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Abstract

The elementary part of general topology is carried out in a system which is based on the arithmetically
definable theory of the reals with definitions by definable induction (DDI), where a formal object is
said to be definable if the quantifiers are restricted to the rationals, the names of the base members
and the elements of the spaces.

1980 Mathematics subject classification (Amer. Math. Soc): 02 D 99, 02 E 99.

Introduction: our stand

The purpose and the guideline of our program to study "definability problems"
in analysis were explained in our previous article Yasugi (1981a) and we shall not
repeat them here. Let us say, however, a little more about our stand and method.
First, our objective is to investigate the logical structure of mathematical thinking
in various branches of analysis, independent of specific properties of given spaces.
We therefore do not "construct" analysis as a counter-theory to classical mathe-
matics, do not analyze "constructive analysis" nor do we claim "this is construc-
tive analysis". Rather, we study classical texts of mathematics as they stand,
formulate the mathematical theories there in a very "economical" formal system
and observe the constructive (definable) aspects of them. We fully accept classical
mathematics but we are convinced through our endeavors (see above) that
mathematical thinking is quite "definable". That is why we use the term "defin-
able" rather than "constructive". This does not mean that we are against the
current trends of constructive mathematics; in fact we stand in with them. What
we would like to emphasize is that we investigate mathematics from the purely
foundational viewpoint.

This work is supported in part by Grant in Aid for Scientific Research Project No. 434007.
© Copyright Australian Mathematical Society 1983
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It is commonly held that the major obstacle in constructivizing mathematics is
the axiom of choice. In practice, however, as Bishop has elaborated in a series of
his works, common applications of the axiom of choice can be replaced by actual
constructions of the objects which are claimed to exist. Another point that is
usually brought into the discussion is the principle of excluded middle. The law of
the excluded middle per se, however, does not obstruct mathematical construc-
tions as long as comprehension is carefully controlled. Our intention is therefore
to establish machinery by which one can project most parts of analysis into the
definable world as soon as the spaces and other objects concerned are concretely
given.

We employ "definable" logic with definitions by definable induction (DDI) as
the basis of our machinery. (DDI was previously called «-type inductive defini-
tions.) Although the practice of mathematics in such a framework may appear
somewhat unnatural and complicated, it cannot be helped in the present state of
affairs. This is only the beginning of our program.

In this paper we demonstrate the definable nature of that part of point set
topology which has a direct bearing on metric spaces. Here we only lay the
foundations, hoping that the more sophisticated part of the theory will be
developed in our formalism. In a sequel to this article, we treat metric spaces in
the same framework (see Yasugi (1981b) for a summary).

The elementary theory of topology is carried out in a system which is a modest
extension of Peano arithmetic and which is sound relative to given spaces. The
topology of a space is determined by the base system whose members are named
by indices. It is sufficient to talk about the indices instead of the base members
(which are sets). Proof-theoretical arguments are much the same as in Yasugi
(1981a), although in the present paper the notion of definability admits quanti-
fication over any atomic type while in the previous paper it was only allowed over
the rationals. The reason is that here we do not "define" the space elements or
indices.

The arithmetical part of our system is Takeuti's system FA or FA { (see Takeuti
(1978)). Let us point out that in FA the content of any usual calculus text can be
developed completely. Thus, for example, the convergence of an increasing
sequence of reals which is bounded above can be easily demonstrated. The
intermediate value theorem is also a natural consequence.

Various other approaches to constructive mathematics are listed in the refer-
ences. Bishop's line of constructive analysis and its foundations (based on
intuitionistic logic) are seen in Beeson (1979), Bishop (1967), Bridges (1979),
Feferman (1979), Friedman (1977) and Myhill (1975). General topology as a part
of intuitionistic mathematics is dealt with in Troelstra (1966, 1968). Demuth and
Kucera have been engaged in constructive analysis along the lines of the Russian
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(31 Definability problems 401

school, which places emphasis on algorithms. See, for example, Demuth and

Kucera (1979). The difference of our approach from these should be clear from

the introduction in Yasugi (1981a) and the discussion immediately above. Yasugi

(1973) is a brief prelude to our present program.

Acquaintance with Takeuti (1978) and Yasugi (1981a) is assumed throughout.

1. Systems and axioms for one space

D E F I N I T I O N 1.1. Type. 1) T0, T, and T2 are respectively atomic types of distinct

sorts.

2) If o , , . . . ,an are types, [ a , , . . . , a j is a nonatomic type, which is also called a

higher type.

DEFINITION 1.2. 1) For the language of basic logic and arithmetic, see Defini-

tion 1.2 of Yasugi (1981a). In particular 0 is of type T0 and N is of type [ T 0 ] .

2) Symbols of a topological space are listed below.

\0,x0,A,X, U, eq,,eq2.

Types of those symbols are respectively as follows.

3) Predicates for DDI, / „ , / , , I2,....

The type of /, assumes the form [T0, p , , . . .,pk, a , , . . .,<*,], where pl,...,pk are

atomic types and a , , . . . ,a, are arbitrary. The type of /, is predetermined individu-

ally for each i.

DEFINITION 1.3. Definability, terms, formulas, abstracts, min and sequents are

defined similarly to those in Definition 1.3 of Yasugi (1981a). Let us remark on a

few points.

i) An object defined in our language is said to be definable if the only

quantifiers it may contain are of atomic type (which are not necessarily of

rationals).

ii) An expression of the form {i | / , , . . . ,^n}F(i / / 1 , . . . ,ipn), where F(\f/V. . . ,»//„) is a

definable formula and ^ , , . . . ,4> n are variables of type a,,...,an respectively, is

called an abstract of type [ a , , . . . , a j .

hi) If $ is a constant or a free variable of type [ a , , . . . , a j and if / , , . . . ,/„ are

terms or abstracts of type a , , . . . ,an respectively, then $ ( / , , . . . , /„ ) is an atomic

formula.

iv) The objects of function types are not involved here.
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402 Mariko Yasugi [4]

DEFINITION 1.4. Substitution of an abstract for a free variable in an expression
can be defined as usual; see for example Takeuti (1975) or Takeuti (1978).

