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Abstract

We present the form of the solutions f : S → C of the functional equation∑
λ∈K

f (x + λy) = |K| f (x) f (y) for x, y ∈ S ,

where f satisfies the condition f (
∑
λ∈K λx) , 0 for all x ∈ S , (S ,+) is an abelian semigroup and K is a

subgroup of the automorphism group of S .
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1. Introduction

The functional equation∫
K

f (x + λy) dµ(λ) = f (x) f (y) for x, y ∈ G, (1.1)

where (G,+) is a locally compact group, f : G→ C and K is a compact subgroup of
the automorphism group of G with the normalised Haar measure µ, is a generalisation
of the cosine equation and it arises in the theory of group representations, being the
relation defining K-spherical functions (for the terminology, see [3, page 88]). For
accounts of (1.1), see, for example, [4, 12, 15, 16].

D’Alembert’s functional equation is a particular case of (1.1), corresponding to the
group K = Z2, namely,

f (xy) + f (xσ(y)) = 2 f (x) f (y) for x, y ∈ S , (1.2)

where (S ,+) is an abelian group, σ ∈ Aut(S ) is an involution and f : S → C. Equation
(1.2) has been studied in many contexts: groups [9, 11], nilpotent groups [5],
metabelian groups [6, 14], abelian semigroups [13], topological groups [7], topological
monoids [8] and Banach algebras [1, 2]. For nonabelian groups, the solutions of
d’Alembert’s functional equation are different from those for the abelian case.

Our work is based on the following results.
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Theorem 1.1 [12, Corollary 3.12], [4, Theorem 1.1]. Let (G,+) be a locally compact
abelian Hausdorff topological group and let K be a compact Hausdorff topological
transformation group of G acting by automorphisms on G. Let µ be the normalised
Haar measure on K. If ϕ ∈ C(G) is a nonzero solution of∫

K
ϕ(x + λy) dµ(λ) = ϕ(x)ϕ(y) for x, y ∈ G,

then there exists a continuous homomorphism χ : G→ C∗ such that

ϕ(x) =

∫
K
χ(λx) dµ(λ) for x ∈ G.

If ϕ is bounded, then χ may be taken as a unitary character.

If we take the discrete topology on the groups G and K and the normalised counting
measure µ in the previous theorem, we obtain the following corollary.

Corollary 1.2. Let G be an abelian group and K be a finite subgroup of the
automorphism group of G. Let f : G→ C, f , 0, satisfy∑

λ∈K

f (x + λy) = |K| f (x) f (y) for x, y ∈ G.

Then there exists a homomorphism m : G→ C∗ such that

f (x) =
1
|K|

∑
λ∈K

m(λx) for x ∈ G.

Theorem 1.3 [17, Theorem 3.18(d)]. Suppose that S is a topological semigroup,
n ∈ N, χ1, . . . , χn : S → C are different multiplicative functions, a1, . . . , an ∈ C and
f = a1χ1 + · · · + anχn : S → C. If f is continuous, then each of the functions
a1χ1, . . . , anχn is also continuous.

2. Main result

Throughout, (S ,+) is an abelian semigroup, K is a subgroup of the automorphism
group of S (where we write the action of λ ∈ K on x ∈ S as λx), |K| ≥ 2, C∗ is the
multiplicative group of complex numbers and the relation ∼⊆ S × S is given by

∀x,y∈S (x ∼ y⇔ ∃z∈S (x + z = y + z)). (2.1)

First, we give an example of a semigroup that is not a group and admits a nontrivial
finite group of automorphisms.

Example 2.1. Let S = {(x, y, z) ∈ R3 :
√

x2 + y2 ≤ z} and K = {Ok : k ∈ {0, 1, . . . , n}},
where Ok(r cos φ, r sin φ, z) = (r cos(φ + 2πk/n), r sin(φ + 2πk/n), z) for φ ∈ [0, 2π),
z ≥ r ≥ 0. Then S is a convex cone, so it is a semigroup, S is not a group (for example,
(0, 0,−1) < S ) and K is a finite subgroup of the automorphism group of S .
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The first lemma is an easy consequence of the definition of equivalence relation ∼.

