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Some classes of Hadamard matrices

with constant diagonal

Jennifer Wallis and Albert Leon Whiteman

The concepts of circulant and backcirculant matrices are
generalized to obtain incidence matrices of subsets of finite
additive abelian groups. These results are then used to show the
existence of skew~Hadamard matrices of order B8(L4f+l1) when f

is 0odd and 8f + 1 is a prime power. This shows the existence
of skew-Hadamard matrices of orders 296, 592, 118k, 1640, 2280,

2368 which were previously unknown.
A construction is given for regular symmetric Hadamard matrices

with constant diagonal of order h(2m+l)2 vhen a symmetric
conference matrix of order Um + 2 exists and there are
Szekeres difference sets, X and Y , of size m satisfying
r€EX=-z fX, yer=-yey.

Suppose V 1is a finite sbelian group with v elements, written in
additive notation. A difference set D with parameters (v, k, A) is a
subset of V with k elements and such that in the totality of all the
possible differences of elements from D each non-zero element of V

occurs A times.

If V is the set of integers modulo v then D is called a eyelic

difference set: these are extensively discussed in Baumert [7].

A circulant matriz B = (bij) of order v satisfies bij = bl,j-i+1

(j-i+1 reduced modulo v ), while B is back-circulant if its elements
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satisfy bij =b (Z+j-1 reduced modulo v ).

1,2+5-1
Throughout the remainder of this paper I will always mean the

identity matrix and J the matrix with every element +1 , where the

order, unless specifically stated, is determined by the context.

Let Sl’ 5 ooy Sn be subsets of V , a finite abelian group,

2’

IVI = v , containing kl’ k oy kn elements respectively. Write 12

2,
for the totality of all differences between elements of Si (with
repetitions), and T for the totality of elements of all the Ti . If T

contains each non-zero element of V¥V a fixed number of times, A say,

then the sets Sl, S2’ e Sn will be called n - {v; kl’ k2, o, kn; A}
supplementary difference sets.
The parameters of =n - {v; ki» Koo woees ks A} supplementary
difference sets satisfy
n
(1) Mo-1) = ) k;(k,-1)
1=1
If ky =k, = ... =k, =k wewill write n - {v; k; A} to denote the n

supplementary difference sets and (1) becomes
(2) Alv-1) = nk(k-1) .
See [14] and [15] for more details.

We shall be concerned with collections, (denoted by square brackets
[ ] ) in which repeated elements are counted multiply, rather than with
sets (denoted by braces { } ). 1If T, and T, are two collections then
Tl & T2 will denote the result of adjoining the elements of Tl to Zé
with total multiplicities retained.

An Hadamard matrix H of order h has every element +1 or -1 and

satisfies HHT = hIh . A skew-Hadamard matrix H = I + R is an Hadamard

matrix with RT = -R . A square matrix K = *I + ¢ , wvhere @ has zero

diagonal, is skew-type if QT = -¢ . Hadamard matrices are not yet known
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for the following orders < 500 : 188, 236, 268, 292, 356, 376, 4ok, Li2,
428, 436, 472 . Skew-Hadamard matrices are as yet unknown for the
following orders < 300 : 116, 148, 156, 172, 188, 196, 232, 236, 260,
268, 276, 292 .

An Hadeamard matrix satisfying H#J = kJ for some integer k& 1is

regular.

A symmetric conference matrixz C + I of order n = 2(mod 4) is a

(1, -1) matrix satisfying
o’ = (-1, F=c.

By suitably multiplying the rows and colums of € by -1 a matrix

may be obtained and W satisfies

Wi = (n-1)T -dJ , W=0, o=

These matrices are studied in [3], (61, [10], [171], [713].

1. Preliminary results

in

LEMMA 1. If there exist U - {v; kys kos kos Ky ]

. , k.-v—l}
2 3 =1 t

supplementary difference sets then each ki =m or m~1 for v=2n+1

and kl =m+1, k2 = k3 = kh =m for v=2m.
Proof. By (1)},
I 4
Lz ki-v—l](v—l) - ) K1),
=1 =1

SO

4 o N 5
b § oKk -ww § kv u(T1) =0,
1=1 1=1
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g (2ki’v]2

=1

[}
=

22+0+0+O », U even,

l2+12+12+12 , U odd.