We follow the notational conventions (adjusted to the present context) in
Definition 1.2 of Yasugi (1981a). In particular, x, y,..., will be used for variables
of type T2 and X, fx,... for those of type T,.

DEFINITION 1.5. Logical system £. The logical system £is the predicate calculus
of our language with the definable comprehension rule; namely the abstract of V
left of a higher type is definable. See Definition 1.4 in Chapter 1, Part II of
Takeuti (1978) and Definition 1.4 of Yasugi (1981a) for the details.

DEFINITION 1.6. We define three sets of axioms in our language, &, *S, and 6.
1) & will stand for the set of axioms of arithmetic; see Definition 2.2 in Chapter

1 of Part II in Takeuti (1978) and 1) of Definition 1.5 in Yasugi (1981a).
2) $ will stand for the set of axioms of topology listed below.
<$1. VAA(X). VxX(x).
<&2. A(X0). X(x0).
®3. Equivalence relations with respect to eqt and eq2. Let us write d = e for

eq,(d,e),i = 1,2.

Vx(x = x), VJC(X = y V y = x),

VJCV^VZ(X = y A y = Z h x — z).

<3>4. Vx(X(x) « 3XU(X, x)).
%5.VX3xU(X,x).
®6. VAVjuV;tVy(X = fi A x = y A U(X, x) h U(fi, y)).

, x) A U(n, x)

H 3v(U(r, x) A Vy(U(v, y) V U(X, y) A U(n, y)))).

These axioms suggest the following interpretations of the symbols. X is the set
(called the space) upon which the theory of topology will be built. U represents a
base for X whose members are indexed by the elements of A. Xo and x0 are
designated elements of A and X respectively. Notice that the axioms in % are
definable.

3) 6 will stand for the set of axioms of definitions by definable induction
(which we abbreviate to DDI) given below.

Let Gj(m, <p,,... ,<pk, ^u. • •,$„, $ ) be a definable formula which does not
contain any of /,, Ii+X,.•., where w, <pu...,<pk, 4*\,- • -^i, ^ exhaust all the free
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[5] Definability problems 403

variables G, may contain, <pu...,<pk are of atomic type, and <& is of appropriate
type. DDI is as follows.

VwV<p, •••V<pAV^1 •••V

where /;[m] abbreviates

{ " X i • • • X * : } ( " < w A / , • ( " » X i . - - - , X t » ' / ' I . • • • » ' / ' / ) ) •

Although G, should be specified in developing mathematics, the particular form
of G, is irrelevant in proof-theoretical arguments.

DEFINITION 1.7. Elementary theory of topology, 5". A sequent r -» A of our
language is said to be a theorem of 9" if 6E, $ , 6 , F -» A is provable in the system
£, where (2, <S and C in the antecedent represent finite sequences of formulas
from &, $ and Q respectively.

DEFINITION 1.8. Definable instantiations of the axioms in & and Q can be
defined as in Definition 1.7 of Yasugi (1981a). The universal quantifiers there can
be of any higher types here.

Henceforth &' will stand for the set of all definable instantiations of & and &*
will stand for a finite sequence from &'. Similarly for 6.

DEFINITION 1.9. Logical system 9IL. 9H is obtained from £ by suppressing all
variables of higher types.

DEFINITION 1.10. System 9. <$ is the system 91L augmented by the following.
1°. Rule of inference: mathematical induction applied to the formulas of 9H.
2°. Initial sequents: formulas of &' (with regard to any instantiations) except

the instantiations of the mathematical induction.
3°. Initial sequents: formulas of 6' .

2. Relative soundness

The following proposition is proved similarly to Theorem 16.5 of Takeuti
(1975).

PROPOSITION 2.1. Cut elimination holds in £ (see Definition 1.5).
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THEOREM 1. Let T -> A be a sequent which expresses an elementary theorem of
the reals or of general topology {with one space). Then it is a theorem <?/?T, namely
&, •$, &, F -» A is provable in £, hence without cuts.

PROOF. For the theory of reals, see Part II of Takeuti (1978). The remaining
sections of this article are devoted to the development of the elementary theory of
topology in 9".

Following the arguments in Section 2 of Yasugi (1981a) we obtain

PROPOSITION 2.2. The consistency of<3> relative to <dP implies that of {&', $ , &'}
relative to 91L, which in turn yields that of {&, ©, 6} relative to £.

THEOREM 2. 9 is consistent.

PROOF. The proof of this theorem is a simplified version of that in Section 4 of
Yasugi (1981a). Here one needs the well-ordered set Ix = Io U /, U • • • U/,
U • • •, where /, = {(_/, /) ; ; ' e / t } U {oo,} and /„, = « U «, in defining the rank
of an occurrence of /, in a formula. Thus, | Ix | = (2w + \)u = w2. The grade of a
formula can be defined to be its norm, which is an element of w" . The system A
is therefore w"2. In assigning the elements of II(A) to the sequents in a proof, we
need not consider comprehension, since there is none.

THEOREM 3 (relative soundness). The theory ?T is sound relative to %. In other
words, the elementary theory of topology is sound relative to the theory of the given
space.

PROOF. By Proposition 2.2, and Theorems 1 and 2.

3. Basic properties of topology

DEFINITION 3.1. 1) ss(Z; A) will stand for the relation Vx\/y(x = y A A(x) (-
A(y)), where x and y are variables of type T2. SS(X; A) is read "A is a subset of
X." Subsets of A are defined similarly.

We use A, B, C,... to denote subsets of X, hence a restrictive expression such
as ss(X; A) I- F{A) will often be abbreviated to F(A).

