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PAIRWISE BALANCED DESIGNS
WITH BLOCK SIZES THREE AND FOUR

CHARLES J. COLBOURN, ALEXANDER ROSA,
AND DOUGLAS R. STINSON

ABSTRACT.  Given integers v, a and b, when does a pairwise balanced design on
v elements with a triples and b quadruples exist? Necessary conditions are developed,
and shown to be sufficient for all v > 96. An extensive set of constructions for pairwise
balanced designs is used to obtain the result.

1. Preliminaries. Let X be a finite set, |X| = v. Foraset K C {2,3,4,...,v},
let (If) denote the set of all subsets of X whose cardinalities appear in K. For B C (i)
(X, B) is a (v; K)-pairwise balanced design (or (v; K)-PBD) if every 2-subset of X appears
in precisely one member of B. Members of B are called blocks, and K is the set of block
sizes.

Let WC X, |[W]| =w. If BC (,)g) has the property that (X, BU { W}) is a pairwise
balanced design then (X, W, B) is called a (v, w; K)-incomplete pairwise balanced design,
or (v, w; K)-IPBD. The set W is called a hole.

In this paper, we study PBDs and IPBDs with block sizes 3 and 4, which we call triples
and quadruples, respectively. It has long been known that a (v, { 3,4} )-PBD exists if and
only if v=0,1 (mod 3), v # 6 (see [3], for example). We address a more complicated
problem, the determination of the possible numbers of blocks of each size in such a PBD
of order v. Define

Spec,(v) = {5 : 3(v,{3,4})-PBD having s quadruples},

and
Spec,(v,w) = {s: 3(v,w,{3,4})-IPBD having s quadruples} .

Our goal is to determine Spec,(v), leaving only a handful of exceptions for small values
of v. In the process, we employ some results on Spec,(v, w). We shall see that there are
substantial connections to fundamental problems in design theory.

Determining the possible numbers of pairs and triples in a PBD with blocks of sizes
two and three is straightforward using the solution for the maximum packing problem for
triples (see [28]). Similarly, determining the possible numbers of pairs and quadruples
in a PBD with block sizes two and four also is easy given the solution for the packing
problem for quadruples (see [5]). Hence the determination for triples and quadruples is
the next step, and as we shall see it is substantially more complicated.
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We first determine necessary conditions on Spec,(v), and subsequently adapt a large
battery of recursive constructions to establish sufficiency for v > 96. We introduce defi-
nitions as needed, but refer the reader to [3,33] for standard background in combinatorial
design theory.

At the outset, let us remark that pairwise balanced designs have wide applications in
the construction of combinatorial designs [3,33], and have proved to be very useful in
the statistical design of experiments [18].

2. Necessary conditions. In this section, we employ some elementary observations
to establish necessary conditions on Spec,(v). For each integer ¢t > 0, let A3t +2) = 0;
otherwise define A(v) according to the following table:

v A®)
12¢ {3t,...,1(12t = 3)}
121+ 1 {0,...,1(12t+ D}\{1,2,3,4,1(12¢+ 1) = 3,1(12¢t + 1) — 2,1(12¢ + 1) — 1}
12t +3 {0,...,1(12t+3)}\ {1,2,3,4}
12044 {3t+1,..., 122 + Te+ 3\ {122 = 7t — 2,122 — Tt — 1,122 — 7t}
12t +6 {3t+2,...,122 + 9t + 1}
12t+7 {0,...,122 +131}\ {1,2,3,4}
12t+9 {0,...,1222 + 15t +4}\ {1,2,3,4}
12+ 10 {3t+3,...,12¢2 + 19t + 4}

For convenience, we let m, denote the smallest number in A4(v), and we let M, denote
the largest number.

LEMMA 2.1.  Forallv > 0, Specy(v) C A(v).

PROOF. For v = 2 (mod 3), there is no (v, { 3,4} )-PBD. For the remaining cases,
consider an element x of the PBD, and let d; (i = 3, 4) be the number of blocks of size i
containing x. Now 2d3 +3ds = v — 1, and hence 2d3 =v — 1 (mod 3),anddy =v — 1
(mod 2). Hence for v = 0 (mod 3), we have at least [ v/ 3] triples, and hence at most
| v(v—3)/ 12| quadruples. Similarly when v is even, we have at least [ v/ 4] quadruples.

Observe further that the number of triples is always congruent to v(v—1)/ 6 (mod 2);
hence when v = 7,10 (mod 12), the number of triples is odd. Since d3 = 0 (mod 6) in
such a PBD, the smallest number of triples is 7; this gives an upper bound of (v(v — 1) —
42)/ 12 quadruples in this cases. These arguments establish the lower and upper bounds;
now we turn to the other missing values.

When v is odd, consider the configuration of quadruples. Every element is in an even
number of quadruples; it is easy to verify that this requires either zero or at least five
quadruples. Hence { 1,2,3,4} N Spec,(v) = @ for v odd.

Whenv = 1,4 (mod 12), every element is in a number of triples whichis 0 (mod 3),
and the number of triples is even. Hence if there are any triples at all, there must be
at least eight of them (and they partition the unique 6-regular graph on eight vertices
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into triangles if the number of triples equals eight). Hence in these cases we have that
wv —1)/12 — s ¢ Spec,(v) fors € {1,2,3}. .

The maximum values in A(v) arise as follows. When v = 1,4 (mod 12), the PBD
contains only quadruples. The maximum for v = 0,3 (mod 12) is obtained by omitting
one point from the maximum solution for v + 1 points. When v = 7,10 (mod 12), the
maximum is obtained by taking a PBD with one 7-block and all other blocks of size 4, and
then replacing the 7-block with the 7 triples of a PBD on the same points. The maximum
for v = 6,9 (mod 12) is not obtained by omitting a point from the maximum solution
on v + 1 points. Rather it has (v — 9)/ 3 disjoint triples, and four triples intersecting in a
single point.

Our main result in this paper is the following

MAIN THEOREM. Spec,(v) = A(v) for v > 96.

The proof of sufficiency involves a large number of recursive constructions, that we
introduce in section 3. Then in section 4, we determine various values in Spec, (v, w) for
small v and w. In section 5, we apply the recursive techniques to the small values to prove
the Main Theorem. Finally, in section 6, we outline some applications of the results.

3. Recursive constructions. In addition to PBDs and IPBDs defined earlier, we
require a few further basic definitions in design theory. We call (X, G, B) a K-GDD with
group type g} - - -g;f if BC (;), (X, BU G)isaPBD, and § is a partition of X into sets
(called groups); for 1 < i <k, G contains t; groups with k; elements. The groups form
essentially a spanning set of holes.

The basic construction that we use in general forms { 3,4} -GDDs, and then “fills in
groups” with IPBDs and PBDs as follows:

LEMMA 3.1 (FILLING IN GROUPS).  Let (X, G, B) be a { 3,4} -GDD with|X| = vand
groups Gy, ...,Gy. Let by be the number of quadruples in ‘B. Let w be a nonnegative
integer. Let f; € Spec,(|G;| + w,w), and h; € Specy(|G;| + w). Then for s such that
1<s<m,

m
bs + Y f; € Spec, (v, w),

i=1
m
bs+ Y fi+hs € Specy(v),and
i=1
i#£s
m
bs+ Y. fi € Specy(v,|Gs| +w).
i=1

i#s

PROOF. Add w new elements W to X. Now on G;UU W, place an IPBD leaving a hole
on the set W; do this for all i # s. Then we may either leave the final hole, place an IPBD
on it, or a PBD on it, to obtain the three outcomes above. =
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A (v,w, K)-IPBD is equivalent to a K-GDD of type w'1"™", and hence we can apply
Lemma 3.1 (with w = 0) to IPBDs as well. This is referred to as “filling the hole”.

For large v, we can use Wilson’s fundamental construction for GDDs, which we state
next:

LEMMA 3.2 (FUNDAMENTAL CONSTRUCTION [35]).  Suppose that (X, G, B) is a K-
GDD, and that w: X — Z+*\U {0} is any function (which we call the weight function). Let
G consist of groups Gy, ..., Gy. If for every {x1,...,xn} € ‘B, there is a K-GDD with
m groups, in which the ith group has size w(x;), then there is a K-GDD with t groups, so
that the size of the ith group is Yxeg, W(X). n

The application of the fundamental construction requires that we develop a substantial
collection of GDDs with block sizes 3 and 4; filling in groups then requires that we
develop some IPBDs and PBDs with block sizes 3 and 4. Hence we recall a large number
of constructions that can be used to produce such GDDs and PBDs.

LEMMA 3.3 [8]. Let g,t,u be nonnegative integers satisfying g > 1,t > 3, u <
gt—1), %gZ(;) +gtu=0 (mod 3), pg(t—1)+u =0 (mod 2), and ifu # Othen gt =0
(mod 2). Then there exists a { 3} -GDD of group-type g'u'. n

Lemma 3.3 includes as special cases three important results that we employ in a sub-
stantial way. When g = u = 1, Lemma 3.3 is equivalent to the existence of Steiner
triple systems, determined in 1847 by Kirkman [15]. When g = 1, Lemma 3.3 gives
the Doyen-Wilson theorem [11] that a (v,w, {3} )-IPBD exists whenever v,w = 1,3
(mod 6) and v > 2w+ 1. It also yields a theorem of Rosa and Hoffman [27]: a { 3} -GDD
of group-type 4'u! exists for all even u < 4¢t—4 for whicht = 0 or 1 —u (mod 3),1 > 3.

LEMMA 3.4 [23]. Letv,w =1 (mod 3), v(v — 1) = w(w — 1) (mod 12), and v >
3w + 1. Then there exists a (v,w; {4} )-IPBD. n

The spectrum of (v, { 4} )-PBDs was first determined by Hanani [12]. Lemma 3.4 has
some useful corollaries. The truncation of a PBD is another PBD obtained by removing
some elements, and all occurrences of those elements in blocks (and naturally removing
all “blocks” of size 0 and 1 that result). Truncations of the IPBDs in Lemma 3.4 are
particularly valuable. Removing a single element from the hole of size w gives a {4} -
GDD with group-type 3¢~/3(w — 1)!. More generally, truncating the hole to w — x
elements yields a (v — x,w — x, { 3,4} )-IPBD with x(v — w)/ 3 triples. One can also
truncate by removing x = 1, 3 or 4 points from a block with the elements not in the hole
to produce a (v—x, w, { 3,4} )-IPBD with x(v—4)/ 3 triples for x = 3,4, and (v—4)/3+1
triples for x = 1. (The case x = 4 only applies here when v # 3w — 1, since a quadruple
disjoint from the hole is needed.) Naturally, one can truncate one point from the hole,
and then two or three from a resulting triple as well. In general, we do not comment on
the PBDs and GDDs from such obvious truncations; however, they prove very useful in
constructing needed ingredients.