Lemma 2.2. The relation ∼ given by (2.1) is an equivalence relation; S/∼ with the
operation + : (S/∼)2 → S/∼ defined by

[x]∼ + [y]∼ := [x + y]∼ for x, y ∈ S

is a cancellative abelian semigroup, and the function κ : S → S/∼ given by

κ(x) = [x]∼ for x ∈ S (2.2)

is a semigroup epimorphism.

Definition 2.3. For each x ∈ S , we define the element x̃ ∈ S by the formula

x̃ =
∑

λ∈K\{Id}

λx.

Lemma 2.4. For all x, y ∈ S and λ ∈ K,

x̃ + λy = x̃ + λ̃y,
λ(x + x̃) = x + x̃.

Moreover, if the function f : S → C satisfies∑
λ∈K

f (x + λy) = |K| f (x) f (y) for x, y ∈ S , (2.3)

then

f (x + (y + ỹ)) = f (x) f (y + ỹ) for x, y ∈ S .

Proof. Let x, y ∈ S , λ ∈ K. Then

x̃ + λy =
∑

µ∈K\{Id}

µ(x + λy) =
∑

µ∈K\{Id}

µx +
∑

µ∈K\{Id}

(µ ◦ λ)y =
∑

µ∈K\{Id}

µx +
∑

µ∈K\{λ}

µy

=
∑

µ∈K\{Id}

µx + λ
∑

µ∈K\{Id}

µy = x̃ + λ̃y

and

λ(x + x̃) = λ
∑
µ∈K

µx =
∑
µ∈K

µx = x + x̃.

Let f : S → C satisfy (2.3). We observe that

|K| f (x) f (y + ỹ) =
∑
λ∈K

f (x + λ(y + ỹ))

=
∑
λ∈K

f (x + y + ỹ) = |K| f (x + y + ỹ),

for x, y ∈ S , which completes the proof. �
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Lemma 2.5. Let G be an abelian group such that S/∼ ≤ G and G = S/∼ − S/∼. For
every automorphism λ ∈ Aut(S ), there exists a unique λG ∈ Aut(G) such that

λG ◦ κ = κ ◦ λ, (2.4)

where κ is defined by (2.2). Moreover,

(λ ◦ τ)G = λG ◦ τG for λ, τ ∈ K,

and the set
KG := {λG : λ ∈ K} (2.5)

is a subgroup of the automorphism group of G.

Proof. Let λ ∈ K. We define λG : G→ G by the formula

λG(κ(x) − κ(y)) := κ(λx) − κ(λy) for x, y ∈ S .

Let x, y, u, v ∈ S be such that κ(x) − κ(y) = κ(u) − κ(v). Then κ(x + v) = κ(y + u), so
there exists z ∈ S such that x + v + z = y + u + z. Hence λx + λv + λz = λy + λu + λz,
which yields κ(λx) + κ(λv) = κ(λy) + κ(λu). From this, λκ(x) − λκ(y) = λκ(u) − λκ(v),
so λG is well defined.

For x, y, u, v ∈ S ,

λG(κ(x) − κ(y)) + λG(κ(u) − κ(v)) = κ(λx) − κ(λy) + κ(λu) − κ(λv)
= κ(λ(x + u)) − κ(λ(y + v))
= λG(κ(x + u) − κ(y + v))
= λG(κ(x) − κ(y) + κ(u) − κ(v))

and

κ(x) − κ(y) = κ(λ(λ−1x)) − κ(λ(λ−1y)) = λG(κ(λ−1x) + κ(λ−1y)).

Now if λG(κ(x) − κ(y)) = λG(κ(u) − κ(v)), then

κ(λ(x + v)) − κ(λ(y + u)) = κ(λx) − κ(λy) − (κ(λu) − κ(λv))
= λG(κ(x) − κ(y)) − λG(κ(u) − κ(v)) = 0.

Hence, there exists z ∈ S such that λx + λv + z = λy + λu + z. Then x + v + λ−1z =

y + u + λ−1z, so κ(x + v) = κ(y + u), which means that κ(x) − κ(y) = κ(u) − κ(v). Hence
λG is an automorphism.