2) If F(\p) is a definable formula, then {\p}F(\p) will be regarded as a set (of ^
satisfying F). Thus <p e {\p}F(\p) will express F(<p). {^}F(i//) will also be written
as {\p; F(\p)} or simply F. n , U and X-* correspond to A, V and -, respectively.
So, for example, A U B is defined to be {^: A(^) V B(t//)}.
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|7] Definability problems 405

We list some abbreviations. A C B: Vip(A(\p) H B(\p)),

A=B:Vt(A{ + )~B{t)), A = ep: V*-,,4(*) and {*}: (X; X = * } •

Let F and G be definable. Then U {F(ip); i ( /£G): {<p}3$(G(rp) A F(^, 9)),
where \p is a variable of atomic type, and Pi (F(^); ^ G G}: {q>}\/4>(G(4>) \-

THEOREM 4. 77ie definability property and the subset property are both preserved
under the set theoretical operations D, U, X-*, D a«*/ U , when, for the last two,
the defining formulas F and G are definable.

From now on the statement in a proposition is to mean that it is provable in £
under the hypotheses of &, % and (3, or to mean that it is a theorem of S" (see
Definition 1.7). The proofs are formalizations of usual mathematical proofs
(mostly taken out of Sections 8 and 9 of Royden (1968)); one has only to note
that comprehension abstracts are definable. Although the arguments in this and
subsequent sections are strictly formalizable, we shall state and prove proposi-
tions in a semi-formal manner so that it will assume the look of the usual text of
topology. We shall deal with some exemplary cases, and what is not included in
this paper can be formalized using a similar routine. We make these remarks here
once and for all.

DEFINITION 3.2. opn(y4) (A is an open subset of X):

ss(*; A) AVx<E A3\{x £ U(\) C A).

sbf(0) (6 is a subfamily of the base w):

PROPOSITION 3.1. opn complies with the usual notion of open sets. Let us list a few
of its properties.

1) opn(A), opn(B) -> opn(,4 n B).
2) sbf(0) -> V\ss(JV; 8(\)) A opn(U (0(\) ; X G A}).
3) V , K * W H opn(*(*)) - opn(U {*(*);

PROOF OF 1).

x G A n B -» 3X3n(x E U(X) C A A x G £/(/i) C 5 ) ;
x G u(X) n {/(jn) -H. a».(x G u(v) c c/(X) n u(n)).

So,

G U(P) CA HB).
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DEFINITION 3.3. rl(C, X, x): ss(*; C) A x G C n U(X).

rlopn(C, A): ss( A'; ^ ) A ss(Z; C ) A ^ C C A V x G ^3 \ (x G C f l U(\) C

PROPOSITION 3.2. {A}rlopn(C, A) can be regarded as the relative (to C) topology
and {X, x} rl(C, X, x) can be regarded as a base for the relative topology.

DEFINITION 3.4. Sequence and convergence. Let 5, S, and S2 be variables of the
appropriate type.

sq({«, x}S(n, x))(5 is a sequence from X):Vn3xVy(x — y <=> S(n, y)).

cnv(5, x)(S converges to x):

sq(5) A VX(x e U(X) h 3mV« > mVy(S(«, y)\-

clst(5, x)(x is a cluster point of S):

sq(S) A V\(x £ C/(X) h Vm3n ^ wV^(5(w, ^) h

sbsq(5,, S2)(S2 is a subsequence of S^:

sq(5,) A sq(52) A V«Vx(S2(n, x) h 3w5,(w, x))

AV«V/VxV>'VwVA:(52(«, x) A 52(/, y) A n < I

AS,(m, x) A 5,(it, .y) h w < A:).

PROPOSITION 3.3. sq, cnv, cist and sbsq comply with the usual mathematical
notions suggested in parentheses. For example,

1) sq(S) <-> Vn3\xS(n, x) A VnVxVy(x = y A S(«, x) h 5(n, >/)), w/iere 3!JC
expresses the unique existence of x with respect to eq2.

2) cnv(S, x) -* clst(5, x).

DEFINITION 3.5. clsd(A)(A is closed): opn( A" — ^4).
G f/(X) h -<u(X) Di4 = 0))}.
G U(X) h -,(t/(X) DA = 0 ) A-,([/(X) n ( A r - ^ ) = 0))}.

int(^): {x; 3X(x G C/(X) C ^) ) .
clst(^): {x; VX(x G C/(X) h -,((t/(X) - {x}) n ^ = 0))}.

PROPOSITION 3.4. The definability property and the subset property are closed with
respect to cl, bd, int and cist, and these express respectively the closure, the
boundary, the interior and the set of cluster points of A.

1) clsd(^) -> ss(*; A); clsd(<p);
2)clsd(cl(v4)).
3)clsd(^)«-»y4 D clst(^).
4)c\{A) = A U clst(^).
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PROOF. We work 4) as an example.

d(A) D A by definition and clsd(cl(^)) by 2). So by 3)

d(A)^ clst(cl(^)) D clstU).

Thus D follows.

xGc\{A)A^xGA ^VX(xG U(X)\- -,{U(X) - {x}) HA = 0))

-> X G clst(/l),
which implies C .

DEFINITION 3.6. dcm(^, B): opn(A) A opn(B) A -,A = 0 A -,B = 0 A

cnn(A'): \/AVBdcm(A, B).

PROPOSITION 3.5. crn^X), clsd(C), opn(C) -> C = XV C= 0.

PROOF. Put A : C and B: X - C in -,dcm(y4, 5).

4. Maps between spaces

DEFINITION 4.1. Here we consider three spaces X, Y and Z, and thus add types,
constants, variables and axioms for Y and Z. (See Definitions 1.1 through 1.8.)
We shall not go into the details. We use X, x, A, U for X, n, y, B, V for Y and
v, z, C, W for Z, where X G A, x G X, A C l and { / C A X I a r e assumed; and
similarly for Y and Z.

Proposition 2.1 holds for the thus enlarged language.

THEOREM 1'. Theorem 1 of Section 2 holds, where T -> A can be a theorem on
maps between spaces.

The rest of Section 2 goes through. In particular we have

THEOREM 3'. The theory of continuous maps between spaces is sound relative to
the definable theories of the given spaces.

Now to the proof of Theorem 1'.