If v = 0{mod 2) , kl='15(vt2) , k2=k3=kh=%'u , but if
v = 1(mod 2) , ki = %(vt1) .

DEFINITION. Let G be an additive abelian group of order v with

elements zl, 22, ces By ordered in some fixed wagy. Let X be a subset
of G . PFurther let ¢ and ¥ be maps from G into a commutative ring.
Then M = (mij) defined by

) mg = w(zj-zi)

will be called type 1 and W = (nij) defined by
(5) ;= ¢(zj+zi)

will be called type 2.
If ¢ and Y are defined by

(6) o) =wa) = {3 25

then M and N will be called the type 1 incidence matriz of X <in G
and the type 2 incidence matrix of X in G , respectively. While if ¢
and Y are defined by

(M) o) = () = {_

o

z € X,
z kX s

M and N will be called the type 1 (1, -1)-matriz of X and the type 2
(1, -1)-matrix of X respectively.

LEMMA 2. Swppose M and N are type 1 and type 2 incidence
matrices of a subset X = {xj} of an additive abelian growp G = {zi} .

Then

wf = k.
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Proof. The inner products of distinct rows <7 and k¥ in M and WV

respectively are given by

N EG w(zj-zi)w(zj-zk] N .EG ¢(zj+zi)‘¢ [zj+zk]
J J
= ] w(gly(g+z,-3 =} ¢(h+z.-2,)¢(h)
geG ( 7 k) nec 1 "k
since as 3., runs through G since as zj runs through G
so does zj—zi=g so does zj+zk=h
= z ll)(x+z.—z) = Z d)[:x:-l-z.-z)
xeX t ok xeX Tk
= number of times x+zi—zk € X = number of times x+zi—zk € X
as & runs through X . as X runs through X .

For the inner product of row < with itself we have

[ [(ej2,)12 I [o(e;42)]°

zJ.EG szG

= 7 PP = 7 [em)1?
geG heG

= J @7 = § @7
xeX xeX

number of elements in X . number of elements in X .

So MUT=IVNT.

LEMMA 3. Swppose G 1is an additive abelian group of order v with

elements Bls Bhs eees By e Let ¢, ¢y and W be maps from G to a

commutative ring R . Define

= ¢(zj-zi) >

:>
{
w
o
<,
| —
“
‘Q
<
i

-

B= (bij) s byi= w[zj-zi)

¢ = [cij) s i = u(zj-t-zi) R

that i, A and B are type 1 while C 1is type 2. Then (independently

, 3, save only that it is fized)

of the ordering of 2,5 2 »

PLIRER
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) ¢ =c,

(ii) AB = B4 ,

(iit) ac’ = ca” .

Proof. (%) ci,j = u(zj+zi) = u(zi+zj) = cji .

(1) (AB)ij = ggc ¢[g—zi)w(zj-g) ; putting h = 3, * 2; =9 » it is
clear that as g ranges through G so does % , and the above expression
becomes

dlz.~h)Ylh-z,] = Yia-z.)d{z.-h
ol )elez) = 1 wle;)ole )
= (BA)ij .
(ti1)

() = 1 olg-2;)uls )

id

geG
= hZ"G ¢(h—zj)u(zi+h] (n = zj-zi+g)
= 7 u[zi+h)¢(h—zj]

heG
= (CAT).. .

2

COROLLARY 4. If X and Y are type 1 incidence matrices (or type
1 (1, -1)-matrices) and 2 is a type 2 incidence matriz (or type 2

(1, -1)-matriz) then

XY = ¥X
xz = zx .

LEMMA 5. If X 4s type 72, 1 = 2 , then L is type < .

1,
) = q)[z .+zi] is type 2 then

Proof. (i) If X = (x :

i
XT = (yw) = ¢(zi+zj) is type 2.

(ii) If X = (mij) = w[zj-zi) is type 1 then so is
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K= (g
COROLLARY 6. (Z) If X and Y are type 1 matrices then

xx=vx, fy=yxf, xF =¥x, ¢ =7%.
(1) If P is typel and Q@ is type 2 then
pet =qff , Pe=q P , PP =qp, Plo=¢q'p.