Next we consider a special type of GDD. A {k}-GDD of group-type m* is often
called a transversal design and denoted TD(k,m). An incomplete transversal design
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ITD(k, m, n) is a set of k disjoint groups Gy, ..., Gy of size m, a set H intersecting each
G; in n points, and a collection of blocks of size k, so that every 2-subset in H or in one of
the groups does not appear in a block, and every other 2-subset appears precisely once.
There is a TD(k, m) if and only if there is an ITD(k, m, 1) (simply choose H to be a block,
and omit that block).

LEMMA 3.5 [13]. Form > 3n, n > 1 there is an ITD(4, m, n) except when m = 6
andn = 1. =

The additional hole in the ITD can be filled by using a { 3,4} -GDD of group-type n*
to form a { 3,4} -GDD of group-type m*.

Next we exploit a process that essentially reverses the truncation operation. Suppose
that a PBD, IPBD, GDD or TD contains a set of blocks that contain every element pre-
cisely once; this is termed a parallel class of blocks. Let Py, ..., P; be a parallel class
of blocks. Then if there exist (| P;| + w,w, {3,4})-IPBDs for each i, one can “fill in the
parallel class” — this is analogous to filling in groups as in Lemma 3.1. Hence we are
interested in designs with many parallel classes, so that we can extend many parallel
classes in this way. A design is resolvable if its block set can be partitioned into parallel
classes.

LEMMA 3.6 [3,34]. There exists a resolvable TD(4, m) except form € {2,3, 6} and
possibly for m = 10.

To use Lemma 3.6, for any parallel class we can add three fixed elements, and put
a (7,3, { 3} )-IPBD on each block and the three elements, leaving the hole on the new
elements. If s parallel classes are extended in this way, we add 3s elements that produce
a hole of size 3s (that can then be filled). This essentially gives a GDD of group-type
m*3s!.

LEMMA 3.7 [19]. For nonnegative integers t, x, y satisfying x + 2y = 6t — 1, there is
a resolvable (61,{2,3})-PBD with x parallel classes of 2-blocks and y parallel classes
of triples, except whenx = landt € {1,2}. "

When x = 1, such resolvable PBDs are called nearly Kirkman triple systems. To use
such PBDs to construct { 3,4} -PBDs, we extend each parallel class of 2-blocks to form
triples, and then extend some of the parallel classes of triples to form quadruples. In the
process of proving Lemma 3.7, Rees also proves a similar result on resolvable GDDs
that we can exploit:

LEMMA 3.8 [19]. For even nand all n < r < 2n, there exists a resolvable {2,3} -
GDD of group-type n® having 2r — 2n parallel classes of 2-blocks and 2n — r parallel
classes of triples, except whenn = r=2o0rn=r=6. n

Lemma 3.8 is used similarly to Lemma 3.7, but enables us to fill in groups at the
end. In order to produce many quadruples using the extension of parallel classes, we
desire primarily parallel classes of quadruples, or of triples (that can then be extended).
A particularly useful result in this vein was proved by Rees and Stinson [24], with some
further cases settled by Assaf and Hartman [1]:
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LEMMA 3.9. Let g,t satisfyt > 3, gt = 0 (mod 3) and g(t — 1) = 0 (mod 2).
Then there is a resolvable {3} -GDD of group-type g' except for 23, 2°, 6*, and with the
possible exceptions of t = 6 and g = 2,10 (mod 1)2. [

Thus far, we have considered only resolvable designs in which each parallel class
is uniform, in that every block in the parallel class has the same size. Rees has made
substantial advances on { 2,3} -PBDs in which the parallel classes are nonuniform:

LEMMA 3.10 [20].  There exists a resolvable {2,3} -PBD with an even number p of
elements and r parallel classes if and only if %p <r<p—landpir—p+1) =0
(mod 3), with the exceptions (p,r) = (6,3),(12,6). [ ]

LEMMA 3.11 [21,22].  There exists a resolvable { 2,3} -PBD with an odd number p
of elements and r parallel classes provided p(r — p + 1) = 0 (mod 3) and one of the
following holds:

(i) sp<r<p—4,
(ii) p=3 (mod 6) andr = }(p — 1), or
(iii) (p,r) = (9,6). .

A resolvable PBD produced by Lemma 3.10 or 3.11 has p(p — 1 — r)/ 3 triples and
p(2r —p + 1)/ 2 pairs.
Next we require further { 4} -GDDs for use in the Fundamental Construction.

LEMMA 3.12 [7]. Let g,t be integers satisfyingt > 4, g(t — 1) = 0 (mod 3) and
g*(t — 1) = 0 (mod 4). Then there exists a {4}-GDD of group-type g' except when
(g7 t) € {(2’4)’ (674)}~ | ]

At this point, {4} -GDDs are available from Lemma 3.4 (by truncation), Lemma 3.5,
and Lemma 3.12. We require a few further small GDDs:

LEMMA 3.13 [25,26].  There exist {4} — GDDs of group-type 3*6%, 316, 3692

Combining Lemmas 3.4, 3.12 and 3.13, we observe that { 4} -GDDs with group sizes
3 and 6 exist on v elements except when v = 18; when at least one group of size 6 is
required, we have

LEMMA 3.14.  There is a {4} -GDD with groups of sizes 3 and 6, having at least one
group of size 6, for allv =0 (mod 3), v > 18.

PROOF. Using the GDD of type 623*, we have suchaGDD forall v = 0,3 (mod 12),
v > 75. Lemma 3.4 provides such GDDs for v = 6,9 (mod 12), and Lemma 3.12 gives
such GDDs for v € {36,48,60,72} . Hence we need only treat the cases v = 39, 51 and
63. For v = 39, take elements { 1,...,39}, and take the blocks obtained from the starter
blocks {1,3,11,18},{1,4,15,24},{1,2,6,37} under the action of the permutation
(12---36)(373839). This is a GDD of type 3'6%. For v = 51, take elements
{1,---,51}, and take the blocks obtained from starter blocks {1,2,6,49},
{1,3,16,22}, {1,4,13,27} and {1,8,18,38} under the action of the permutation
(123...48)(495051). This is a GDD of type 3'68.
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For v = 63, take elements { 1,...,63}, and take the blocks to be those obtained from
starter blocks {1,2,6,61}, {1,3,9,22}, {1,4,13,36}, {1,8,25,39} and
{1,12,27,45} under the action of the permutation (123 - - -60)(61 62 63). [

Whenv =0,1,3,4,7,10 (mod 12), we have seen the PBD with the maximum num-
ber of quadruples; all are obtained from Lemma 3.4. However, for v = 6,9 (mod 12),
this maximum is not obtained in this way. Instead we employ a result of Mills on “cov-
erings”; his result implies the following:

LEMMA 3.15 [17]. For v = 6,9 (mod 12), there is a { 3,4} -PBD with precisely
(v+3)/ 3 triples. ]

Actually, Mills proved that the minimum covering of pairs on a set of size v = 7,10
(mod 12) by quadruples has an excess that is a single pair covered four times rather than
once. Truncating Mills’s covering by removing either of the elements in this excess pair
produces Lemma 3.15.

In the constructions that follow, we assume that whenever possible, the basic designs
given by Lemmas 3.3-3.15 are employed as ingredients to fill in groups, fill holes, extend
parallel classes, and truncate. We typically state only the basic design that is constructed,
and assume that the operations mentioned are performed in a suitable way to obtain the
specified number of quadruples.

4. Small ingredients. In this section, we develop quite a large collection of small
{3,4}-PBDs, IPBDs and GDD:s for use in the recursive constructions of section 3. Since
we require IPBD:s to fill in groups effectively, we remark first on some trivial connections
between Spec, (v, w) and Spec,(v). First observe that Spec,(v) = Spec, (v, 0) = Spec,(v, 1).
Now, Specy(v, 3) = Spec,(v)\ { v(v — 1)/ 12} . Furthermore,

Spec,(v,4) = {s—1: 5 € Spec,(v), s # 0}.

Finally, if s € Spec,(v,w) and t € Spec,(w), then filling the hole gives s + ¢ € Spec,(v).

Since A(v) has approximately v*/ 12 elements, we are naturally unable to present
explicit constructions for each case. We organize the presentation by defining the period
of v to be | v/ 12]. In the zeroth and first periods, we give explicit constructions for
each design. In the second and third periods, we simply summarize the consequences
of Lemmas 3.3-3.15 supplemented by filling in groups and holes, extending parallel
classes, and truncating. Additional designs in these periods are presented explicitly in a
supplementary report. The solution for the fourth and higher periods is then pursued in
section 5.

4.1. Zeroth and first periods. The systematic investigation of small PBDs was first un-
dertaken by Kelly and Nwankpa [14]; they classified all PBDs on at most fourteen ele-
ments. The classification of PBDs was extended to v = 15 by Brouwer [6]. Beyond that
point, no complete classification is available. Nevertheless, we can exploit the available
catalogues to determine Spec,(v,w) for v < 15.
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In the zeroth period, there are unique (v,{3,4})-PBDs except for v = 6 where no

such PBD exists:
v #triples # quadruples
0 0 0
1 0 0
3 1 0
4 0 1
7 7 0
9 12 0
10 9 3

Truncating the (9, { 3})-PBD gives a { 3} -GDD of type 2* of which we make exten-
sive use.

In the first period, a variety of PBDs begins to appear. For v = 12, we have
Spec,(12) = {3,9}. Using parallel classes in these PBDs, we obtain a {3} -GDD of
type 4>, a {4}-GDD of type 3, and a { 3,4} -GDD of type 3* with 3 quadruples and 12
triples.

For v = 13, we have Spec,(13) = {0,6,7,13}. Brouwer [6] established that
Specy(15) = {0,5,6,7,10, 14, 15} . In the process, he established the following:

LEMMA 4.1.  There exist { 3,4} -GDDs of type 33 having 0, 5, 6, 10 and 15 quadru-
ples. n

The Doyen-Wilson Theorem (see Lemma 3.3) establishes that for w = 1,3 (mod 6),
Spec,(2w + 1,w) = {0} ; hence Spec,(15,7) = {0} . In addition, Spec,(15,6) = {6}.
For v > 16, we can no longer rely on exhaustive catalogues.

LEMMA 4.2. Spec,(16) = {4,5,6,7,9,10,11,12,15,20}. Moreover, there exist
{3,4}-GDDs of type 4* having 0, 8 and 16 quadruples.

