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Abstract
We present the form of the solutions f : § — C of the functional equation
DG+ ) = IKIF()fG) forx,y €S,
A€k

where f satisfies the condition f(3 cx Ax) # 0 for all x € S, (S, +) is an abelian semigroup and K is a
subgroup of the automorphism group of §.
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1. Introduction

The functional equation

j;(f(X+/1y)d/l(/1)=f(X)f(y) for x,y € G, (1.1)

where (G, +) is a locally compact group, f : G — C and K is a compact subgroup of
the automorphism group of G with the normalised Haar measure 4, is a generalisation
of the cosine equation and it arises in the theory of group representations, being the
relation defining K-spherical functions (for the terminology, see [3, page 88]). For
accounts of (1.1), see, for example, [4, 12, 15, 16].

D’ Alembert’s functional equation is a particular case of (1.1), corresponding to the
group K = Z,, namely,

Joy) + fxo() = 2f(0)f(y) forx,yes, (1.2)

where (S, +) is an abelian group, o € Aut(S) is an involution and f : § — C. Equation
(1.2) has been studied in many contexts: groups [9, 11], nilpotent groups [5],
metabelian groups [6, 14], abelian semigroups [13], topological groups [7], topological
monoids [8] and Banach algebras [1, 2]. For nonabelian groups, the solutions of
d’Alembert’s functional equation are different from those for the abelian case.

Our work is based on the following results.
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Tueorem 1.1 [12, Corollary 3.12], [4, Theorem 1.1]. Let (G, +) be a locally compact
abelian Hausdorff topological group and let K be a compact Hausdorff topological
transformation group of G acting by automorphisms on G. Let u be the normalised
Haar measure on K. If ¢ € C(G) is a nonzero solution of

fK o(x + Ay) du(d) = p(x)¢p(y) for x,y € G,

then there exists a continuous homomorphism y : G — C* such that

p(x) = f xAx)du(l) forx e G.
K

If v is bounded, then y may be taken as a unitary character.

If we take the discrete topology on the groups G and K and the normalised counting
measure u in the previous theorem, we obtain the following corollary.

CoroLLARY 1.2. Let G be an abelian group and K be a finite subgroup of the
automorphism group of G. Let f : G — C, f # 0, satisfy

D fa+ ) = KIfWfG) forx,yeG.
AeK
Then there exists a homomorphism m : G — C* such that
1
x)=— m(Ax) forxe@G.
f@) = ;}{ f

Tueorem 1.3 [17, Theorem 3.18(d)]. Suppose that S is a topological semigroup,

neN, xi,....xn : S = C are different multiplicative functions, a,...,a, € C and
f=axi1+--+ayx,:S »>C. If f is continuous, then each of the functions
aiX1,---»AnXy 1S also continuous.

2. Main result

Throughout, (S, +) is an abelian semigroup, K is a subgroup of the automorphism
group of S (where we write the action of 1 € K on x € S as Ax), |[K| > 2, C* is the
multiplicative group of complex numbers and the relation ~C S X § is given by

Vx,yES (x~ye des(x+tz=y+ 2)). 2.1

First, we give an example of a semigroup that is not a group and admits a nontrivial
finite group of automorphisms.

Exampie 2.1. Let § = {(x,y,2) € R*: \/x2+y2 <z} and K ={O; : k€{0,1,...,n}},
where Oy (r cos ¢, rsin ¢, z) = (r cos(¢p + 2nk/n), r sin(¢ + 2rk/n), z) for ¢ € [0, 2nx),
z2r>0.Then S is a convex cone, so it is a semigroup, S is not a group (for example,
(0,0,-1) ¢ §) and K is a finite subgroup of the automorphism group of S.
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The first lemma is an easy consequence of the definition of equivalence relation ~.

Lemma 2.2. The relation ~ given by (2.1) is an equivalence relation; S /. with the
operation + : (S/.)* — S/ . defined by

[x]- + D]~ :=[x+y]. forx,yeS
is a cancellative abelian semigroup, and the function » : S — S /. given by
w(x)=[x]. forxeS 2.2)
is a semigroup epimorphism.
DerintTion 2.3. For each x € S, we define the element x € S by the formula

x= Z Ax.
AeK\(1d)
Lemma 2.4, Forall x,ye S and A € K,
X+ Ay =3+ 1,
Ax+Xx)=x+7x
Moreover, if the function f : S — C satisfies

Zf(X+/1y) = KIf(0)f() forx,y€eS, (2.3)