DEFINITION 4.2. For the notions and operations which are common to all
spaces, such as opn, clsd and cl, we shall use the same symbolism. Thus, for
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example, opn(A) will mean that A is open in X, while o p n ( 5 ) will mean that B is
open in 7.

mp(/, A, 7)( / is a map fromv4 to 7):

s&(X\A) A Vx GA3\yf(x,y)

AVxVu\/yVv(x = u Ay = v Af(x, y) h f(u, v)).

img(/, A) (the image of A by / ) : {y; 3x G Af(x, y)}.
inv(/, B) (the inverse image of B by/) : {x; 3y G Bf(x, y)}.
cnt(/, A, Y) ( / is a continuous map from/I to 7):

mp(/, 4 , 7) A V,irlopn(^,inv(/, V(n))).

inj(/, /I, 7) ( / is injective):

mp(/, A,Y) AVx G ^ V M G ^ V J ( / ( J C , >>) A/(«, j>)h * = H).

srj(/, ^, 7) ( / is surjective): mp(/, ,4, 7) A Vy3x E Af(x, y).
cntinv(/, A, 7) (/has a continuous inverse):

hmm(/, X, 7) ( / is a homeomorphism between Xand 7):

inj(/, X, 7) A srj(/, X, 7) A cnt(/, ^ , 7) A cntinv(/, X, 7 ) .

We can define the same concepts for maps between 7 and Z and between X and
Z.

cmpmp(ft, /, g) (h is a composite map of/and g):

mp(/, * , 7) A mp(g, 7, Z) A mp(/i, * , Z)

AV*Vz(&(x, z) ~ 3>;(/(x, ^) A g(j;, z))).

/ t 4̂ (the restriction off to A): {(x, y); f(x, y) A x G ^ } .
We shall omit the letters A', 7 and Z when ambiguity is unlikely.

PROPOSITION 4.1. 1) When mp(/ , A,Y) is assumed, the definability property and
the subset property are preserved under img, inv and \ .

2) The predicates and abstracts defined in Definition 4.2 serve as the usual
mathematical notions.

PROOF OF 2). Consider cnt(/), opn(fi) -> opn(inv(/, B)) as an example.
x G inv(/, B) ~ 3y G £/(x, >>): j £ B ; opn(fi) -^ B ^ ^ G F(/*) C B); x G
inv(/, B),y G B, opn(5) -» x G inv(/, F(fi)). Thus, for a ju as above,

3X(x G U(\) C inv(/, F(/i)) C inv(/, B)),

or opn(inv(/, B)).

PROPOSITION 4.2. 1) cnn(A'), cnt(/, X, 7), srj(/) -* cnn(7); «?e Definition 3.6
/or cnn.
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2) cnnCX), cnt(/, X, R), 3x3w(/(x) < a </(«)) -* 3z(/(z) = a), where R
stands for the set of the (definable) reals, a stands for a real, < and — are relations
of reals, and x, u and w are supposed to be some elements in X. The notations are
slightly different when reals are involved. For instance, / ( x ) stands for [t}f(x, t), t
denoting the rationals, and f(x) < a abbreviates 3/(-,/(x, t) A a(t)). See Takeuti
(1978) for the details.

PROOF. 1) dcm(y, B, D) -> dcm^invC/, B), inv(/, D)).
2) Put / = (-oo, a) and J = (a, oo), A = inv(/, / ) , B = inv(/, J) and C = A

U B. Thus ->C = X under the assumption, and so 3z e X(-^f(z) 6 / U 7).
/(z) = a for such a z.

5. Separation axioms

Henceforth we work with one space besides the real space, and hence shall
return to the notations in Sections 1 and 2.

DEFINITION 5.1. In the following T(/) expresses that a given space is a T,-space.
T(l): VxV^(-,x =y h 3X(y e U(\) A -,JC E f/(X))).

T(2): VxVK-,* = j I- 3X3jn(x G f/(X) A ^ G t/(/t) A f/(X) n U(n) = 0)).

In the following, x, p, "", 0, •q are variables of appropriate type.

T(3; X, P):

T(l) A VxV£(-,x G £ A clsd(£:) I- opn(X(x, E)) A opn(p(x, £) )

Ax G x(jc, E)AEC p(x, E) A x ( x , £ ) D p(x, £ ) = 0 ) .

This reads "Xis regular by x and p". Similarly for the following two.
T(3±; W ) :

VxV£(-,x G £ Aclsd(£)

h cnt(u-(x, £ ) , X, /?) A W(JC, £ , x, 1)AV);G Eir(x, E, y,0)).

T(4; ff, r,):

T(l) A VDV£(clsd(Z>) A clsd(£) A D D £ = 0

1- opn(0(£>, £)) A opn(7)(£>, £)) A D C 0(2), £ )

AECr](D,E) A6(D,E) n 7}(Z>, £) = 0).

PROPOSITION 5.1. 1) T(l) <-» Vxclsd({x}).

PROOF OF T4 - T3. Assume T(4; 6, T,) and define xo(^, v) to be (x, £}«({x}, £ )
and po(0, TJ) to be {x, £}T,({X}, £) . Then T(3; Xo(«. i
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The following is the first case that requires the principle of DDL

PROPOSITION 5.2 (Urysohn's lemma). There is a definable/ = f(0, TJ) such that

T(4; 0, TJ) -> V£>V£(clsd(Z>) A clsd(£) A D f l £ = 0

h cnt(f(6, i,, D, E), X,R)A0 </< 1

A(f=0onD) A(f=\ onE)),

where we have employed abbreviated notations whose meanings should be clear from
the content.

PROOF. First notice that cnt(/, X, R) can be expressed as follows.

mp(/, X, R) A VrVs{r < s \- opn({x; r < {t}f(x, t) < s})),

where r, s, t stand for rationals and < is taken to be the order relation of the
reals.

Assume T(4; 0, t\), clsd(D), clsd(£) and D n E = 0.
l°.Put B:0(D,E),C: r)(D, E) and A: X- E. Then

(1) Z ) C B C c l ( 5 ) c C C / ( .