PROOF. The GDDs are constructed as follows. Use Lemma 3.8 withn = 4, r = 4,
5 and 6 to produce a resolvable { 2,3} -GDD of type 4* with 0, 2 or 4 parallel classes of
2-blocks (and hence 4, 3 or 2 parallel classes of triples). Extend four parallel classes to
produce the required GDD. Taking groups as blocks in these GDDs gives {4, 12,20} C
Spec,(16).

Fillingin groups in Lemma 4.1 gives { 5,10, 11,15} C Spec,(16).For6 € Spec,(16),
take the following PBD:

dehi dfik dgim efno egpa fgbc dnb doa dpc ejp ekm elc fhp
fil fma ghj gin gko hklI hmn hob hac ijc ika imb iop
jlo jmp jna knc kpb Inp lab moc

In this notation, we use letters to represent the elements of the design, and use abc to
denote a block {a, b, c}.
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7 € Spec,(16)
abch cdei aefj bdfk adim beno cfgp agn aik aop bgl bij bmp
cin cki cmo dgo dhn djp egk ehm elp fhl fio fmn ghj
gim hip hko iln jkm jlo knp

9 € Spec,(16)
abcd aefg ahij behk cfii dgjm bfin cgho deip akp aln amo bgp
bio blm cej ckn cmp dfk dhl dno elo emn fim fop gin
gkl hnp ikm jko jlp

We next show that the remaining values in A(16) do not appear in Spec,(16). Now
if s > 12, any such PBD with s quadruples must have an element that meets only
quadruples. Truncating to remove this element gives s — 5 € Spec,(15). This rules out
s € {13,14,16} from Spec,(16).

The final case to consider is s = 8. Elementary counting shows that there is a unique
possible configuration of eight quadruples up to isomorphism, namely 012a, 345b, 036¢,
147d, 057e, 246f, 1569 and 237h. A exhaustive search by computer showed that among
the remaining pairs, the closest one can come to a partition into triples is to obtain 22
triples and one hexagon. Hence no solution exists here. (]

It is easy to verify that 10 € Spec,(16,6) using a resolvable (10,{2,3})-PBD with
six parallel classes from Lemma 3.10.

For v = 18, we have the following:

LEMMA 43. {5,6,7,8,9,10,11,12,13,14,15,16}  C  Specy(18), and
{20,21,22} N Spec,(18) = 0.

PROOF. First we treat the affirmative cases. The PBD with 5 quadruples is given by
Lemma 6.14 of [27], and that with 6 quadruples by Lemma 6.15 of [27]. The PBD with 11
quadruples is obtained from a resolvable (11,{2,3})-PBD with 7 parallel classes from
Lemma 3.11. The PBD with 15 quadruples is obtained by extending three parallel classes
of aresolvable (15, {3} )-PBD. The PBD with 16 blocks is obtained by truncating a point
from a PBD given by Stanton [29].

We next exhibit a number of designs explicitly. In each case, we chose a set of quadru-
ples meeting the necessary conditions on degrees; then we used a hill-climbingalgorithm
similar to that of Stinson [32] to partition the remaining pairs into triples.

7 € Spec,(18)
abcd aefg ahij dgjr dklm gkno jkpg akr alg amo anp ber bfi
bgl bhk bjm bng bop cem cfk cgg chl cin cjo cpr dep
dfin dho dig ehq ek ejn elo fhr f fmp foq ghp gim
hmn ilp ior Inr mqr
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8 € Specy(18)
abcd aefg ahij cfik dgjl dimn cgop figr akm alr anp aoq bej
bfn bgm bho bir bkq blp cer chl cjm cnq dek dfo dhq
dpr ehn eip elgq emo fthp fim ghk giq gnr hmr ilo jkp
jno  kin  kor mpq

9 € Spec,(18)
abek bcfl cdgm dehn efio fgap ghbq hicr iadj acq aho alm anr
bdp bim bjr bno cej cko cnp dfk dir dog egr elg emp
fhj fmn fqr gk gjn glo hkm hlp in ipg jkl jmg jop
knq kpr mor

10 € Spec,(18)
abcd aefg ahij behk cfik dgk bfj cemndhop gigr akl amo ang
apr bgp bim bnr boq cgo chq cjr clp der dfg din dim
eip ejo elg fhn fmp for ghm gin hir ilo jmgq jnp kmr
kno kpq

12 € Spec,(18)
abcd efgh ikl mnop aeim bfin cgko dhlg afkr bgim chin dejo agp
aho ajq aln bek bhr bip bogq cel cfm cjp cqr dfp dgi
dkn dmr enr epq fig flo gjr gnq him hkp ior kmq Ipr

13 € Spec,(18)
abcd aefg ahij dimn glop jlgr dgjk bfio eing bhnp mpre orch qcfm
akl amo anr apq bel bgqg bjm bkr cek cgn cil cjp deh
dfr dip dog ejo fhl fin fkp ghm gir hkg ikm kno

14 € Spec,(18)
abhn aclp adij aegq afmo rbgl rcio rdfp rejn rhmq bcde fghi jkim
nopq akr bfk biq bjo bmp cfn cgm chj ckq dgo dhk diq
dmn efl ehp eim eko figq gjp gkn hlo ikp iin

The nonexistence results follow from the nonexistence of PBDs on 17 elements with
31 or fewer blocks [30]; for truncating a (18, { 3,4} )-PBD gives a PBD with maximum
block size four on 17 points, having the same number of blocks. n
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We also have {3,4,11,12} C Spec,(18,6). These four values are obtained as fol-
lows. The first is a { 3} -GDD of type 436!. The second is obtained by filling groups in a
{3} -GDD of type 3*5'. The third is obtained by taking a resolvable { 2,3} -GDD with
type 43, and 2 parallel classes of triples (from Lemma 3.8 with n = 4 and r = 6), and
extending all six parallel classes. The fourth is obtained by removing one point from a
TD(4,4), then filling in groups using a (7, {3} )-PBD and leaving a 6-hole.

We have further that 11 € Spec,(18, 7); this is the same construction as that for 11
quadruples in Lemma 4.3.

LEMMA 44.  A(19)\ {17,23,24,25} C Spec,(19). {23,24,25} N Spec,(19) = .
Moreover, {0,7,8,16} C Spec,(19,7).

PROOF. For7 € Spec,(19,7), take aresolvable { 2,3} -GDD of type 4° from Lemma
3.8 (with n = 4, r = 7) and extend all seven parallel classes. For 8 € Spec4(19,7), take
a resolvable (12,{2,3})-PBD with five parallel classes of 2-blocks and three parallel
classes of triples (Lemma 3.7 with x = 5, y = 3); extend 7 parallel classes. For 16 €
Spec,(19,7), fill in groups in a { 4} -GDD of type 4* using (7,3, { 3} )-IPBDs.

Now Spec,(19,7) C Spec,(19). The case 18 € Spec,(19) is handled by truncating
two points in a group from a {4} -GDD of type 2'°, and filling in the remaining groups.
The case 19 € Spec,(19) is handled by removing two points on a triple from the PBD on
21 elements given in Lemma 3.15. The case 20 € Spec,(19) was found by hand using
an ad hoc construction, and has blocks as follows: abcd, aepq, ahmr, alos, bgms, bkoq,
binr, cekr, cips, cjmq, dglq, dhks, djpr, efgh, ejns, fqrs, gior, hing, ijkl, mnop, afi, agj, akn,
bei, bfp, bhj, cfl, cgn, cho, deo, dfn, dim, elm, fjo, fkm, gkp, hip.

For 21 € Spec,(19), remove three points from the hole of a (22,7, { 4} )-IPBD. Stan-
ton [29] gives a solution with 22 quadruples.

The case 12 € Spec,(19) is handled by taking elements Zg x {1,2,3} U {00},
and starter blocks 07172523, 0;2,0,53, 013,5,, 0;0343, 051,45, 0,1325, and { OO} 0,3; for
i€{1,2,3}.

5 € Specy(19)
abcd aefg behi cfhj dgij ahr ais ajp ako aln amqg bfq bgl
bjo bkp bms bnr cer cgq cio ckn cls cmp dep dfn dhk
dm dog drs ejs ekq elo emn fim fkr flp fos ghm gks
gno gpr hlg hns hop ikl inp igr jkm jir jng mor pgs

6 € Spec,(19)
abcd efgh aeij bfkl cgik dhjl afr agn ahp ako alg ams bes
bgo bhi bjr bmg bnp cer cfo chm cjp «cin cqs deq dfs
dgp dio dkm dnr ekp elo emn fin fim fpg gjq gls gmr
hkq hns hor ilm ips igr jkn jos krs |Ipr mop noq
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9 € Specy(19)
abcd aefg nhij
anr aoq ben
cng dej dfn
fls gir glp

10 € Spec,(19)

abcd aefg ahij
bfk bgj bhs
dfi ~ dhn djk

ghr giq gks

11 € Spec,(19)
bcfh degi nprs
ak bdr bel
dfm dhs djl
gmp hjo hkm

13 € Spec,(19)
bcde bfkp bhna

adr afi amp
dgn dil djp
hlo hpr ips

14 € Spec,(19)
bcda efga hija
ejls bjp bms
eip eor fhs
imq jkn koq

15 € Spec,(19)
becdk efgl  hijm
Insa moqa bim
eqr fks fmp
jkn jlo jrs

For the nonexistence results, see Stanton [29].
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nkim
bfm
dgs
gno

akim
bir
dir
gmn

almr
bgs
dko
hlp

bars
bgm
dks
ins

kima
bnr
fkr
kps

behn
bor
fnr

ehko cfip gjmq
bgk bhp bio
dhi dim dkq
hmr igs jkp

beno hkpq cfrs
blg bmp ceq
dgs ehl eip
iko jlo mos

ajgs higr gjkr
bij bkp bmg
dng efq ejp
ilo imn opq

cjoa dhmgq efgh
bio bjl cfn
ejm elp eos
mor

nopa qrsa behk
cgh cik cos
fmn gir gjo

cfio dgjp bfiq
bps clp cms
gko gmn ggs

bigr
bjs
eil
mos

ilns
cgl
ejs
npr

fkls
cer
ekn

einr
cgp
fiq

bfio
dem
gmp

cghr
cnq
hkl
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opdr
cem

epq
nps

ahs
cgh
ers

dgop jmar

cho
ekr

emos abno

cgo
fip

ekqa
chs
flr

cenq
dgk
gns

deis
diq
hos

cim
fhm

cis
fin

glsa
cim
fms

cjmr
dhn
hir

bgia
dmr
hpq

aik
cjr
fhq

ang
cip
fin

acdp

cjm
for

hijk
ckr
giq

dfiq
dis
hmo

ceja
dno
ikq

ajl amp
cks clo
fio  fkr

aor aps
ckn dem

flp  foq

aeh afg
ckq cin

ghn giq

klmn nopq
clg dfo

gir  gko

bglq cflp
dlo dpr
hpg iln

dfha kpra
ekm eop
ilr inp
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LEMMA 4.5. {0,8} C Specy(21,9), {0,8,28} C Spec,(21,7), 30 € Spec,(21,6),
and

{0,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,28,30,31} C Spec,(21).