LEMMA 7. Let X and Y be type 2 matrices obtained from two
subsets A and B of an additive abelian group G for which

) = u(zj-zi) where U is the map u(z) = P(-z) .

a €A=-a€hA, b€E€EB=-DbEB;

then

XY = ¥X and x¥' = ¥x .

Proof. Since X and Y are symmetric we only have to prove that
xrt = vk .

Suppose X = (x.

tj) and Y = [yij] are defined by

Ty = o(z.+z.) , Yii = w[zi+zj) ,

where are the elements of G . Then

215 255

(xr")

i =

¢(-zi—zk)w[zk+zj) since a € 4= -a €4

]
—
™)
-

We note if the additive abelian group in the definition of type 1 and

type 2 is the integers modulo p with the usual ordering then
(i) the type 1 matrix is circulant since

M= W(G=d) = Y(g-in-1) =m L,
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(ii) the type 2 matrix is back-circulant since

n..= (j+i) = (jH-1+1) = n

%] 1,j+i-1

LEMMA 8. Let R = (r,;) be the permutation matrixz of order v ,

defined on an additive abelian growp G = {g} of order v by

1 if gi + gj =0 ’
r..=
1d
0 otherwise.
Let M be a type 1 matrix of a subset X of G . Then MR is a type 2
matrix. In particular if G 1ie the integers modulo v , MR s a

back-circulant matrix.

Proof. Let M = (mij) be defined by mij = w(gj-gi] wher.e Y maps
G into a commutative ring. Let u be the map defined by w(-z) = Y(z) .
Then
(MR)ij = ch mikrkj =m,, vhere g; + g; = 0
= w(gl-gi)
= w(-gj—gi)
= U(gj‘*g,;) s
which is a type 2 matrix.
LEMMA 9. Let Xl’ Xys wees X be the type 1 incidence matrices of

n - {v; kl, k2, ey kn; A} supplementary difference sets S - Sn

R
defined on G with elements 35 Bps s By S then

izl 1 - [

s Y are the type 1 (1, ~1)-matrices of the supplementary

n
) k.—A]I + M .
. [
1=1

10 You -

difference sets then

If Y

I~

n n
vyt =y ) k.-X}I + (nv ) k.+ux]J .
1 7 r=1 1 1

7 i=1
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Proof. Let X. = [x? ] be defined by
7 gk

1 if =2 €5, ,
1

x;k = ¢i(zk-zj] where ¢(z) =

0 otherwise.

n
Then the (j, k) element of § Xng is
=1

.

A 7

[ A= N
T B R N P = I = R L L

[

n n
- izl Zzl 0 (25=2;)0; (2-2,)

n n
- '21 m21 4 (ap)0; (a2, ) (2 = 27725)

(number of times 2 € S. and 2z _+ 3 ¢ S.)
m 1 m 1

1]
e

1=1
(s = 2-2,)
n
) k; (§ = k)
1=1
= {
n
kizl number of times =z = 2, = zm for 2 zt € Si
(d # k)
n
1k (7 = &)
1=1
A (J # k)

n n
So ) Xixf ) ki-A]I + M\ .
L

i1

The type 1 (1, -1)-matrix Yi of a set Si is
Y. =2X., - J
i

()

and so
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n n
_ 7
izl vy, = 1:21 (ex;-7) (2x,-7)
n
= ¥ (hX.X:{'—hk .J+vJ]
i=1 11 1
n n
= u(zz ki-A]I + [nv-h ) k.+hA}J .
=1 =1 *

COROLLARY 10. Tre type 1 (1, -1) <ncidence matrices A, and B, ,
1=1,2, 3,4 -of

4 "
Y - {v; Ky s Kys Kgs T3 izl ki-v} and 4 - {v; kys Ky, gy Ky igl ki-v—l}

supplementary difference sets satisfy

h

] 4.4l = yor
. 11

=1

4 by
) BB, = W(v+1)T - 4J
i=1

respectively.

2. A construction for skew-Hadamard matrices

We adapt the Goethals-Seidel matrix of [4] to a form that may be used
for subsets of any additive abelian group.

THEOREM 11. Suppose A, B and D are type 1 (1, -1)-matrices and
L
C is a type 2 (1, -1)-matrix of L - {v; kys ys kg Ky izl ki-v}

supplementary difference sets; then
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is an Hadamard matrix of order bLv .
Further, ©f A 1is skew-type, then H 1is a skew-Hadamard matriz.