2°. Let exp(a, b) express ab, and let K be an arithmetically definable enumera-
tion of {(m, n ) ;0< wexp(2, -n) < 1). Write 8(1) = wexp(2, -n) if K(/) =
{m, n). We are to construct a definable formula G(l, x, D, E, 0,17, 4>) such that,
under the assumption and with the scheme of DDL /(/, x, D, E,0,i\) «->
G(l, x, D, E, 0, TJ, /[/]), (2) below holds. Here /[/] abbreviates [k, y}(k < I A
I(k, y, D, E, 0, T))), and we write /(/, x) for /(/, x, D, E, 0, TJ) and /(/) for

l, x).

(2) V/(0 < 8(1) < 1 h opn(/(/)) A D C /( /) C A)

AV/V/t(0 < 8(1) < 8(k) < 1 h

We shall give an informal account of defining /(/) from 1(0),...,/(/— 1), which
will explain how to construct G.

Put 7(0): B, or 0(D, E). Suppose 1(0),... ,1(1 - 1) have been defined so as to
satisfy (2), and suppose /, and l2 satisfy that /,, 12<1 - 1, 8(/,) < 8(1) < 8(l2)
and 8(l{) and 8(l2) are each adjacent to 8(1). Then cl(/(/,)) and X — I(l2) are
each closed and disjoint with one another (see (2) above). Thus one can apply the
method in 1° to cl( 1(1^) (in the place of D) and X - 1(12) (in the place of E).
Now if we put

then opn(/(/)), D C /(/) C A and cl(/(/)) C I(l2). Thus by the hypotheses (2)
holds for all k < /.
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It is a matter of routine work to formulate the procedure above to give a precise
form to G. We may assume that this G is Go and the corresponding / is 70 in our
language.

3°. Define/by/(x, t): t < 1 A V/(x G /(/) I- / < 8(1)). mp(/, X, R), 0 < / <
1, " / = 0 on D " and " / = 1 on E " are easily proved.

For continuity, it suffices to establish opn({x; f(x) < s}) and clsd({x; f(x) <
5}) for any rational s in [0,1]. Let J(r) denote /(/) if r = 8(1). Then, by the
definition of / (x; f(x) < s} = U {/(/•); r < s} and {x; /(x) < s} =
n{d(J(r));r>s}.

PROPOSITION 5.3 (Tietzes's extension theorem). There is a definable g = g(6,-q)
such that

T(4; 6, TJ) - VZ)VA(clsd(Z>) A cnt(/i, D, R)

V cnt(g(e,t],D,h), X,h) A g = honD).

PROOF. Assume T(4; 0, ij), clsd(D) and cnt(h, D, R). Using Urysohn's lemma,
we can construct a sequence of maps {e(n)} satisfying

V«(cnt(e(«), X,R) A\ e{n) |< exp(2, n - l)/exp(3, n)

A| e(0) - 2{e(i); i = l , . . . ,n} |< exp(2, «)/exp(3, n) on D),

where 2{e(/); / = \,...,n) is the summation of e(\),.. .,e(n).
Formalizing the mathematical construction of {e(n)} in a form

Gx(n, x, t, h, D, 6, TJ, /[«]) with G, definable, e can be regarded as a predicate
constant 7, to which we can apply DDI:

/,(», x, /, h, D, $, T,) « (?,(«, x, /, A, 7), «, 7), / ,[»]).

4°. Define^(n, x) = 2{e(/, x); /' = 1,...,«} and ^(x) = limsup{/?(«, x); n =
1,2 , . . . } . Then q(x) = ]im{p(n, x); n = 1 , 2 , . . . } . Put g = q/(\ -\q\).

PROPOSITION 5.4. There are definable Xi .P i a"d ^o sucfl tfiat T ( 3 i ; "•) -»
T(3; Xl(ff), p,(w)) a«^T(4; tf, i,) - T(3^; ̂ (6, i,)).

PROOF. By Urysohn's lemma where £ = {x}.

6. Notions of compactness

There is no prospect of formulating the classical notion of compactness in our
language. In metric spaces, however, various notions of compactness are all
classically equivalent and a compact space is automatically separable. In fact it
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turns out that in a definably separable metric space, sequential compactness,
Bolzano-Weierstrass property and countable compactness are mutually "defin-
ably interpretable". This fact is proven in a sequel to the present paper. It is most
convenient to work on sequential compactness in the general setting.

DEFINITION 6.1. sq(A, 5 ) :

ss(X;A) Asq(S) A VnVx(S(n, x) h x EA).

scmp(A, Q>)(A is sequentially compact by 4>):

ss(Ar; A) A VS{sq(A,S)\- sbsq(S,$(S)) A3x G ylcnv($(S), x)).

Notice that sequential compactness can be formulated with the aid of a
parameter if the concrete structure of X is not known.

PROPOSITION 6.1. 1) scmpCA'; 0), c\sd(A) -> scmp(y4, 0).
2) scmp(X, $), cnt(/, X, Y), srj(/) -» scmp(Y, * ( / , *)), where ^ ( / , $)(5) is

defined to fce/($(inv(/, S))).

DEFINITION 6.2. 1) opnsq(a): V/opn(a(/)).
opncv(y4, a): opnsq(a) A V* E A3i(x G a(/)).
fncv(̂ 4, a): opnsq(a) A 3«Vx G yl3j < n(x G a(/)).
ccmp(^4) (A is countably compact):

88(^5 A) A Va(opncv(^, a) I- fncv(A, a)).

2)clsq(i8): V/clsd(i8(/)).
fip(/8): clsq(/8) A V«3x G D (j8(/); / < n}.
FIP (X satisfies the finite intersection property):

VjB(fip(j8)h 3 x G D { j 8 ( i ) ; / = 1,2,. . .}).

BW (Bolzano-Weierstrass property): V5(sq(S) V 3xclst(5, x)).

PROPOSITION 6.2. 1) ccmp(Z) -> FIP.

3) ccmp(X), clsd(^) -> ccmp(y4).
^ccmpC^) ^ BW.
5)scmp(X, $ ) - ^ B W .

