitudinal strain effects on basal stresses and surface velocities, and on the 
effect of spatial variations of these. Results can be summarized as follows . 

Contrary to previous claims, there is no universally preferred wavelength at which transfer 
of bottom protuberances to the surface is optimal. Generally, this transfer increases with 
increasing wavelength, yet at very distinct mean inclination angles and distinct values of the 
sliding velocity, filter functions do show a preferred wavelength at which transfer of bottom 
undulations to the surface is maximal. These wavelengths lie between 3 < A < 5, the 
maxima appear to be more pronounced when vertical temperature variations are taken into 
account than when constant material properties are assumed throughout. (We do not know 
whether mean inclinations and sliding velocities in the instances when preferred wavelengths 
were observed in the field were such that a preferred wavelength transition to the surface does 
exist.) The differences between our theoretical findings and those of Budd are important as 
they indicate that the wavelength spectra of steady-state surface undulations may not possess a 
distinct wavelength the cause of which could uniquely be related to bottom protuberances. If 
sliding and inclination are right, they do, otherwise one might speculate that x-dependent 
zeroth-order solutions, of the kind which must occur below an ice fall, might provide the 
answer to it (see Williams, 1979). 

As far as basal stresses are concerned, the analysis has indicated that their order of 
magnitude strongly depends on the spatial temperature distribution and on the type of sliding 
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law. Longitudinal strain effects on basal stresses are roughly twice as large in temperate ice 
as they are in cold ice. Moreover, for a Weertman-type sliding law they are smaller than for a 
sliding law in which sliding velocities are prescribed. This result is particularly important, as it 
indicates that the first-order stress distribution depends critically on the sliding law. Therefore 
as long as experts debate the proper form of the sliding law it is illusory to estimate longitudinal 
strain effects on basal stress. 

Differences due to basal boundary conditions are even more pronounced in the surface 
velocities than they are in the basal stresses. For Weertman-type sliding, first-order surface 
velocities are generally smaller than when sliding velocities are prescribed. 

Analysis of the accumulation-rate effects on the basal stress distribution showed further 
that it is in general not justified to neglect their effect. 

The above results are all subject to the validity of the applied perturbation scheme. 
Results indicate that this scheme breaks down at small wavelengths; the lower bound of 
wavelength to which solutions remain valid depends on the inclination of the ice slab and the 
sliding law. Typically, wavelengths must not be smaller than the ice thickness and for small 
inclinations of the ice slab may have to be as large as three times the ice thickness. 

As a consequence of these facts, calculations of the effects of longitudinal strain on basal 
shear as performed by Budd (197 I) are questionable, and conclusions from them must most 
likely be invalid. We could, if we so desired, repeat the Budd's analysis with our improved 
approach, but shall not do it here for the following reason. Bottom and top surfaces were 
assumed to deviate only slightly from straight parallel lines and protuberance amplitudes were 
assumed to be small compared with the glacier thickness. Such assumptions are somewhat 
unrealistic; top and bottom surface are rarely parallel, but their change along the axis is 
usually slowly varying. Stress variations with ice flow over undulations is thus better analysed 
using this less stringent hypothesis. Hutter (1981) presents the pertinent details. 

The analysis also showed that the temperature variation, which manifests itself in a 
position-dependent stress- strain relationship, may be taken into account without further 
difficulties. Contrary to the usual understanding, however, the ice slope need not be divided 
into a series of strips of uniform properties and, in particular, no restriction to a linear viscous 
law is required. Material properties may vary continuously according to independently-taken 
temperature records. Owing to space limitations, results have only been sketched in this 
regard. A detailed analysis for no slip has been given by Hutter and Spring (1979), and 
results for sliding at the bed have only been demonstrated for a very limited range of applica­
tions. They showed that under no circumstances is it allowable to disregard temperature 
variations in cold ice, and in particular, it is shown that filter functions and basal stresses are 
reduced by temperature variations. 

The above discussion is restricted to steady-state problems, but the theory was presented 
initially also for time-dependent problems. In particular, it would be interesting to see 
whether a kinematic wave theory could be derived from our governing equations. Formally 
this is the case; in fact Hutter (1980) gives the corresponding analysis. Explicitly he shows 
that the governing equations of surface waves travelling down an inclined slope can be 
derived from the above set of equations by merely invoking a long wavelength. To a first 
approximation, kinematic wave theory does evolve from the corresponding analysis, but 
calculations indicate it to be oversimplified. For details the reader is referred to Hutter ( 1980). 

Still further extensions are possible, however. The influence of global curvature effects is 
one of these, the behaviour at small wavelengths would be another. Future investigations will 
have to deal with these as well as different sliding laws and cavity formation. 
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