Observe that

λG(κ(x)) = λG(κ(x + x) − κ(x)) = κ(λ(x + x)) − κ(λx) = κ(λx) for x ∈ S ,

which proves (2.4). If the automorphism σ : G→ G satisfies σ ◦ κ = κ ◦ λ for some
λ ∈ Aut(S ), then

σ(κ(x) − κ(y)) = σ(κ(x)) − σ(κ(y)) = κ(λx) − κ(λy) = λG(κ(x) − κ(y)) for x, y ∈ S ,

which shows the uniqueness of λG.
Finally,

(λ ◦ τ)G ◦ κ = κ ◦ (λ ◦ τ) = λG ◦ (κ ◦ τ) = λG ◦ (τG ◦ κ) = (λG ◦ τG) ◦ κ for λ, τ ∈ K.

In view of the above identity, it is easy to check that KG is group. �
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Theorem 2.6. If the function f : S → C satisfies (2.3) and

f (x + x̃) , 0 for x ∈ S , (2.6)

then the function h : G→ C given by the formula

h(κ(x) − κ(y)) :=
f (x + ỹ)
f (y + ỹ)

for x, y ∈ S ,

is well defined,
h(κ(x)) = f (x) for x ∈ S , (2.7)

and h satisfies ∑
λG∈KG

h(x + λGy) = |KG |h(x)h(y) for x, y ∈ G, (2.8)

and κ, λG, KG are defined, respectively, by (2.2), (2.4) and (2.5), where G is an abelian
group such that S/∼ ≤ G and G = S/∼ − S/∼.

Proof. First, we observe that, for all x, y ∈ S ,

κ(x) = κ(y)⇒ f (x) = f (y). (2.9)

Indeed, let x, y ∈ S be such that κ(x) = κ(y). Then there exists z ∈ S such that
x + z = y + z. Hence

|K| f (x) f (z + z̃) =
∑
λ∈K

f (x + λ(z + z̃)) =
∑
λ∈K

f (x + (z + z̃)) = |K| f (x + z + z̃)

= |K| f (y + z + z̃) =
∑
λ∈K

f (y + z + z̃)

=
∑
λ∈K

f (y + λ(z + z̃)) = |K| f (y) f (z + z̃),

which means that f (x) = f (y).
Let x, y, u, v ∈ S be such that κ(x) − κ(y) = κ(u) − κ(v). Then κ(x + v) = κ(y + u), so

we obtain κ(x + ỹ + v + ṽ) = κ(u + ṽ + y + ỹ). In view of Lemma 2.4 and (2.9),

f (x + ỹ) f (v + ṽ) = f (x + ỹ + v + ṽ) = f (u + ṽ + y + ỹ) = f (u + ṽ) f (y + ỹ),

so

f (x + ỹ)
f (y + ỹ)

=
f (u + ṽ)
f (v + ṽ)

,

which shows that h is well defined.
Observe that

h(κ(x)) = h(κ(x + x) − κ(x)) =
f (x + x + x̃)

f (x + x̃)
=

f (x) f (x + x̃)
f (x + x̃)

= f (x) for x ∈ S .
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Let x, y, u, v ∈ S . In view of Lemma 2.4,
1
|KG |

∑
λG∈KG

h(κ(x) − κ(y) + λG(κ(u) − κ(v)))

=
1
|K|

∑
λ∈K

h(κ(x + λu) − κ(y + λv)))

=
1
|K|

∑
λ∈K

f (x + λu + ỹ + λv)

f (y + λv + ỹ + λv)
=

1
|K|

∑
λ∈K

f (x + ỹ + λ(u + ṽ))
f (y + ỹ + λ(v + ṽ))

=
1
|K|

∑
λ∈K

f (x + ỹ + λ(u + ṽ))
f (y + ỹ + v + ṽ)

=
f (x + ỹ) f (u + ṽ)
f (y + ỹ) f (v + ṽ)

= h(κ(x) − κ(y))h(κ(u) − κ(v)),
which completes the proof. �

Remark 2.7. If S is a group and f : S → C is a nonzero function which satisfies (2.3),
then using Lemma 2.4 we easily see that f satisfies (2.6).