PROOF. We give the proof of 1). Assume ccmp(X), fip(yS) and Pi (yS(/); / =
1 ,2 , . . .}= 0 . Define a*(i) to be X - P(i). Then opncv(X, a*). So, by ccmp(X)
applied to a*, fncv(JT, a*), hence 3n(X = U {«*(/); / < «}), or 3n( C\ {j8(/); / <
«} = 0 ) , contradicting fip(y8). So 3x G D {P(i); / = 1,2,.. .}.
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PROPOSITION 6.3. ccmp(A'), cnt(/, X, Y), srj(/) -> ccmp(7).

PROOF. Assume the premise and suppose opncv(7, y). Define a*(i) to be
inv(/, Y(0). «* i s definable and opncv(X, a*). So 3n(X = U {a*(i): /<«}) ,
hence 3n(Y = U (y(/); / < «}).

The notions and the consequences concerning the upper semicontinuous func-
tions can be formulated in our system. This includes Dini's theorem.

DEFINITION 6.3. K(A): opn(y4) A ccmp(cl(,4)).
LCMP(a) (*is locally countably compact by a): VJC(X G o(x) A K(a(x))).
CCB(T): VXccmp(cl([/(X))) A VX3!X(T(X, X) A U(X, x)).

PROPOSITION 6.4. 1) If we define o0(x) to be X for every x, then ccmp(A') ->
LCMP(a0).

2) Under the assumption of LCMP(a), [A; ̂ (^4)} forms a base in the sense of
(1) and (2) below.

(1) Vx(x GJf« 3B(x GfiA K(B))).
( 2 ) V X V 5 V C ( J C G B n C A ^ ( 5 ) A /« : (C) h 3 D ( x G D A # ( £ > ) A D C

fin c ) ) .
3) £>e//ne A:o(X): K(U(X)). Then Ko serves as a base for X.
4) CCB(T) -» LCMP({x, J}3X(T(X, X) A [/(X,

7. Countability axioms

In order to express the countability property, the axioms on the space (the
axiom set <$>) must be presented in a manner suitable for that purpose. We leave
the formulation of the first countability axiom to the reader.

DEFINITION 7.1. The theory T̂ where A is N will be called the theory of
topology with the second countability axiom and will be denoted by ?T2.

DEFINITION 7.2. spr(S) (X is separable by S): sq(S) AX= cl(S).
dsg(T) (Tis a set of designated elements of base members):

sq(T) A VnVj(T(«, y) h y G £/(«)).

PROPOSITION 7.1. The following are theorems of%.
1) dsg(r) - spr(r).
2) T(2), ccmp(^) -> clsd(/l).
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3) ccmp(X), cnt(/ , X, Y\ srj(/) , inj(/) , T(2; Y) - hmm(/) , where T(2; Y)
reads " Y is a T2-space."

PROOF OF 2). Assume T(2) and ccmp(/l). It suffices to show opn( A" — A). Let
y £ X — A. Put

G(m,y):3x £ A3n(x £ £/(m) Aj; £ [/(«) A t/(w) n [/(«) = 0 ) .

Then ^ c U {U(m)\ G(m, y)} by T(2). So, ccmp(/l) implies

3A:(y4 C U [U(m)\ G(m, y) A m < A:}).

Also,

G(w, y) -> 3n(^ £ [/(«) A t/(w) D t/(«) = 0 ) .

If we define

j»(m) = min(«, y £ t/(«) A U(m) n t/(/i) = 0 ) ,

then

3fc(^ £ fl {U(v(m)); m < k) C A"-,4) A opn( D {U(v(m))\ m < A:}).

This imphes opn(A" — ^4).

8. Product space

We shall work on the product of a sequence of topological spaces. Here we
consider a language with the new letters E and 0 , where E represents the universe
of elements and 0 represents the universe of indices.

DEFINITION 8.1. 1) Let 0 , E, A, X, Q, | 0 , t0, eq, and eq2 be constant symbols.

Types and intended interpretations of them should be figured out from the
axioms given below; consult also some definitions in Section 1.

2) ^ will stand for the axiom system on a sequence of topological spaces.
^Dl. Equivalence relations eq, and eq2 on 0 and E respectively. As before, we

use = for both.
6D2. VwV«VX(A(w, X) A A(/i, X) h m = n).
^ 3 . VX(0(X) <=» 3mA(m, X)); Vx(E(x) «• 3mX(m, x)).
^ 4 . Vm3!X((0(w, X) A A(m, X)); Vw3!x(|0(m, x) A X(m, x)).
•5D5. VwVXVx(B(w, X, x) h A(w, X) A X(m, x)).

VmVx(X(m, x) h 3X(A(w, X) A Q(m, X, x))).
<3D6. VmVXVj^VjcV^X = ft A x = _y A B(w, X, x ) h £l(m, ju, j ) ) .

^D?. VfflV\(io(m, X) h Vx(Ar(w, x ) <=> J2(w, X, x))).
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^ 8 .

VwVXV/iVx(A(w, X) A A(m, ft) A X(m, x) A £2(w, X, x) A fi(w, ju., x)

I- 3v(A(m, v) A O(w, v, x) A V y ^ m , j>) A £2(m, j>, >>)

I- to{m,\, y) Ato(m,p, y)))).

PROPOSITION 8.1. For every m regarding A(m, X) as X G A, X(m, x) as x G A',
fi(w, X, x) as x G f/(X), //ie unique element of t0 as Xo anJ f/i£ unique element o/£0

as x0, </ie axioms in <$> (Definition 1.6) are provable uniformly in m. Thus the
elementary theory of topology we have developed so far can be developed here
uniformly in m.

Note. We can write various notions in each space by placing m as a parameter.
For example,

opn(w, A): A C X(m) A V x £ A3X(A(m, X) A U(m, X) C A).

DEFINITION 8.2. Product space. Let £ and i be variables of appropriate type.
The products of the index sets and the spaces are defined as follows.

II A( i ) : VwVXV/x(X = /x A t ( m , X ) h t (w , / t ) ) A 3nVw > n

VX(i(m, X) h X = Xo) A Vm3!X(A(w, X) A i(m, X)).

II X(l): VmVx\/y(x=yA £(m, x) I- £{m, y))
AVm3\x(X(m, x) A £(m, JC)).

We write i G IIA and £ G IIX respectively for the relations above.