PROOF. For 8 € Spec,(21,9), extend nine parallel classes of a resolvable
(12,{2,3})-PBD with 2 parallel classes of triples and 7 parallel classes of 2-blocks (from
Lemma 3.7). For 8 € Spec,(21, 7), truncate one group of an ITD(4,6,2) to the two points
of the hole, and extend the groups that result by one point. For 28 € Spec,(21, 7), punc-
ture one point not in the hole of a (22,7,{4})-PBD. For 30 € Spec,(21,6), remove
instead a point of the 7-hole.

This settles 8 and 28 in Spec,(21). For 12 € Spec,(21), extend two parallel classes
and the groups of a nearly Kirkman triple system of order 18 (from Lemma 3.7). For 21 €
Spec,(21), remove the four points of a block in a (25, {4} ) —PBD. For 30 € Spec,(21),
add one infinite point to the groups in a {4} -GDD of type 2'°. For 31 € Spec,(21), use
Lemma 3.15.

For 7 € Spec,(21), on elements Z7 x {1,2,3}, take starter blocks 0;3;1,2,, 0,0,03,
011,45, 012167, 011333, 0;2353, 022,13, 0,4,23 and 0,3343 (modulo (7, —)).

For 10 € Spec,(21), on elements (Z;9x { 1,2} )U{ 0o}, take starter blocks 0;4,0,3,,
011,31, 011,52, 012245, 0,7,8,, 000,5; and 000,5,.

For 14 € Specy(21), on elements Z; x {1,2,3}, take starter blocks
01311525, 01214353, 010,03, 0;114,, 0,1563, 052,53, 053,43 and 0,2363.

For 15 € Spec,(21), on elements (Z;19x { 1,2} )U { 00}, take starter blocks 011,2,4,,
01510252, 013272, 011141, 012182 and 001102.

For 18 € Spec,(21), on elements Z;3U { A, B, C}, take starter blocks {0, 1, 3,8} and
{0,6,12} . This leaves differences 4 and 9 unused in Z;5. The corresponding cubic graph
has a 1-factorization [31] F, F,, F3. Form triples consisting of pairs in F, together with
A, pairs in F; together with B and pairs in F3 together with C. Finally, add the triple ABC.

For 20 € Spec,(21), on elements (Z19 X { 1,2} )U { oo} take starter blocks 011,45,
01223262, 012102, 017292, 000151 and 000252.

5 € Spec,(21)
abcd aefg behi cfhj dgij ahq aio aju akr alm ans apt bfk
bgqg bjm blu bnt bos bpr cer cgt cik «clg cmn cou cps
den dfl dhm dkp dog drs dtu ejt ekl emu eop eqgs fir
fmq fno fpu fst gho gkn gls gmp gru hkt hir hnp hsu
ilp ims inu igt jks jin jor jpg kmo kqu lot mnt nar
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6 € Spec,(21)
abcd efgh aeij
bem bgq bhr
cqt deo dfp
fig  fmr  ftu
iot jkp jmn

9 € Spec,(21)
abcd aefg nhij
alu amo anp

cik cnr cqt
ent epq fhq
ikt ilo jpu

11 € Spec,(21)
bcfth degi nprs
aiu akt bdk
clg cot cru
fin fio fmt
iko ipt jmp

13 € Spec,(21)
bcde bfkp bhna

adf aim apt
cmp cnu dgn
fin flg fmu
jgu  ksu lpr

16 € Spec,(21)
grst rcei csfj
noae opbf pacg
bgq bit bms
fgk fthq fnr
oqu psu

17 € Spec,(21)
rsth scei ctfj
noqd opae pqbf
ben bgs bkt
eqt fns fou
ptu
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bfkl  cgik
bin  bjt
dgu diq
gio gls
jru - kno
nkim ehko
bej bfu
csu deu
fio  fks
jrs kru
almr ajgs
beq bgs
dfu dhs
fp.q  ghm
kng mnu
bars cjoa
aru  bgm
dis djl
frt gip
mor nst
deuk eftl
abh adf
cdh ckt
glu gmr
degk efhl
gacg abi
bru cdl
glu got

dhjl
bos
dkr
gmt
kqu

cfip
bgh
dfn
flt
mps

higr

djt
glo
oqu

afn
bpu
dms
gnr
lou

gimq
bim
dgk
fmr
nqu

gjkr
bju
din
gpu
stu

dhmq efgh

biu
dkr
gjr

fuim
aiq
cnqg
got

fgim
ads
cku

gpr

bjt
dot
gko

ghjn
aju
dgi
his

ghjn
afk
cor
hqu

agp
cer
dnt
hiu
Ipt

bigr
bkp
dhs
giu

ogs

fkls
blp
dmq
gqt

einr
blo
dpu
gtu

hiko
aks
djt
hpt

hiko
ahm
dfr
int

aho aks
cfo chp
ekt eln
hkm hnq
moq nps
opdr ahr
bno bst
dig djl
glp gns
otu

emos abno
brt cej
dor efr
hjn  hku
ekga glsa
cfs cgq
ejp elu
hit  hou
ijlp  jkmq
alr amt
dlg dos
hru ins
ijlp jkmqg
ajr alt
dhp diu
igr  jos

alq
cjs
epq
hst
opr

ais
cem
dmt

grt

acdp
cgn
ekp
hit

hijk
chr
emt
hps

kinb
bcu
egs
jor

kinr
anu
dmt
kps

amu
cim
esu
ilr
qrs

ajt
cgo
eir
hmu

aeh
cis
elu
hop

kimn
cil
eos
iqt

Imoc
bdr
ehm
kpr

imob
bch
eju
lgs

art
cnu
fis
imp

akq
chl
els
hpt

afg
ckm
ent
ijl

nopq
ckt

fio
jms

mnpd
bej
epq
ntu

mnpc
bdij

msu
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19 € Spec,(21)
abdi bcej cdfk degl efhm fgin ghjo hikp ijlg jkmr kins Imoa mnpb
noqc oprd pgse qraf rsbg sach aeu agp ajn akt bfo bht bkqg
blu cgm ciu clp ct dhn dju dmg dst eir eko ent fjs
fit fou gku ggqt hir hgqu imt ios jpt msu nru otu =

LEMMA 4.6. 4 € Spec,(22,10). 13 € Specy(22,9). {7,15,35} C Spec,(22,7).
4 € Spec,(22,6). Finally, Spec,(22) contains

{6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,28,35}.

PROOF. For 4 € Spec,(22, 10), extend the groups of a { 3} -GDD of type 9!3*. For
13 € Spec,(22,9), use a resolvable (13,{2,3})-PBD with nine parallel classes (from
Lemma 3.11). For 7 € Spec4(22,7), truncate a group of a TD(4,7) to one point. For
15 € Spec,(22,7), remove three points not in the hole from a group of an ITD(4,6,2)
and add one point at infinity to the groups. For 35 € Spec,(22,7), take a (22,7,{4})-
PBD. For 4 € Spec,(22,6), take a { 3} -GDD of type 6'4*.

In consequence, we obtain 7, 13, 15 and 35 in Spec,(22). For 19 € Spec,(22), ex-
tend three parallel classes and the groups of a nearly Kirkman triple system of order
18. For 28 € Spec,(22), remove three points from a block of a (25,{4})-PBD. Now
6 € Spec,(22) is given by Lemma 6.23 in [27]. We obtain 14, 21 and 25 from extend-
ing parallel classes in the solutions for 7, 14 and 18 in Lemma 4.5 for 21 points. For
11 € Spec,(22), on elements Z;; X { 1,2} take starter blocks 0;415,0,, 0,691, 0,8,10;,
021,24, 0,4,7; and 0,2,5;. For 22 € Spec,(22), take instead starter blocks 0,4,0,1,,
01213157, 0,217y, 024,51 and 0,2,5,.

For 16 € Spec,(22), add a point to the parallel class { afg, bim, ciq, dor, ekp, hjn, stu}
of the the solution for 9 € Spec,(21). For 18 € Spec,(22), add a point to the parallel
class { ahr, bfu, cjk, dmt, epqg, gns, ilo} of the solution for 11 € Spec,(21).

8 € Specy(22)
abcd aefg ahij dgjr dkim gkno jkpq stuv akt alp amn aos aqu
arv beu bft bgs bhr bip bjm bkv blo bng ceo cfi cgh
cji cks cmr cnv cpu cqt deh dfu div dnt dog dps eik
ejs eln emq epv et fho fiv fkr flg fms fp giq giv
gmu gpt hku hit hmp hns hqv ils imt inr iou jnu jot
Iru mov opr ars
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9 € Spec,(22)
abcd aefg
apgq aru
clu cmr
elt enp
hin  hpv
mog mpu

10 € Spec,(22)

abek bcfl
amu anr
cqu dfu
fkr  fnv
ilt ins
npt ors

12 € Spec,(22)

sbcd efgh
acj adg
cev cfl
eln  egs
hsu ioq

17 € Spec4(22)
abcd aefg
aqt bfk
clu cmo
ept fit
hos iko

20 € Specy(22)

bcde bfkp
adf aip
clp cnt
fin  fir
jrt kru
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ahij
bes
cnt
eov
hrt
nqu

cdgm
aqgs
dkt
fqt
iqv

ijkl
aep
cmr
fip
jmq

ahij
bgjv
deu
fio
jnp

bhna
amrv

dgp
fou
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cfik
bfn
cqs
fhu
ils

dehn
bds
div
giu
ilp

dgjl
bgk
deq
flp
ipt

efio
bim
doq
gin
jou

mnop teim

aho
cpq
fmu
jsv

akim
bhr
dfhv

flp
jsu

bars
atu
diu
fqtv
mpt

aiu
ctu
fos
kmv

beno
biu
dim
fmn
ktuv

cjoa
bgt
djl
gim
psu

dimn cgop
bhq bio
dft dhs
fmv fos
iqv  jkt
fgap ghbq
bjt bnu
dpr egs
gkv gir
jqr  klu
bfin  cgko
alt ams
der dfq
ftv  gis
kqu kst
hkpq cfrs
bit bmp
dik dir
fqu ghl
logv ort
dhmq efgh
bilv  bju
dkt dnsv
gia gkov

figr
bju
dkp
ghm
jno

hicr
bop
ejm
got
kms

vhig
anv
dhm

lor

iins
bgs
dnq
gir

pru

einr
bmo
dor
gnu

stuv akv alm
blv. bmt bpr
dou drv eir
giu gnv gqt
jps klg kms
iadj stuv acv
brv cet cjk
elg epv eru
hjv. hko hls
kng Imn mov
afkr  bglm chin
bek bht bir
div. djp dkn
gnu gpv gqr
Ips nqt nrs
dgop jmgr anrv
ceh cgq cipv
dst eiq ejl
gks gmt gnu
ekga glsa hijk
cfm cgr chuv
ejpv elt emu
hlo hpr hst

ans
ceh
ejm
grs
knr

aht
cno
fhm
hpu
mpq

uejo
bov
dlu
hjr
prt

aou
cjt
ekr
hmu

klmn
ciq
eos
iot

aot
cjv
eku
hko
lor

alo
cps
fis
ikp
mrt

abq
bpu
dot

ruv

aps
ckn
emsv
hnt

nopq
cks

fis
jms
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23 € Spec,4(22)
grst rcei csfi deuk eftl fuim ghjn hiko ijlp jkmg kinb Imoc mnpd
noae opbf pacg abh adfv aiq aju akr als amt bcu bdr bej
bgg bitv bms cdh ckt cngv dgi dit dig dos egs ehmvepq
fgk fhg far  gluv gmr got hir hpt hsu ins jorv kpsv ntu
oqu pru ]