AeK

then

fx++M)=f)fy+y) forx,yeS.
Proor. Let x,y € S, 1 € K. Then

X+ dy= Z ulx + Ay) = Z Hx + Z (o dy= Z Hx + Z Hy

peK\{1d} uek\{1d} pek\{Id} ueK\{1d} HEK\{)
= Z ux+ a1 Z w=x+A1dy
peK\{1d} uek\{1d}

and
Alx +X) :/lZux: Z,ux:x+7.
HeEK HeEK
Let f: § — C satisfy (2.3). We observe that
KIFGf 0 +3) = ) flx+ A0 +5)

AeK

= > fa+y+3) = IKIf(xc+y+7),

AeK

for x,y € §, which completes the proof. O
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LemmA 2.5. Let G be an abelian group such that S/. <G and G=S/.—-S/.. For
every automorphism A € Aut(S), there exists a unique Ag € Aut(G) such that

Agox =x0A, 2.4)
where x is defined by (2.2). Moreover,
(AoT)g=Agote ford,T€K,

and the set
K ={1g: 1€ K} (25)

is a subgroup of the automorphism group of G.
Proor. Let A € K. We define Ag : G — G by the formula
Ag(e(x) — x(y)) := x(Ax) — x(dy) forx,yeS.

Let x,y,u,v € S be such that »x(x) — %(y) = %(u) — 2(v). Then x%(x + v) = %(y + u), so
there exists z € S such that x + v+ z =y + u + z. Hence Ax + Av + Az = Ay + Au + Az,
which yields x%(Ax) + %(Av) = #(Ay) + %(Au). From this, 1x(x) — Ax(y) = Ax(u) — Ax(v),
so Ag is well defined.

For x,y,u,ves,

Ag(#(x) = () + Ag(x(u) = 2(v)) = %(Ax) = 2(Ay) + 2(Au) — %(Av)
=2(A(x + u)) — %(A(y + v))
=Ag(e(x +u) —x(y +v))
= A (#(x) — %(y) + 2(u) — 2(v))
and
#(x) = %(y) = 2(AA"' 0) = (A" y)) = A6 (A7 ) + (27" y)).
Now if Ag(%(x) — #(y)) = Ag(¢(u) — x(v)), then
#(A(x + V) — 2(Ay + u)) = 2(Ax) — %(Ay) — (x(Au) — 2(Av))
= Ag(n(x) = %(y)) — Ag(x(u) — %(v)) = 0.
Hence, there exists z € S such that Ax + Av+z=Ay+ Adu+z. Then x +v+ A7z =
y+u+ A"z, 50 %(x +v) = %(y + u), which means that »(x) — »%(y) = %(u) — %(v). Hence

Ag 1s an automorphism.
Observe that

Ag((x)) = Ag(x(x + x) — %(x)) = #(A(x + x)) — #(Ax) = x(Ax) forxeS§,

which proves (2.4). If the automorphism o : G — G satisfies o o % = % o A for some
A € Aut(S), then

o (26(x) = 2(y)) = 0 (%(x)) — o (%(y)) = %(Ax) = %(Ay) = Ag((x) —x(y)) forx,y €S,
which shows the uniqueness of Ag.
Finally,

(AoT)gox=nx0(doT)=Adgo(xoT)=Ago(tgox)=(AgoTg)ox ford,Tek.

In view of the above identity, it is easy to check that K¢ is group. O
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THEOREM 2.6. If the function [ : S — C satisfies (2.3) and
f(x+x)#0 forxes, (2.6)

then the function h : G — C given by the formula

h(x(x) — %x(y)) := ;E;C Ig forx,yeS,
is well defined,
h(x(x)) = f(x) forxeS, 2.7)
and h satisfies
D7 hx + Agy) = IKlh(0h(y)  for x,y €G, (2.8)

AceKg

and », Ag, K¢ are defined, respectively, by (2.2), (2.4) and (2.5), where G is an abelian
group such thatS/. <Gand G=S/.-5/-.

Proor. First, we observe that, for all x,y € S,

n(x) = x(y) = f(x) = f(). (2.9)

Indeed, let x,y € S be such that x(x) = %(y). Then there exists z € S such that
Xx+2z=y+z Hence

KIf(xX)f(z+2)= Zf(X+ Az+2) = Zf(x +@+2)=K|f(x+2+7)

AeK AeK

=IKIfG+2+D = fO+2+7)

AeK

=Y O+ Az +) = KIf0)f & + 2,

AeK

which means that f(x) = f(y).
Let x,y,u,v € S be such that %(x) — %(y) = »#(u) — %(v). Then x(x + v) = %(y + u), so
we obtain x(x + Y+ v+ V) =x(u+v+y+7y). In view of Lemma 2.4 and (2.9),