PROPOSITION 8.2. t0 G IIA and £0 G IIX; thus the nonemptiness of the product
space trivially holds (presuming that each space in the sequence is non-empty).

NOTATION. We shall henceforth assume that t G IIA and £ G WX, thus shall
omit restrictive expressions such as "t G IIA h ".

DEFINITION 8.3. £, = £2: VmVxVy^^m, x) A £2(m, y) \- x = y).
| , = £2: VmVx(C,(m, x) « £2(w, x)).

Similarly for t, = i2
 a n <i *i = li-

PROPOSITION 8.3. = and = are equivalence relations for their respective types.
£j = £2 if and only / /£ , = £2- Similarly for i. We can thus regard either of = and =
as an equality relation for the product.

DEFINITION 8.4.

Vi < mVXVx(t(j, X) A £(/, ^ ) I" Q( ' , X, x)).
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PROPOSITION 8.4. 1) 2(0, t0, £).

2) There is a definable M such that, abbreviating {/', v}M{m, n, t,, t2 , | , /, v) to

K,

VmV«V t l V t 2 V^(2 (m, . , , { ) A 2 ( n , t2, | )

I- 3 / ( 2 ( / , K, £) A V f ( 2 ( / , ic, 0 h 2 ( m , i , , f ) A 2 ( n , i 2 , ? ) ) ) ) •

3)

V m V ^ V ^ V ^ t , = i2 A | , = £2 A 2 ( m , i , , € , ) h 2 ( m , i 2 , | 2 ) ) .

1) ~ 3) claim that

as a fca^e /or II A" wfcere ?/ie /«rfex ê< is N X IIX

PROOF OF 2). Put / = max(m, n) and k = min(w, /?). Then define

M(m, n, i,, t2, | , i, ?) : [i < * A 3\3/ i3x(t , ( i , X) A i2(/, ft) A £(i,

/, v, x) A V^(fi(/, »-, y)(V fi(/, X, j ' ) A i2(/, /x,

REMARK. If one wishes to develop the elementary theory of topology on the
product space, one can do so by redoing the arguments in Sections 3 to 7 with the
axiom system in Proposition 8.4 above. Since Proposition 8.4 can be established
in £ under the assumption of <>D as well as & and (3, it is sound relative to 6D. So,
by reapplying Theorem 3 in Section 2, one can claim that the theory of the
product space is sound relative to D̂.

PROPOSITION 8.5. 1) If we define ir(i, £, x) to be £(/, x), then mp(ir(i),UX, X(i)).
2) With a p = p(i) defined below -n{i) is continuous.

p(i, j , X, ft, | ) : (j = i A fi = X) V (_,y = i A to(j,,,)).

DEFINITION 8.5. For any two topological spaces X and Y, define opn(/, X, Y)
to be mp(/ , X, Y) A V^(opn(X; A) h opn(7; f(A))).

PROPOSITION 8.6. opn(7r(/),IlAr, X(i)).

PROOF. Assume opn(^), f G A and w(/)(|) = x. 3n3i(£ G S(n, t) C ^ ) by
definition. But

2 ( » , «, I ) - V7 < nV\\fy(i(j, X) A £ ( ; , j ;) H Q(y, X, y)).

So ff(/)(2(n, 0) c w(/)(^) and x G w(/)(2(n, t)) = ^ ( ' , X) where t(/, X).
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Notice that, although we have proven an existential statement of a higher type,
no comprehension has been used.

PROPOSITION 8.7. cnt(/ , Y,UX) ~ V/cnt(7r(/) ° / , Y, X(i)).

PROOF. (->) Assume cnt(/, Y, IIX). Suppose U C X(i) and opn(f/) in X(i). By
2) of Proposition 8.5 U*\ in\(ir(i), U) is open in II A', hence inv(/, [/*) is open in
Y. So, inv(ir(/') ° / , U) is open in Y.

( ^ ) Assume V/cnt(fl-(z) o / , Y, X(i)). Suppose W is open in IIX Let W be
Z(/i, 0- T(/)(Jf) is open in X(i) by Proposition 8.6. But <n{i){W) is *( / ) if i > n
and it is fi(i, X) if / < n, where t(i, X) is satisfied. Thus inv(/, inv(7r(z), ii{i){W)))
is open in Y and W = D {inv(w(/), wCX^)) ; ' < «}• So inv(/, H )̂ =
D (inv(/, inv(w(i), 77(/)(W))); i < «}, which is open in Y.

PROPOSITION 8.8. The product of a sequence of Hausdorff spaces is Hausdorff,
where we assume that the Hausdorff property is defined uniformly in i {by parame-
ters y and 8); namely,

, y G X(i) A -,x = y

h 3X3j»(y(i, x, y, X) A S(i, x,y,n)AXG 0 ( i , X)

A_y G £2(j, /i) A fi(/, X) n Q(/, /i) = 0 ) ) .

9. Product of sequentially compact spaces

PROPOSITION 9.1. Let S be a parameter of appropriate type. Define a(X; n, £) to
be V/Vx(£(z, x) <=> S(n, i, x)). Under the assumption that Vn({/, x}S(n, i, x) G
IIX), {n, £}o(S, n, £) is a sequence from UX; that is: VH3£VT)(£ = TJ <=> a(S; n, rj))
is provable in our theory.

Due to the specific form of 2 , we may regard S itself"as a sequence from IIX.
Thus, we shall work on 5 hereafter.

PROPOSITION 9.2. Suppose X(i) is sequentially compact for each i {uniformly in
i). Then there is a definable $* such that, for any S a sequence from ][X in the sense
above, $*(S) is a subsequence of S which converges in IIX.

PROOF. Assume V/ scmp(Ar(/), $(/)) and suppose S is a sequence from IIX.

Rewrite S{n, 1, x) as T(l, n, x). Then

G X{l)Vy(E X{\)(x = y ** T{\,n,y)).
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, T(l)) is a subsequence of T(\) in X(l) that converges, namely 3y G
X(l)cnv($(l, T(l)), y). Let us write this as 3yQ(\, y). <E»(1, T(\)) determines a
sequence of natural numbers {j}M{\, j) so that 0(1, 7(1)) = {j}T{\, M(\, j)).
Then {j, i, x)S(M(\, j), i, x) is a subsequence of S in IIX

Similarly, we can define M(I, j), T(l) and Q(l, y) for / = 1,2,..., which
satisfy the following.