4.2. Second and Third Periods We simply state the results obtained from the recursive
constructions of section 3 using the small designs from section 4.1. The verification is
purely mechanical; in fact, we have employed a sequence of computer programs em-
bodying the constructions of Lemmas 3.1-3.15 in order to verify that the results stated
are correct. We have also constructed a number of specific designs in these periods. These
are given explicitly in the supplementary report. In Tables 4.1 and 4.2, we list the pos-
sible exceptions, i.e. the values in A(v) not shown to be in Spec,(v) by example or by
recursive construction. In Table 4.2, we list a value s when M, — s is a possible excep-
tion, since in the third period all remaining exceptions are near the maximum number
of quadruples. We do not comment on Spec,(v, w) in these periods; although we obtain
many results from the recursive constructions for w > 6, few are needed for the proof of
the Main Theorem to follow.

TABLE 4.1 Second Period.

v Possible Values in 4(v)\ Spec,(v)

24 192223242627 282931323334363738394041

25 2728303133343537394041 42444546

27 2223282931333435383940414344464749505153

28 3132343538404243444748 505253555657 5859

30 2526282931323435363738404142434446505355565758596061
62 65 66

31 272829343538394043454649 5051 525354636566676869707172

33 2829303436384144455051555657616263676869707172737576
81

34 2835485458 6061 646667 707273747678 79 8081 82 83 84 86 87

5. Proof of the Main Theorem. Inorder to prove the Main Theorem, we treat con-
gruence classes of v (mod 1)2. In all eight classes, we begin with two applications of the
Fundamental Construction; hence we examine these first before considering particular
classes.

LEMMA 5.1. Fort = 0,1 (mod 4), 0 < s < 124 — 121, s = 0 (mod 8), there
is a { 3,4} -GDD of group-type 12" with precisely s quadruples. For t = 2,3 (mod 4),
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TABLE 4.2 Third Period.
v Values M, — s for possible s € A(v)\ Spec,(v)
36 1345 7 1011131516192127464751535561636571
37 4567 8 10111213141516171920232627
39 1258 9 15
40 58915
42 1256 7 8 9 13
43 2345 6 7 8 9 101112
45 1589 131415
46 2345 6 7 8 9 10111214

t>70<s<12¢—12t—24ands = 0 (mod 8), there is a { 3,4} -GDD of group-type
12-224" with precisely s quadruples.

PROOF. Use Lemma 3.4 to produce {4} -GDDs with group-types 3’ when ¢t = 0, 1
(mod 4), and 326! when t = 2,3 (mod 4). Apply Lemma 3.2 with weight 4 to each
element, using the {3,4}-GDDs of type 4* having 0, 8 or 16 quadruples (see Lemma
4.2). n

The omission of # = 6 in Lemma 5.1 can be remedied to a certain extent by a different
application of the Fundamental Construction:

LEMMAS.2. Thereisa{3,4}-GDD of group-type 12° having precisely s quadruples
foralls =0 (mod 5), 0 < s < 360.

PROOF. Truncate a (25,{5})-PBD to obtain a {5}-GDD of type 4°. Now apply
Lemma 3.2 giving every element weight 3, and using the { 3,4} -GDDs of type 3° having
0, 5, 10 or 15 quadruples (see Lemma 4.1). n

In specific cases, we also employ variants of Lemmas 5.1 and 5.2 that assist in partic-
ular classes. However our general strategy is to fill in groups in the GDDs produced by
Lemma 5.1, using the GDDs of Lemma 5.2 to handle the exception in 5.1.

5.1. v=1 (mod 12)
We write v = 12¢ + 1, and first apply the general construction.

LEMMA5.3. For12t+12>49,t # 6, ifs € A(12t+ 1) then s € Spec,(12t + 1) for
s¢{5,9,10,11,17} and M, — s ¢ {4,5,9,10,11,17}.

PROOF. Using Spec,(13) and results on Spec,(25), fill in groups in the 12’ or
12/224' { 3,4} -GDDs. Whent = 0,1 (mod 4), we choose t numbers from {0, 6,7, 13}
and (3% — 1)/ 4 numbers from {0,8,16} to form the number of quadruples. When
t = 2,3 (mod 4), we choose ¢ — 2 numbers from {0, 6,7, 13}, one from { 0,50}, and
(3* —t — 6)/ 4 from {0, 8,16} . This produces all numbers of quadruples in (127 + 1)
with the exceptions stated. =

We next consider order 73:
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LEMMA 54. Fors € A(73), s ¢ {8,9,M73 — 9,M73 — 8,M73 — 4}, there is a
(73,{ 3,4} )-PBD with precisely s quadruples.

PROOF. Fill in groups in the GDD of type 12° using Spec,(13). ]

Now we clear up the remaining exceptions. In view of Lemma 3.3, if v,w = 1,3
(mod 6), v > 2w+ 1 and s € Spec,(w), we have s € Spec,(v). Hence we have the
following:

LEMMASS5. For5<s<17,ifv=1,3 (mod 6), v> 49, then s € Spec,(v).

PROOF. Apply the observations using Lemma 3.3 to {6,7,13} C Spec,(13),
{5,10,14,15} C Spec,(15), {8,9,11,12,16} C Spec,(19), and 17 € Spec,(25). This
leaves only 17 € Spec,(49) to construct; this is straightforward using a {3} -GDD of
type 15° and filling groups with (19, 4)-IPBDs. [

We use Lemma 3.4 in a similar way to fill in the “top end”:

LEMMA 5.6. Forv=1,4 (mod 12), M, — s € Spec,(v) for
(i) s=4andv > 121,
(ii) s € {5,8,9,10,11,14,15,16} and v > 49,
(iii) s € {6,7, 13} and v > 40,
(iv) s =12 andv > 76, and
(v) s= 17 andv > 85.

PROOF. Use Lemma 3.4 to produce a (v, w, {4} )-IPBD with w = 40 (case (i)), w =
16 (case (ii)), w = 13 (case (iii)), w = 25 (case (iv)) or w = 28 (case (v)). In each case,
M,, — s € Specy(w), and this PBD is used to fill the hole in the IPBD. ]
The case of M, — 4 can often be handled by the following construction:

LEMMA5.7. Letv =1,4,13,16,40 (mod 48), v > 40. Then M, — 4 € Spec,(v).

PROOF. Forv = 4,16 (mod 48), there exists an ITD(4, v/ 4,2) using Lemma 3.5.
Form a { 3,4} -GDD of type (v/ 4)* with precisely 8 triples by filling the hole in the ITD
with a {3} -GDD of type 2*. Now fill groups using a ((v/ 4),{4})-PBD. Forv = 1,13
(mod 48), use an ITD4, ((v—1) / 4),2)in the same way, filling groups with (((v—1) / 4)+
1,1,{4})-IPBDs. For v = 40 (mod 48), we use an ITD(4, (v—4)/ 4, 4) and fill in groups
with (v —4)/ 4) + 4,4,{4})-IPBDs; at the end we place a quadruple on the resulting
hole of order four. [ ]

As a consequence of the previous three lemmas, when v > 49 we are left with the
possible exception of M, — 4 forv € {73,85},and M, — 17 for v € {49,61}. These
last two cases can be treated by modifying the construction in Lemma 5.7 to use one
IPBD(13,1,{3}) (for v = 49) and one IPBD(16, 1,{ 3,4} ) (for v = 61), both of which
have 26 triples (and hence have 13 quadruples fewer than the maximum).

To summarize, we have
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LEMMAS5.8. Forv=1 (mod 12) andv > 49, A(v) = Spec,(v) except possibly for
M, —4,v e {73,85}. [

5.2. v=3 (mod 12)
We write v = 12¢ + 3. From filling in groups in the GDDs of Lemma 5.1 using
Spec,(15, 3) and Spec,(27, 3), along with Lemma 5.5, we have

LEMMAS5.9. For12t+3 > 51,t# 6, Specy(12¢ +3) = A(12t + 3). n

Now filling in groups of the GDD of type 12° using Spec,(15, 3), we obtain all values
in A4(75) except 8 and 9. Hence by using Lemma 5.5 as well, we obtain

LEMMA 5.10.  Spec,(75) = A(75). [
Hence we have shown
LEMMAS5.11. Forv =3 (mod 12)and v > 51, A(v) = Spec,(v). n

53. v=4 (mod 12)
We write v = 12t + 4. Applying the basic construction using Spec,(16,4) and
Spec,(28,4), we obtain

LEMMA5.12. For 12t+4 > 52, t # 6, ifs € A(12t+4) and s ¢ {MV— 12,M, —
7,M, —6,M, — 4} then s € Spec,(12t + 4). n

For v = 76, we use Spec,(16,4) to fill groups in the GDD of type 12° to obtain
LEMMA 5.13.  A(76)\ { M76 — 12, M5 — 7,M76 — 6, M7 — 4} C Spec,(76). L]

Now we treat the remaining cases. Applying Lemmas 5.6 and 5.7 leaves only the
cases M, — 4 forv = 76, and M, — 12 forv € {52, 64}. For the first case, apply
the Fundamental Construction giving every point weight 3 to an ITD(4, 6, 2) and fill the
resulting 6-hole with an ITD(4, 6, 2). The result is an ITD(4, 18, 2) with a sub-TD(4, 3).
Now fill the hole witha { 3} -GDD of type 2*, and “unplug” the TD(4, 3). Add four points
at infinity. On each group together with these four points, place a (22,7, {4} )-IPBD so
that the hole coincides with the four additional points and the three points of the TD(4, 3)
in this group. Finally, on the twelve points of the TD(4, 3) and the four additional points,
place a (16; {4} )-PBD.