JE+NfO+V) = fx+y+v+V) = flu+v+y+y) = flu+0)f +),
SO

fxe+y) _ fu+v)
fo+y)  fev+y)’
which shows that / is well defined.
Observe that

fatx+® _ f@f+T)
fx+%  fx+X)

h(x(x)) = h(x(x + x) — x(x)) = = f(x) forxeS.
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Let x,y,u,v € S. In view of Lemma 2.4,

ﬁ /1(;621(0 h(x(x) = %(y) + A (e(u) = 2(v)))

1

=T Z h(e(x + Au) — #(y + Av)))

AeK
=sz(x+/lu+yf+\/fv)zizf(x+y+/l(u+$))
KIS fy+ av+y+v) KIS fO+5+ A0 +7))
=sz(x+§+/l(u+?))=f(x+§)f(u+"v)
Kl &4 fO+y+v+y)  f+0f+V)
= h(x(x) = #(y)h(e(u) = #(v)),

which completes the proof. O

Remark 2.7. If § is a group and f : S — C is a nonzero function which satisfies (2.3),
then using Lemma 2.4 we easily see that f satisfies (2.6).

TueoreM 2.8. Let f: § — C. Then f satisfies (2.3) and (2.6) if and only if there exists
a homomorphism m : S — C* such that

1
x)=— m(Ax) forxeS. (2.10)
f@) = ;{ f
Proor. (=) In view of Theorem 2.6, there exists a function 4 : G — C such that
h satisfies (2.8) and (2.7), where G is an abelian group such that §/. < G and
G =S/.-S5/.. Hence, in view of Corollary 1.2, there exists a homomorphism
mg : G — C* such that

1
h(x) = — Z mg(Agx) for x € G.
Kl o

We define the function m : S — C* by the formula
m(x) = mg(x(x)) forxeS.
Then m is a homomorphism and

1 1
F@) = hox) = o ), moAar(0) = 1 D ma(G4(A0)

1Kol AGeKg ek

1
= —Zm(/lx) forxeS.
K| 4%

(<) Assume that f has the form (2.8). Then
1 1
D+ ay) = Tq DTN mutx + ay) = Tq DT muom(uay)

AeK AeK pek AeK pek
1 1
- % ;K(mw ; m(uy)) = T ; m(uax) ; may)

=IK|f(x)f(y) forx,yeS.
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Further,

f(x+3c):|—11<|Zm(/lZux):m(Zux)¢0 forxeS.

AeK HeK HEK
O

CoroLLARY 2.9. Assume that S is a topological abelian semigroup and that
automorphisms from K are continuous. Let f : S — C be such that f(x + x) # 0 for all
x € S. Then f is continuous and satisfies (2.3) if and only if there exists a continuous
homomorphismm : S — C* such that (2.10) holds.

Proor. In view of Theorem 2.8, f has the form (2.10) so we only have to show the
continuity. It is easy to see that if m is continuous and f is given by (2.10), then f is
continuous.

Assume now that f is continuous. Combine the terms of |K|f = X ,cxmo A € C(S)
having the same multiplicative functions m o A and write

N
IK|f = com+Zcimo/li, @2.11)

i=1
where A1, As, ..., Ay € K are such that m,mo Ay, ..., m o Ay are different and where
the cg, cy,...,cy are positive integers. The first term of (2.11) corresponds to
Ao =1d € K. Since |K|f is continuous, so are the individual terms in the sum (2.11)
(by Theorem 1.3). In particular, com € C(S'), which implies that m € C(S). O

The paper [10] contains many theorems which are based on solutions of (2.3) on
groups. Using Theorem 2.8, we can obtain analogous results for semigroups (without
changing proofs) provided that K is abelian. We give one example.

TraeorEM 2.10 (see [10, Theorem 4]). Let X be a complex linear space. Assume that
K is abelian. The functions f: S = X, f #£0,¢:S = C, o3 1ex Ax) #0forallx € S

satisfy
D fa+ ) = KleG)f(x) forx,y €S,
AeK
if and only if there exist a homomorphism m:S — C*, Aé € X and k-additive
symmetric maps Aﬁ Sk X 1<i< |Kol = 1, A € K}, such that
1

p(x) = m

Z m(dx) forxeS,
AeK
|Kol-1
f(x) = Z m(Ax)[AL + Z Alx,....0] forxeSs,
A€k, i=1
ZA,f(x,...,x,yy,...,yy) =0 forx,yeS,1eK;,1 <i<k<|Kyl -1,
where Ky :={1e€ K :mo A=m} and K is the set of representatives of cosets of the
quotient group K/Kj.
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