Proof. The four type 1 (1, -1)-matrices A, B, E, D of

L
b - Svs ko kow ks Ky s 2 k.-v} supplementary difference sets satisfy
1® Tor T3 MY io1 t

3

AAT + BBT + EE‘T + DDT = thv

and using Lemma 2 we see CCT = EEI . So
AAT+BBT+CCT+DDT=thv.

We use Corollary 6 to see that the inner product of distinct rows is zero.

Since € is type 2 , CT=C and so if A 1is skew-type H is

skew-Hadamard.

THEOREM 12. Suppose A, B and D are type 1 (1, -1)-matrices and
C is a type 2 (1, -l)-matriz of L - {2m+l; m; 2(m-1)} supplementary
difference sets; then with e the 1 x (2m+l) matrixz of ones

=1 +1 +1 +1 e e e e
=1 -1 -1 +1 -e e -e e
-1 +1 -1 -1 -e e e -e
-1 -1 +1 -1 -e -e e e
H=" —eT eT eT eT A B ¢ D
—eT -eT —eT eT -BT AT -D C
—eT eT —eT -eT -C D‘T A —BT
_-eT -eT eT —eT —DT -C B ATJ

18 an Hadamard matrix of order 8{(m+l) . Further, if A is skew-type,

then H 18 a skew-Hadamard matrizx.
Proof. By straightforward verification.

THEOREM 13. Let f be odd and q =2m + 1 = 8f + 1 be a prime
power; then there exist U4 - {2m+1l; m; 2(m-1)} supplementary difference
sets Xy, Xy, X5, X for which y(Xi=’-y¥Xi, i=1,2, 3, 4.
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Proof. Let 2z %be a primitive root of GF(g) and G the cyclic

group generated by a . Define the sets
:t=0,1, ..., f-1}, ¢2=0,1, ..., 7,

and choose

Xl=CouClu02uC3,

X2=Couclu02u07,

X3=CouCluC6uC7,

Xh=Cou05uC6uC,{.
Write

T T

sﬁo asCs (Zo as =f—l] ’

where the ai are non-negative integers, for the differences between

elements of CO . ‘Thus with Hs = Cs u C , since g =8f +1 (f oda),

s+h
-1 €0, and a7 € [_differences from Co] = o ¢ [differences from CO] >

the differences from CO become

: )
& aH |, a_ = %(f-1) .
g=0 ¢ 8 8=0 8
The differences between elements of C'zl s ©=0,1, ..., T 1is therefore
3
& a
s=0 °
Now write
3 3 3
& bH , & csHs N & dsH
s=0 %% =0 §=0

for the differences between

C’O and C’l,CO and 02,00 and C3

respectively, that is for
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[x—y:xGCO,yGCi]&[y—x:xECO,yGCi] i=1,2,3,

where

i
M
Q

It

i 30

Q

It
<,

)
b
s=0 5 s=0 §=0

Then the differences from Xl become

3 3
fo a (A ull Ul U s+3) & &o by (H Ul UE_ )
3 3
& & e (v, ,,) & & di,
8= 8=0
The differences from X2 are
3 3
& a (B VA VH +2UHS+3) ¢ &b o (A UH_ 3#3)
s=0 8=0
3 ( ) 3 .
& & c |HUH & & dH R
=0 843 g=0 ° 8+3
and the differences from X3 are
3 3
f a (HSUHs+lUHs+2 s+3) & f bs (HsUHs+2 s+3)
8=0 s=0
3 ( ) 3
& & e |H & & dH .
s=0 °© s+2 s+3 8=0 5 s+2
Finally the differences from Xh are
3 3
st a (B Ul o s+3) & s& b (Hs+luH8+2uHs+3]
3 ( ) 3
& & c |H_ , UH & & dH .
s=g S ©&*1 &*2 5=0 s s+l
Now G = Hs v Hs+1 u Hs+2 ] Hs+3 . So the totality of differences from
X ,X2,X3 and X,4 is
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[}

3 3 3 3
L Y aG&3 ) bG&2 §y cGe& ) dG
§=0 s=0 & s=0 ° g=0 °

(2(r-1)+65)¢

(8f-2)G .
Hence X, X,, X3, X, are 4 - {2m+1; m; 2(m-1)} supplementary
difference sets..