For Ms, — 12 € Spec,(52), fill groups of a TD(4, 13) using { 7, 13} C Spec,(13). For
Mea — 12 € Spec,(64), fill the hole of an ITD(4, 16,2) with a { 3}-GDD of type 24 and
fill groups using { 12,20} C Spec,(16).

To summarize,

LEMMA 5.14. Forv =4 (mod 12) and v > 52, A(v) = Spec,(v). =

54. v=0 (mod 12)

We write v = 12¢. This case poses a special problem, because Spec,(12) only contains
two different values. Hence filling in groups as usual in the GDDs of Lemma 5.1 gives
only:
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LEMMA 5.15. Fort = 2,3 (mod 4), t > 7, ifs € A(12t) and s # M, — s/ for
st €{1,2,3,4,5,9,10, 11} then s € Spec,(12¢). [

LEMMA 5.16. Fort = 0,1 (mod 4), if s € A(12t) and s — m, is even, then if
{s—my,M, — s} N {2,4,10} = 0, s € Spec,(121). .

Lemma 5.16 is quite weak, in that it produces only values of the same parity. Hence
instead of using Lemma 5.1, we apply the Fundamental Construction using weight 4 to
GDDs of type 396, b > 1, to obtain { 3,4} -GDDs with type 12924%; these exist provided
t > 7 (Lemma 3.14). In this way, we refine Lemma 5.16 to obtain:

LEMMA 5.17. Fort = 0,1 (mod 4), t > 8, ifs € A(12t) and s # M, — s/ for
sl € {1,2,3,4,5,9,10,11},thens € Spec,(121). n

The case v = 72 is also complicated by the sparsity of Spec,(12). Here we take a
(25,{5})-PBD; truncating a point leaves a {4,5}-GDD of group-type 54! having 5
quadruples and 20 blocks of size 5. Use the { 3,4} -GDDs of type 3° and 3 in the Fun-
damental Constructionto forma { 3,4} -GDD of group-type 15412! in which the number
of quadruples is s; one can choose any s that is the sum of 20 numbers in { 0, 5, 6, 10, 15}
and five numbers in { 3,9} . Now use Spec,(12) and Spec,(15) to fill in groups. In con-
sequence, we obtain

LEMMA 5.18. Ifs € A(72), s ¢ {19,20,21,22,26,27} then s € Specy(72). (]

The cases in Lemma 5.18 are m, + x for x € {1,2,3,4,8,9}. Using Lemma 3.3,
there is a { 3}-GDD of group-type 24'4!2. Since {7,8,9,10, 14,15} C Spec,(24), the
exceptions left in the Lemma are all handled by filling groups in the GDD.

Itremains to consider the exceptions in Lemmas 5.15 and 5.17. To do this, we establish
the following:

LEMMA 5.19. Forv=0,3 (mod 12)and 1 <s < 11, M, — s € Spec,(v) for
(i) s=6andv > 39,
(ii) s € {1,5,8,9,10} andv > 48,
(iii) s =T andv > 175,
(iv) s=2andv > 84,
(v) s € {3,4,11} and v > 120.

PROOF. Truncate a (v+ 1,w + 1,{4})-IPBD to form a { 3,4} -GDD of group-type
30-W/31 where w = 12, 15, 24, 27, or 39 in the five cases respectively. Fill the hole
with a (w, { 3,4} )-PBD having M,, — s quadruples. .

Now we treat the remaining exceptions:

{Mg4 - ll,M84 - 4,Mg4 — 3} Q Spec4(84):

Use aTD(4, 21) and observe that 4M,, +21? = Mg, — 2. Since {My—3,My—1} C
Spec4(21), we obtain the desired results by filling in groups of the TD.

Mgs — 3 € Spec,(96); Mios — 3 € Spec,(108):
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For the first, take a resolvable TD(4, 7). Extend the groups by adding one point, and
extend two parallel classes of blocks by adding a point to each. The resultisa {4,5,8} -
GDD with group-type 473!, Apply the Fundamental Construction with weight 3 to form
a {4}-GDD of group-type 1279 using {4} -GDDs of type 34, 3° and 3%. Now fill in
groups using a (12,3,{3,4})-IPBD and four (15,3,{3,4})-IPBDs having the maxi-
mum number of quadruples, and three (15,3, { 3,4} )-IPBDs having one fewer than the
maximum.

For the second, use instead a resolvable TD(4, 8) and extend three parallel classes and
no groups.

Moyg — 4 € Spec,(96); M o3 — 4 € Spec,(108):

Truncate the solutions given by Lemma 5.7 for 97 and 109 elements.

Moy — 11 € Spec,(96):

Use an ITD(4, 24, 2) along with M4 — 7 € Spec,(24).

Mps — 11 € Spec,(108):

Use an ITD(4, 26, 2) and fill in groups using (30,4, { 3,4} )-IPBDs and a (30, { 3,4} )-
PBD. Each IPBD has the maximum number of quadruples, and we use M3y — 3 €
Spec4(30).

We have also verified by a set of tedious computations (by computer) that Spec,(48) =
A(48) and Spec,(60) = A(60), using the constructions of section 3 and this section
together with the ingredients of section 4.

We have shown

LEMMA 5.20. Forv =0 (mod 12) and v > 48, A(v) = Spec,(v). n

5.5. v=6 (mod 12)
Write v = 127 + 6. We apply the Fundamental Construction as in Lemma 5.1, but to
a general class of GDDs:

LEMMAS5.21. Ifthere exists a { 4} -GDD of group-type 3°6° witha > 1 and a+2b =
t, thenifs € A(12t+6) and s < M6 — 9a + 3, then s € Spec,(12t + 6). In particular,
this holds fort = 0,1 (mod 4)anda = t,andt = 2,3 (mod 4),t # 6, anda =t —2.

PROOF. Form a {3,4}-GDD of group-type 12924 as in Lemma 5.1. Fill in groups
using b (30,6,{3,4})-IPBDs, a — 1 (18,6, { 3,4} )-IPBDs, and one (18, { 3,4} )-PBD.
For the IPBD of order 30, Lemma 3.3 provides an IPBD with 6 quadruples, and Lemma
3.4 provides one with 64 quadruples; simply delete a point of the hole of a (31,7, {4} -
IPBD. The particular cases mentioned are from Lemma 3.4. =

We employ a further general construction:

LEMMA 522. Let z € {0,4,6,8,16}, s1 € Spec,(3t + 3,3), and {s2,53,54} C
Spec,(3t + 4,3). Then fort > 4,

(BHBt+ 1) —z+ 51 + 52+ 53 + 54 € Specy (12t + 6).
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PROOF. Sety = 2,3 or4whenz = 4,z = 6,0rz € {0,8,16} respectively.
Puncture an ITD(4, 3¢ + 1, y) by removing an element outside the hole, and fill the hole
witha { 3,4} -GDD of type y* having 2z triples. This gives a { 3,4} -GDD of group-type
(39! (3t + 1). Fill in the groups. "

In Lemma 5.22, we come ‘“close” to the maximum number of quadruples, but do
not attain it. In particular, the maximum number obtainable in this way in general is
M6 — 10 fort = 0,3 (mod 4), and M;y,,6 — 9 fort = 1,2 (mod 4). We therefore
comment next on the cases close to the maximum:

LEMMA 5.23. Letv =6,9 (mod 12), and s/ = M, — s. Then s! € Spec,(v) in each

of the following cases:
(i) s =4 andv > 30,

(ii) 6 <s<17andv > 57,

(iii) s € {1,3,18,19,20,21,22,23,24,25,26,31} and v > 66,

(iv) s = 28 and v > 93,

(v) s €{2,5,29,30} andv > 102,

(vi) s =27 andv > 129,

PROOF. Using Lemma 3.4, forma (v+ 1,w+ 1, {4})-IPBD with w =9, 18, 21, 30,
33 and 42 in the six cases above. Truncate to form a { 4} -GDD of type 3~/ 3w!. Place
a (w,{3,4})-IPBD on the hole having M,, — s quadruples. =

Now we turn to specific cases. For v = 54, Lemmas 5.21 and 5.22 give all values
up to Ms4 — 13, except Ms4 — 15. We obtain Ms4 from Lemma 3.15, and Ms4 — 4 from
Lemma 5.23. Ms4 — 3 is obtained by puncturing a (55,7, {4} )-PBD outside the hole,
and filling the hole. For M, — s, s € {8,9, 11,12, 15}, modify Lemma 5.22 to use one
(16, {4} )-PBD in place of one of the IPBDs. For Ms4— 10, use Lemma 3.7 with 67 = 36,
x = 1and y = 17, and extend parallel classes to form a (54, 18, { 3,4} )-IPBD with 18
triples; then fill the hole using 15 € Spec,(18). This leaves as possible exceptions Ms4—s
fors€{1,2,5,6,7}.

For v = 66, use Lemmas 5.21 and 5.23 to obtain all but Mes — s for s € {2,5}.

For v = 78, we cannot apply Lemma 5.1. Instead, we use a construction similar to
Lemma 5.2. Take a {5} -GDD of type 5 (i.e., the affine plane of order 5), and apply the
Fundamental Construction giving each element weight 3. This gives a {3,4}-GDD of
type 15° with s quadruples for any 0 < s < 375, s = 0 (mod 5). Use (18,3,{3,4})-
IPBD:s to fill in groups. This handles all values up to M73 — 32. Now applying Lemmas
5.22 and 5.23 leaves only M73 — s for s € {2,5}.

For larger v, we proceed as follows. For all values except those in an interval of length
at most 9¢ — 3 at the top end, we use Lemma 5.1. For the remaining values near the max-
imum, we employ Lemma 5.22 recursively. The recursion uses both the determinations
forv = 0,3 (mod 12) already completed, and it uses determinations for smaller orders
in the classes v = 6,9 (mod 12). The last case, v = 9 (mod 12), is examined in a later
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section. Using Lemmas 3.4, 5.8 and 5.14, one can always choose the (31 +4,3,{3,4})-
IPBD to have the maximum number of quadruples allowed by the necessary conditions,
with the possible exceptions of v € { 25,28,37,73,76,85} . In these cases, one can use
instead the solutions for M, — 5 for v € {73,76, 85}, M, —7forv=25and M, — 9
forv € {28, 37} ; this reduces the maximum in Lemma 5.22 by three, nine and fifteen
quadruples, respectively.