Theorem 2.8. Let f : S → C. Then f satisfies (2.3) and (2.6) if and only if there exists
a homomorphism m : S → C∗ such that

f (x) =
1
|K|

∑
λ∈K

m(λx) for x ∈ S . (2.10)

Proof. (⇒) In view of Theorem 2.6, there exists a function h : G → C such that
h satisfies (2.8) and (2.7), where G is an abelian group such that S/∼ ≤ G and
G = S/∼ − S/∼. Hence, in view of Corollary 1.2, there exists a homomorphism
mG : G→ C∗ such that

h(x) =
1
|KG |

∑
λG∈KG

mG(λG x) for x ∈ G.

We define the function m : S → C∗ by the formula
m(x) = mG(κ(x)) for x ∈ S .

Then m is a homomorphism and

f (x) = h(κ(x)) =
1
|KG |

∑
λG∈KG

mG(λGκ(x)) =
1
|K|

∑
λ∈K

mG(κ(λx))

=
1
|K|

∑
λ∈K

m(λx) for x ∈ S .

(⇐) Assume that f has the form (2.8). Then∑
λ∈K

f (x + λy) =
1
|K|

∑
λ∈K

∑
µ∈K

m(µ(x + λy)) =
1
|K|

∑
λ∈K

∑
µ∈K

m(µx)m(µλy)

=
1
|K|

∑
µ∈K

(
m(µx)

∑
λ∈K

m(µλy)
)

=
1
|K|

∑
µ∈K

m(µx)
∑
λ∈K

m(λy)

= |K| f (x) f (y) for x, y ∈ S .
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Further,

f (x + x̃) =
1
|K|

∑
λ∈K

m
(
λ
∑
µ∈K

µx
)

= m
(∑
µ∈K

µx
)
, 0 for x ∈ S .

�

Corollary 2.9. Assume that S is a topological abelian semigroup and that
automorphisms from K are continuous. Let f : S → C be such that f (x + x̃) , 0 for all
x ∈ S . Then f is continuous and satisfies (2.3) if and only if there exists a continuous
homomorphism m : S → C∗ such that (2.10) holds.

Proof. In view of Theorem 2.8, f has the form (2.10) so we only have to show the
continuity. It is easy to see that if m is continuous and f is given by (2.10), then f is
continuous.

Assume now that f is continuous. Combine the terms of |K| f =
∑
λ∈K m ◦ λ ∈ C(S )

having the same multiplicative functions m ◦ λ and write

|K| f = c0m +

N∑
i=1

cim ◦ λi, (2.11)

where λ1, λ2, . . . , λN ∈ K are such that m,m ◦ λ1, . . . ,m ◦ λN are different and where
the c0, c1, . . . , cN are positive integers. The first term of (2.11) corresponds to
λ0 = Id ∈ K. Since |K| f is continuous, so are the individual terms in the sum (2.11)
(by Theorem 1.3). In particular, c0m ∈ C(S ), which implies that m ∈ C(S ). �

The paper [10] contains many theorems which are based on solutions of (2.3) on
groups. Using Theorem 2.8, we can obtain analogous results for semigroups (without
changing proofs) provided that K is abelian. We give one example.

Theorem 2.10 (see [10, Theorem 4]). Let X be a complex linear space. Assume that
K is abelian. The functions f : S → X, f , 0, ϕ : S → C, ϕ(

∑
λ∈K λx) , 0 for all x ∈ S

satisfy ∑
λ∈K

f (x + λy) = |K|ϕ(y) f (x) for x, y ∈ S ,

if and only if there exist a homomorphism m : S → C∗, Aλ
0 ∈ X and k-additive

symmetric maps Aλ
k : S k → X, 1 ≤ i ≤ |K0| − 1, λ ∈ K1, such that

ϕ(x) =
1
|K|

∑
λ∈K

m(λx) for x ∈ S ,

f (x) =
∑
λ∈K1

m(λx)[Aλ
0 +

|K0 |−1∑
i=1

Aλ
i (x, . . . , x)] for x ∈ S ,∑

µ∈K0

Aλ
k (x, . . . , x, µy, . . . , µy︸      ︷︷      ︸

i

) = 0 for x, y ∈ S , λ ∈ K1, 1 ≤ i ≤ k ≤ |K0| − 1,

where K0 := {λ ∈ K : m ◦ λ = m} and K1 is the set of representatives of cosets of the
quotient group K/K0.
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