* ( / , * ( / - 1 , . . . , * ( 1 , { / I , J C } S ( H , 1 , J O ) •••))
= {j}T(l, M(l, j)) = {j, x}S(M(l, j), I, x);

So, 3!>- e X(l)Q(l, y), {j}M(l + 1, j) is a subsequence of {j)M(l, j) and
{j}T{l + 1, M{1 + 1, j)) is a subsequence of {j}T(l, M(l, j)) in IIX Now define
$*(«, x) to be 7(«, M(«, n), x). {n}M(n, n) is an increasing sequence of natural
numbers, and 0* is a subsequence of S. Redefine Q(n, x) as !*(«, x). Then
I* £ IIX It is a routine work to establish cnv($*, £*) in IIX.

The definability of the inductive construction of $* from 5 should be clear
from the discussion given above.

Note. In order that a be a sequence from IIX, one should assume a parameter S
which represents the «th entry of a for each «, that is: V«({/, x}S(n, i, x) G IIX)
A V«V|(a(n, | ) «=» V/VJC(|(/, X) «* 5(n, /, x))) should hold. It is therefore suffi-
cient to deal with the sequences from IIX in the form of Proposition 9.1, and
hence we may regard Proposition 9.2 as claiming that the product of a sequence
of sequentially compact spaces is again sequentially compact.

10. One-point compactification

DEFINITION 10.1. Let £(3 be the theory S~2 augmented by the axioms T(2) and

Vnccmp(cl(U(n))) A -,ccmp(X).

(See Definitions 5.1, 6.2 and 7.1.) The propositions in this section are meant to be
provable in £6.

DEFINITION 10.2. 1) s(N) = {s(n); n G # } , where 5 is a new symbol which
designates a new constant s(n) corresponding to each n. Let A be the set
N U s(N), and X will be used as a variable ranging over the elements of A. The
type of X is regarded as atomic and the quantification over X is understood to be
definable. \ , = X2 is defined to be: (X,, X2 G N A X, = X2) V (X, = s(nt) A X2

= s(n2) An, = n2).
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2) Let X* be the set X U {to}, where « is a new symbol with the axiom
Vx G I ( x ^ «). Henceforth x, y,..., will be used as variables on the elements of
X*.

3) W(k) = U {£/(/); i =£ A:}, where we assume W(0) = 0 .

V(\) ={x;(\GN A x e l / ( \ ) )

V3A: GN(X = s(k) Ax G X*-cl(W(k)))}.

4) C*(4, k): X - d(W(k)) C A - {«}; Z)*(̂ 4, n): U(n) CA - {<o}.

PROPOSITION 10.1. 1)

2){f/(A);A£A} /orins a countable base for X*.
3) Suppose A C X. Then A is open with regard to V if and only if it is open with

regard to U.
4) Suppose u £ A. Then A is open with regard to V if and only if3kC*(A, k)

and

A - {<o} = [ U {X-cl(W(k));C*(A,k)}] u [ U {{/(«); D*(A, „)}].

PROPOSITION 10.2 (one-point compactification). (X*, A, V) is a countably com-
pact Hausdorff space in which X is dense.

The proof is straightforward from Proposition 10.1.

The author's gratitude goes to John Crossley, who gave her valuable comments
and corrected linguistic errors.

References

M. Beeson (1979), 'Continuity in intuitionistic set theory', Logic colloquium 78, Studies in logic and
foundations of mathematics 97, edited by M. Boffa, D. Van Dalen, K. McAloon, pp. 1-52
(North-Holland Publ. Co., Amsterdam).

E. Bishop (1967), Foundations of constructive analysis (McGraw-Hill Book Co., New York).
D. S. Bridges (1979), Constructive functional analysis (Pitman, London).
O. Demuth and A. Kucera (1979), 'Remarks on constructive mathematical analysis', Logic colloquium

78, Studies in logic and the foundations of mathematics 97, edited by M. Boffa, D. Van Dalen, K.
McAloon, pp. 81-129 (North-Holland Publ. Co., Amsterdam).

S. Feferman (1979), 'Constructive theories of functions and classes', Logic colloquium 78, Studies in
logic and the foundations of mathematics 97, edited by M. Boffa, D. Van Dalen, K. McAloon, pp.
159-224 (North-Holland Publ. Co., Amsterdam).

H. Friedman (1977), 'Set-theoretic foundations for constructive analysis', Ann. Math. 105, 1-28.
J. Myhill (1975), 'Constructive set theory', J. Symbolic Logic 40, 347-383.
H. L. Royden (1968), Real analysis, second edition (Collier-Macmillan Limited, London).
G. Takeuti (1975), Proof theory (North-Holland Publ. Co., Amsterdam).
G. Takeuti (1978), Two applications of logic to mathematics (Iwanami Shoten and Princeton Univ.

Press, Tokyo).

https://doi.org/10.1017/S144678870002382X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002382X


420 Mariko Yasugi [22]

A. S. Troelstra (1966), Intuitionistic general topology (Thesis, Amsterdam).
A. S. Troelstra (1968), 'One point compactifications of intuitionistic locally compact spaces', Fund.

Math. 62,75-93.
M. Yasugi (1973), 'Arithmetically definable analysis', Proc. Res. Inst. Math. Sci. 180, 39-51.
M. Yasugi (1981a), "The Hahn-Banach theorem and a restricted inductive definition', Lecture Notes in

Math. 891, pp. 359-394 (Springer-Verlag, Berlin).
M. Yasugi (1981b), 'Definability problems in metric spaces; a summary', Proc. Res. Inst. Math. Sci.

441, 66-82.

The Institute of Information Science
University of Tsukuba
Sakuramura, Ibaraki
Japan 305

https://doi.org/10.1017/S144678870002382X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002382X