Clearly since y € Cs = -y € Cs+h s Xl’

X2, X3, Xh all satisfy
yex, =y kx, .

COROLLARY 14. If f 4is odd and p = 8f + 1 is a prime power then
there exists a skew-Hadamard matrixz of order 8(Lf+l) .

This corollary shows the existence of the following skew-Hadamard
matrices of order < 4000 which were previously unknown 296 , 592 ,
1184 , 16ko , 2280 , 2368 , 2ko8 , 2472 , 3432 , 3752.

3. A construction for a symmetric Hadamard matrix with constant diagonal

DEFINITION. 2 - {2m+1; m; m-1} supplementary difference sets Sl
and 32 will be called Szekeres difference sets of size m if
x €5 = -x 3 5 -

These sets have been used, as in the next lemma, to construct
skew-Hadamard matrices.

LEMMA 15, Suppose there exist Szekeres difference sets Sl’ 32 in
an additive abelian group G of order 2m+ 1 . Let A and B be the
type 1 (1, -1)-matrices of S1 and 52 respectively; then

—eT —eT -B’T AT

where e 1is the 1 x (2m+l) matrixz of 1's , is a skew-Hadamard matriz of
order 4(m+l) .

Szekeres difference sets of size m are known to exist when
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(i) m + 3 is a prime power; from [§],

(ii) 2m + 1 1is a prime power = 5(mod 8) ; from [§],

(iii) 2m + 1 is a prime power = pt where p = 5(mod 8) and
t = 2(mod 4) ; from [9] and [16].
We now generalize an example in [5] to construct symmetric Hadamard

matrices with constant diagonal. The Szekeres difference sets of the next

theorem were also used in [12].

THEOREM 16. Let X and Y be Szekeres difference sets of size m
in an additive abelian growp of order 2m + 1 with x € X= -z f X and
further suppose y € Y= -y € Y . Suppose there exists a symmetric

econference matrix C + I or order hm + 2 . Then there is a regular
2
)

symmetric Hadamard matrixz of order uW(2m+l with constant diagonal.

Proof. Let B and -A be the type 1 (1, -1) incidence matrices of

X and Y . Then using Lemmas 3 and 9, we see

Bl +B=-2r, aA' =4, AB=BA, AT =J , BJ = —J »

a4 + BT = W(m+1)I - 27 .
Also forming W from C as described above in (3),

Wo=w, W=0, Wi=QmlI-J.

Write e for the 1 x (2m+*l) matrix of ones and f for the 1 % (lm+l)

matrix of ones. Then

1 i exf -exf
Id J ex(W-I) ex(W+I)
? Ixfl I x(w-1) AXHIXT —(B+I )XW+ IxJ+(I-J )XI
—eIxf Ix(ir) - (B+I)IxwaIxg+(I-d )T AT xprgxr

where X is the Kronecker product, is the required matrix.

Szekeres difference sets satisfying the conditions of the theorem
exist for
2, 6, 14, 26 ,
%(p-3) , p a prime power,
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see [8] and [12]. So we have

COROLLARY 17. If p is a prime power and p - 1 <ig the order of a

symmetric conference matriz, there is a regular symmetric Hadamard matriz
with constant diagonal of order (p—1)2 .

We note that this corollary (barring the constant diagonal)
essentially appears in Shrikhande [7].

Thus we have also shown

COROLLARY 18. If 8f + 1 (f odd) 1is a prime power, there exist
BIBDs with parameters

v=(8ftl) , b = L(8f+1), r=16f, k=L4f , A= 2(4f-1)
and
v=b=3Rf+7T, r=k=16f+3, A=8f+1;
and also

COROLLARY 19. Swppose there exist Szekeres difference sets X and
Y of size m in an additive abelian group of order 2m + 1 , and

T €EX®-x fX, yeY=-yey.

Further suppose there exists a symmetric conference matrix C + I of order
bm + 1 . Then there exists a BIBD with parameters

2
)

v=>b = h(2m+l)2 , r=k= 2(2m+1)2 + (2m+1) , A = (2m+¥1)” + (om+l) .
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