Hence if we have A(3t + 3) = Spec,(3¢ + 3), the recursion provides all values up to
M6 —25fort € {8, 11}, Mise —19fort = 7, M5 — 13 fort € {23,24,27},
M6 — 10 for other t = 0,3 (mod 4), t > 7, and My — 9 fort = 1,2 (mod 4),
t > 6. Lemma 5.23 can then be used to provide the missing values.

It remains to consider the “small” cases, in which Spec,(3t + 3,3) = A(3¢ + 3) has
not been established. In general, we observe that if Spec,(3f + 3) contains all values up
toMs,3—18and ¢ ¢ {7,8,11}, Lemma 5.22 gives all values up to M5,..6 — 31 at least.
One can verify that this holds for all > 12 using the results of section 4.2, Lemmas 5.11
and 5.20, and the induction. Then Lemma 5.23 completes the determination.

At this point, we must consider the cases 7 < ¢ < 11. For + = 7, we obtain all
values up to My — 42 from Lemma 5.21. Using Lemma 5.22 with 42 € Spec,(24) and
the determination of Spec4(25) in section 4.2, we obtain all values up to Mgy — 30, and
My — 28. Using 35 € Spec,(24) instead, we also obtain Moy — 27 and My — 29.

For t = 8, use the {4} -GDD of type 3*6? (Lemma 3.13) in Lemma 5.21 to obtain all
values up to My, — 36. Filling in groups of a TD(4,27) using Spec,(27) then gives all
values up to Mg, — 32 (at least), and Mo, — 27.

For t € {9, 10}, using the determination of Spec,(31, 3) and Spec,(34, 3) in Lemma
5.22, along with Lemma 5.23, handles all values.

For t = 11, Lemma 5.21 handles all values up to M;33 — 78. Filling the hole of a
(138,42, { 3,4} )-IPBD with the maximum number of quadruples using Spec,(42) han-
dles all values up to M 33 — 14.

In each case, provided that the case v =9 (mod 12) is handled, we have established
that the possible exceptions in the ingredients of Lemma 5.22 only cause possible ex-
ceptions that are eliminated by Lemma 5.23. Hence although the determination is not
completed for the small cases, the possible exceptions do not propagate. Once we have
completed the case v =9 (mod 12) (in the next section), we have finished the case v = 6
(mod 12).

We treat a few of the exceptions remaining for v < 90:

LEMMA 5.24. Fort=0,3 (mod 4), t > 4, My2.6 — 5 € Spec, (12t + 6). Moreover,
{M54 —_ 7,M54 —_ 6} g Spec4(54).

PROOF. Form an ITD(4, 3t + 1,2). Add two points “at infinity”. On each group of
the ITD plus the two extra points, place a (37 + 3,4, { 3,4} )-IPBD, so that the 4-hole in
the IPBD coincides with the two extra points and the two points in the hole of the ITD.
The result is a (12¢+6, 10, { 3,4} )-IPBD; fill the final hole. Now if each IPBD is taken to
have the maximum number of quadruples possible, the PBD produced has 47+ 13 triples,
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and hence has M,,.6 — 5 quadruples. In the case 1 = 4, we obtain the two further values
by using (15,4, { 3, 4} )-PBD with one fewer quadruple than the maximum. =
We have shown

LEMMA 5.25. Forv = 6 (mod 12) and v > 54, A(v) = Spec,(v) except possibly
forM, —1 withv = 54, M, —2 withv € {54,66,78,90} and M, — 5 withv € {66,78}.

5.6. v=9 (mod 12)
Write v = 12¢ + 9. We first adapt Lemma 5.1 to the case at hand.

LEMMA 5.26.  Ifthere exists a { 4} -GDD of type 3°6° witha > 1 and a+2b = t, and
ifs € A(12t+9) and s < Mi249—19a+9 or Mi09—s € {19a—16,19a—18,19a—19},
Then s € Spec,(12t+9).

PROOF. Apply the Fundamental Construction with weight four to the GDD and fill
in groups using b (33,9, { 3,4} )-IPBDs, a—1(21,9,{ 3,4} -IPBDs and one (21, { 3,4} )-
PBD. - ]

In Lemma 5.26, we take in general the (33,9, { 3,4} )-IPBDs to have no quadruples
(from Lemma 3.3), or the maximum number (from Lemma 3.4).

To supplement this, we require a construction for large values in A(12¢+9):

LEMMA 5.27. Fori=1,2,3,4, lets; € Spec,(3t+3). Let z € {0,4,6,8,16}. Then
fort >4,
(Bt +2)* — 745, + 5 +53 +54 € Specy (12t +9).

PROOF. Sety=2,30r4whenz=4,z=6orz€ {0,8,16}, respectively. Fill the
hole in an ITD(4, 3t + 2,y) with a { 3,4} -GDD of type y* having 2z triples. Now fill in
groups of the resulting GDD using (37+ 3,1,{ 3,4} )-IPBDs. [

In Lemma 5.27, when t = 0,3 (mod 4), the maximum value produced is Mj49;
whent = 1,2 (mod 4), the maximum value is M9 — 2.

When t # 6, we apply Lemmas 5.26 and 5.27, using Lemma 5.23 to take care of
certain exceptions. As in the case v = 6 (mod 12), we employ an induction from smaller
values; however, in this case, the induction is dramatically simplified by the fact that
Lemma 5.27 comes quite close to the maximum. When ¢t = 1,2 (mod 4), there are
no exceptions left; more precisely, Lemma 5.23 handles all exceptions left by applying
Lemma 5.27 inductively, since Lemma 5.23 handles M, —s for s < 26 except s € {2,5}
for v € {69,81}. Lemma 5.27 handles these cases directly (recall that the maximum in
Lemma 5.27 is M,, — 2 in these congruence classes).

When t = 0,3 (mod 4), no exceptions result whenever M3.,3 — 1 € Spec,(3¢ + 3);
otherwise we must treat the possible exceptions M, —5 and M, —2 for values not handled
by Lemma 5.23. This leaves the cases M, — 2 and M, — 5 only for v = 93.

It remains to treat the case v = 81:
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LEMMA 5.28. Specy(81) = A(81).

PROOF. Apply the Fundamental Construction with weight 4 to a TD(4, 5) to obtain
a {3,4}-GDD of type 20* having s quadruples for any 0 < s < 400, s = 0 (mod 8).
Fill in groups with a (21, 1,{ 3,4} )-IPBD. This construction establishes that Mg, — x €
Spec,(81) except for x € {0,1}. These two values are provided by Lemma 3.15 and
5.23. (]

We should remark that the induction required is immediate once we have Spec,(3f +
3) = A(3t+3) in the above; below that point, one must verify that the possible exceptions
in Spec,(3¢+3) do not propagate to make new possible exceptions in Spec,(12¢+9), other
than those explicitly mentioned above. This is a straightforward computation.

Now we treat the remaining exceptions. For v = 93, take a resolvable TD(4, 7); add a
point to the groups and a point to one parallel class of blocks to obtain a {4, 5,8} -GDD
of type 2'47. Apply the Fundamental Construction with weight 3, using {4} -GDDs of
types 3%, 3% and 3®. Then fill groups with a (9,3, {3} )-IPBD and seven (15,3,{3,4})-
IPBDs. This produces Mgz — 5.

Hence we have

LEMMA 5.29. Forv =9 (mod 12) and v > 57, A(v) = Spec,(v) except possibly
forM, —2, v =93 »

57. v=7 (mod 12)
Write v = 12t + 7.

LEMMA 5.30. If there exists a {4} -GDD of type 3°6° witha > 1 and a+2b = t,
and if s € A(12t+7) and s < M7 — 9a + 6, then s € Spec, (12t + 7).

PROOF. Apply the Fundamental Construction to obtain a {3,4}-GDD of type
12924°. Fill in groups using b (31,7,{3,4})-IPBDs, a — 1 (19,7,{ 3,4} )-IPBDs, and

one (19,{3,4})-PBD. "
The (31,7, { 3, 4} )-IPBD is taken to have no quadruples (Lemma 3.3) or all quadru-
ples (Lemma 3.4).

Next we treat the bulk of the cases at the top end.

LEMMAS5.31. Fort>4,7€{0,4,6,8,16} ands; € Spec,(3t+4,3)(i = 1,2,3,4),

Bt+1)2 — 245, + 57 +53 +54 € Spec, (12t + 7).

PROOF. Choose y as in Lemma 5.27. Fill groups in an ITD(4, 3¢ + 1, y) using (3¢ +
4,3,{3,4})-IPBDs. ]

The maximum realizable in Lemma 5.31 is M 3,7 — 9 fort = 1,2 (mod 4), and
M7 — 11 fort = 0,3 (mod 4). Hence we need some values near the maximum:
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LEMMA 5.32. Forv=7,10 (mod 12), M, — s € Spec,(v) when
(i) s=landv > 31,
(ii) s € {3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,25} and v > 58, and
(i) s € {21,22,23,24,26,27,28,29} and v > 67.
(iv) s =2 andv > 103.

PROOF. Setw = 10, 19, 22 or 34 according to the case considered. Fill the hole of
a (v,w,{4})-IPBD from Lemma 3.4 using M,, — s € Spec,(w). [~

There remain four issues: the case v = 79, the induction using Lemmas 5.31 and 5.32,
the remaining exceptions for v = 55, and the missing value M, — 8. We treat each in
turn.

LEMMA 533, A(79)\ { Mo — 8, Mzo — 2} C Spec,(79).

PROOF.  Apply the Fundamental Construction with weight 3 to a { 5} -GDD of type
5%, and fill groups with five (19, 4, { 3,4} )-IPBDs. This handles all values up to M79—29.
Use Lemma 5.32 to complete the proof. n

Now for the induction, we require a solution for all v = 1 (mod 3), and hence we
require in particular the solution for v = 10 (mod 12) yet to come. We can state the
following:

LEMMA5.34. Fort=10,3 (mod 4), 1 > 4, A(12t+7)\ { M121:7— 8} C Spec,(12t+
7) except possibly for M, — 5 for v = 55, and M, — 2 for v € {55,91}.

PROOF. When Spec,(37+4) = A(3t+4), the verification is routine. Hence we need
only consider small values of #; with the results on small cases, one can check that all
required values are constructed by Lemmas 5.30, 5.31 and 5.32. ]

The cases t = 1,2 (mod 4) are treated inductively using solutions for 3r+4 = 7,10
(mod 12). It is easy to establish the following:

LEMMA5.35. Fort=1,2 (mod 4), if A(3t+4)\ { M31a—8, M31,4—5,M3,4—2} C
Spec, (3t + 4), then A(12t + I\ { M12:47 — 8} C Specy(12t + 7), except possibly for
M,2,+7—2fort€{5,6}. [ ]

The induction now proceeds in a manner analogous to the cases v = 6,9 (mod 12).
It is easy to verify from the results in section 4 and using Lemma 5.32 that for v > 55, all
values up to M, —29 are handled inductively, and Lemma 5.32 then provides a number of
further values near the maximum. Hence we need only treat the cases missed by Lemma
5.32. The particular case M, — 8 is not addressed by Lemma 5.32, and hence we also
need to consider this special value.

In the induction, there remain a number of cases to be checked when Spec,(37+4) has
further possible exceptions. We remark that t = 6 is handled by Lemma 5.33. Fort = 5,
we have M9 — 3 € Spec,(19), and hence Lemma 5.32 provides all of the additional
cases that result. For t > 9, no further exceptions result, since we always have M3,,4 and
M3.4 — 1 in Spec,(3t +4) (where t = 1,2 (mod 4)).

To treat M, — 8, we prove the following:
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LEMMA 5.36. Suppose there exists a GDD on t elements with one group of size 1 or
6, all other groups of sizes = 0,3 (mod 4), and all blocks of sizes = 0,1 (mod 4). If the
GDD contains a group of size 4, then M3;,.4 — 8 € Spec,(3t + 4).

PROOF. Apply the Fundamental Construction with weight 3 to the GDD, using
GDDs of types 3* forx = 0,1 (mod 4), and (3g+4,4,{3,4})-IPBDs for each group of
size g. It is evident that all but the resulting group of size 3 or 18 can be replaced entirely
by quadruples. Choose a (16,4,{ 3,4} )-IPBD with 16 triples to fill the group of size 4
and the other IPBDs to have only quadruples. u

We apply Lemma 5.36 to a number of cases. For v = 55, use a TD(4,4) and extend
the groups to form a { 4,5} -GDD of type 4*1!. The construction of Lemma 5.36 can be
generalized to give Mss — s € Spec,(55) for s € {5,6,8,9,10}. For v = 67, extend
one parallel class in a resolvable TD(4,5) to obtain a {4,5}-GDD of type 4°1'. For
v = 91, extend one parallel class of a resolvable TD(4, 7) to get a GDD of type 1'4”. For
v = 139, use instead a TD(4, 11). The solution for v = 55 gives solutions forall v > 175
by Lemma 3.4.

LEMMA 5.37. M7 — 8 € Spec,(12t + 7) for t = 6, and fort = 0,1 (mod 4) and
t>5.

PROOF. Apply the Fundamental Construction to a {4, 5} -GDD of group-type 4'5*
(puncture the affine plane of order 5), having 5 quadruples and 20 5-blocks. Give every
point weight 3, and use five {4} -GDDs of type 34, 19 {4} -GDDs of type 3°, and one
{3,4}-GDD of type 3° having 10 quadruples. Now fill in groups with four (22,7, {4} )-
IPBDs and one (19, { 3,4} )-PBD having 22 quadruples. This establishes that M79 — 8 €

Spec,(79).
Fort=0,1 (mod 4),t > 5, use an ITD(4, 3¢,4) and fill the hole with a { 3,4} -GDD
of type 4* having 8 quadruples. Fill in groups using a (3t + 7,7, {4} )-IPBD. ]

These results leave only M, — 8 on 127 elements. We proceed as follows using a
construction of Bose, Shrikhande and Parker [4]. Using a {4,5}-GDD of group-type
3174 we form a TD(4,31) that has a set of spanning TDs, namely one TD(4, 3) and
four TD(4, 7)s. Omit one of the TD(4, 7)’s to form an ITD(4, 31, 7). Add three points at
infinity. On three of the groups of the ITD, place a (34, 10, { 4} )-IPBD whose hole is on
the seven points of the hole of the ITD and the three additional points. Now (partially) fill
the hole in the ITD using a (31, 10, { 4} )-IPBD. At this point, we have a (127,34, {4} )-
IPBD. To get M1,7 — 8, use M34 — 2 € Spec,(34) and replace the TD(4,3) by a { 3,4} -
GDD of type 3* with three quadruples.

For Mss —4 € Spec,(55), we form an ITD(4, 13, 2) adding three points at infinity. We
fill the hole with a { 3} -GDD of type 2%, and delete one block disjoint from this GDD.
On each group together with the three extra points, place a (16,4; {4} )-IPBD with the
hole on the three extra points and the point of the deleted block. Fill the final hole with
a(7;{3})-PBD.

In summary,
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LEMMA 5.38. Forv =7 (mod 12) and v > 55, A(v) = Spec,(v) except possibly
for M, —2 whenv € {55,67,79,91}, and M, — 3 and M,, — 7 when v = 55. "

58. v=10 (mod 12)
Write v = 12¢ + 10. In analogy with Lemma 5.28, we obtain

LEMMA 5.39.  Ifthere exists a { 4} -GDD of group-type 3°6" witha > 1 and a+2b =
t, and if s € A(12+10), s < Myya10 — 27a + 27, then s € Spec,(12¢ + 10).

PROOF. Fill groups in the GDD of type 12924° with b (34, 10, { 3,4} )-IPBDs, a — 1
(22,10,{3,4})-IPBDs and one (22,{3,4})-PBD. u

The maximum attainable here is quite low compared to the previous three congruence
classes. Nevertheless, we can employ truncated ITDs again as follows:

LEMMA 5.40. Lett > 4,z € {0,4,6,8,16}, s; € Spec,(3t + 1) and s3,53,54 €
Specy (3t + 3). Then

(Bt+1)(3t+3) —z+ 51 + 52 +53 + 54 € Specy (121 + 10).

PROOF. similar to Lemma 5.30. [

The primary difficulty in this case is that the recursion is using PBDs inthe 0 (mod 3)
class to construct those in the 1 (mod 3) class; hence the largest value that we can obtain
using Lemma 5.39 is M2,+10— | (4.5¢+1)] (an easy computation). This leaves an interval
of large values to consider that grows as v grows, unlike all of the previous congruence
classes considered. To deal with this problem, we use a simple observation, namely that
if Mi2n7 — s € Spec(jy,,7), then by Lemma 3.4 we have M361.20 — s € Spec, (361 + 22),
M361434 — S € SpCC4(36t + 34) and M3g446 — S € Spec4(36t +46).

We have only to settle the case v = 82, apply the induction, and treat the remaining
exceptions. We do each in turn.

LEMMA 5.41.  A(82)\ { Mg, — 8, Mg, — 2} C Spec,(82).

PROOF. Take the {3,4}-GDD of type 15° constructed in Lemma 5.33; fill four
groups using (22,7,{ 3,4} )-IPBDs, and one using a (22, { 3,4} )-PBD. This handles all
but Mg, — s fors € {1,2,3,4,6,8,9,11}. Lemma 5.32 completes the proof. n

At this point, the induction is routine, and leaves only the exceptions M, — 8 and
M, — 2 for small values. Given the solutions for v = 55 from Lemma 5.36, we need only
consider M5.10— 8 for v < 154. For v = 118, extend six parallel classes in a resolvable
TD(4,8) to get a {4,5,8}-GDD of type 6'4® and apply Lemma 5.36. For v = 130,
extend six parallel classes in a resolvable TD(4,9).

LEMMA 5.42. M0 — 8 € Specy (12t + 10) fort = 0,3 (mod 4) andt > 7.

PROOF. Construct an ITD(4, 3t,4) and fill the hole using a { 3,4} -GDD of type 4*
having 8 quadruples. Then fill in groups using a (3¢ + 10, 10,{4})-IPBD and a (3 +
10, { 3,4} )-PBD having M3,10 quadruples. .
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For Mg, — 8, apply weight 4 to a {4} -GDD of type 5*. Use {4}-GDDs except for
one GDD of type 4* having eight quadruples. Now unplug one of the TD(4, 5)’s in the
result, and add two points at infinity. Fill groups with (22,7;{4})-IPBDs, and fill the
final hole with a (22; { 3, 4} )-PBD with the maximum number of quadruples.

To summarize,

LEMMA 5.43. Forv = 10 (mod 12) and v > 58, A(v) = Spec,(v) except possibly
forM,—2 whenv € {58,70,82,94}, M,—5 whenv = 58 and M,—8 whenv € {58,70}.

5.9. Summary

In each congruence class of v (modulo 12), we have established that A(v) C Specy(v)
for all v > 96. Together with the necessary conditions from Lemma 2.1, this completes
the proof of the Main Theorem.

6. Applications. In the development of the proof of the Main Theorem, we have
seen substantial connections between the construction of { 3,4} -PBDs with a specified
number of quadruples and many central problems in design theory. Here we comment on
a few further connections. First of all, Batten and Totten [2] have classified all (v, {n —
1, n} )-PBDs with v < n?, v # 15; our Main Theorem is in a similar vein. In fact,
PBDs are just linear spaces in which the blocks are lines; hence our result has a natural
geometric interpretation.

Lindner and Rosa [16] and Rosa and Hoffman [27] determined the possible numbers
of repeated blocks in a triple system with A = 2 forv = 1,3 (mod 6), and v = 0,4
(mod 6), respectively. In a {3,4}-GDD with a triples and b quadruples, duplicating
each triple, and replacing each quadruple by the four distinct triples on the same points,
gives a triple system with a repeated blocks. Hence our Main Theorem can be viewed as
the determination of triple systems with A = 2 having a prescribed number of repeated
blocks and all other blocks in subdesigns of order four.

The general theme of specifying the numbers of blocks of each size is useful in exam-
ining extremal problems in design theory; see, for example, [9]. Colbourn and R6d1 [10]
have shown that if a K-PBD exists, then one can (asymptotically) specify the percentage
of blocks of each size, and achieve the specified percentages to any fixed tolerance. Our
Main Theorem shows that for K = { 3,4} , one has a much stronger result.

Since PBDs are basic building blocks in much of combinatorial design theory, the
determination of many numerical or extremal properties of designs requires control over
the proportion of blocks of each size. Our Main Theorem is the first nontrivial result that
shows that one can control the distribution of block sizes completely.

7. Concluding Remarks. At the present time, there remain only twenty-two values
in doubt for48 < v < 96; we certainly expect that all of the corresponding PBDs exist in
thisrange. However, for smaller values of v, the situation appears to be quite complicated.
A complete solution for v € { 18,19,21,22} would certainly be useful in clarifying the
extent of genuine exceptions, i.e. values in A(v)\ Spec,(v).
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In the second period, the large number of open cases that remain is largely a conse-
quence of the limitations of recursive constructions. We have succeeded in constructing
a large number of designs in this range, but have not attempted an extensive search.
Undoubtedly a number of the open cases could be settled, especially those with few
quadruples.

For all v > 96, we have completely determined the possible numbers of triples and
quadruples. This is the first interesting case of the general problem of determining dis-
tributions of block sizes in PBDs, and suggests that one can obtain quite precise control
over that distribution.
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