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PAIRWISE BALANCED DESIGNS 
WITH BLOCK SIZES THREE AND FOUR 

CHARLES J. COLBOURN, ALEXANDER ROSA, 
AND DOUGLAS R. STINSON 

ABSTRACT. Given integers v, a and b, when does a pairwise balanced design on 
v elements with a triples and b quadruples exist? Necessary conditions are developed, 
and shown to be sufficient for all v > 96. An extensive set of constructions for pairwise 
balanced designs is used to obtain the result. 

1. Preliminaries. Let X be a finite set, |X| = v. For a set K Ç { 2,3,4, . . . , v}, 
let (*) denote the set of all subsets of X whose cardinalities appear in K. For$C (£), 
(X, (B) is a (v; K)-pairwise balanced design (or (v; K)-PBD) if every 2-subset of X appears 
in precisely one member of CB. Members of $ are called blocks, and K is the set of block 
sizes. 

Let WÇX,\W\=w.If$Ç (£) has the property that (X, # U { W} ) is a pairwise 
balanced design then (X, W, $) is called a (v, w; K)-incomplete pairwise balanced design, 
or (v, w; /0-IPBD. The set W is called a hole. 

In this paper, we study PBDs and IPBDs with block sizes 3 and 4, which we call triples 
and quadruples, respectively. It has long been known that a (v, { 3,4} )-PBD exists if and 
only if v = 0,1 (mod 3), v ^ 6 (see [3], for example). We address a more complicated 
problem, the determination of the possible numbers of blocks of each size in such a PBD 
of order v. Define 

Spec4(v) = { s : 3(v, {3,4} )-PBD having s quadruples}, 

and 
Spec4(v, w) = { s : 3(v, w, { 3,4} )-IPBD having 5 quadruples}. 

Our goal is to determine Spec4(v), leaving only a handful of exceptions for small values 
of v. In the process, we employ some results on Spec4(v, w). We shall see that there are 
substantial connections to fundamental problems in design theory. 

Determining the possible numbers of pairs and triples in a PBD with blocks of sizes 
two and three is straightforward using the solution for the maximum packing problem for 
triples (see [28]). Similarly, determining the possible numbers of pairs and quadruples 
in a PBD with block sizes two and four also is easy given the solution for the packing 
problem for quadruples (see [5]). Hence the determination for triples and quadruples is 
the next step, and as we shall see it is substantially more complicated. 
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We first determine necessary conditions on Spec4(v), and subsequently adapt a large 
battery of recursive constructions to establish sufficiency for v > 96. We introduce defi­
nitions as needed, but refer the reader to [3,33] for standard background in combinatorial 
design theory. 

At the outset, let us remark that pairwise balanced designs have wide applications in 
the construction of combinatorial designs [3,33], and have proved to be very useful in 
the statistical design of experiments [18]. 

2. Necessary conditions. In this section, we employ some elementary observations 
to establish necessary conditions on Spec4(v). For each integer t > 0, let A(3t + 2) = 0; 
otherwise define J?(v) according to the following table: 

v A(v) 
lit {3f, . . . , f(12f-3)} 

12f+l {0, . . . , t ( \2t + 1 )} \{1 ,2 ,3 ,4 , f (12f+l ) - 3 , f (12f+l ) - 2 , f (12f+ l ) -1} 
\2t + 3 {0 , . . . , t(l2t+ 3)} \ { 1,2,3,4} 
I2t + 4 { 3t + 1, . . . , I2t2 + It + 1} \ { 12t2 - It - 2,12/2 - It - 1,12/2 - It} 
\2t + 6 {3t+2,...,Ut2 + 9t+l} 
I2t + 1 {0 , . . . , I2t2 + I3t}\{ 1,2,3,4} 
\2t + 9 {0 , . . . , 12f2 + 15f + 4} \ { 1,2,3,4} 

12* + 10 { 3t + 3 , . . . , I2t2 + I9t + 4} 

For convenience, we let mv denote the smallest number in ^U(v), and we let Mv denote 
the largest number. 

LEMMA 2.1. For all v> 0, Spec4(v) Ç _#(v). 

PROOF. For v = 2 (mod 3), there is no (v, { 3,4} )-PBD. For the remaining cases, 
consider an element x of the PBD, and let dt (i = 3,4) be the number of blocks of size / 
containing x. Now 2d3 + 3d4 = v — 1, and hence 2d3 = v — 1 (mod 3), and d4 = v — 1 
(mod 2). Hence for v = 0 (mod 3), we have at least [ v/ 3] triples, and hence at most 
L v(v — 3)/ 12J quadruples. Similarly when v is even, we have at least [ vj 4] quadruples. 

Observe further that the number of triples is always congruent to v(v — 1 ) / 6 (mod 2) ; 
hence when v = 7,10 (mod 12), the number of triples is odd. Since ^3 = 0 (mod 6) in 
such a PBD, the smallest number of triples is 7; this gives an upper bound of (v(v — 1) — 
42)/ 12 quadruples in this cases. These arguments establish the lower and upper bounds; 
now we turn to the other missing values. 

When v is odd, consider the configuration of quadruples. Every element is in an even 
number of quadruples; it is easy to verify that this requires either zero or at least five 
quadruples. Hence { 1,2,3,4} Pi Spec4(v) = 0 for v odd. 

Whenv= 1,4 (mod 12), every element is in a number of triples which is 0 (mod 3), 
and the number of triples is even. Hence if there are any triples at all, there must be 
at least eight of them (and they partition the unique 6-regular graph on eight vertices 
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into triangles if the number of triples equals eight). Hence in these cases we have that 
v(v - 1)/ 12 - s £ Spec4(v) for s G { 1,2,3}. • 

The maximum values in J?(v) arise as follows. When v = 1,4 (mod 12), the PBD 
contains only quadruples. The maximum for v = 0,3 (mod 12) is obtained by omitting 
one point from the maximum solution for v + 1 points. When v = 7,10 (mod 12), the 
maximum is obtained by taking a PBD with one 7-block and all other blocks of size 4, and 
then replacing the 7-block with the 7 triples of a PBD on the same points. The maximum 
for v = 6,9 (mod 12) is not obtained by omitting a point from the maximum solution 
on v + 1 points. Rather it has (v — 9)/ 3 disjoint triples, and four triples intersecting in a 
single point. 

Our main result in this paper is the following 

MAIN THEOREM. Spec4(v) = A(v)for v > 96. 

The proof of sufficiency involves a large number of recursive constructions, that we 
introduce in section 3. Then in section 4, we determine various values in Spec4(v, w) for 
small v and w. In section 5, we apply the recursive techniques to the small values to prove 
the Main Theorem. Finally, in section 6, we outline some applications of the results. 

3. Recursive constructions. In addition to PBDs and IPBDs defined earlier, we 
require a few further basic definitions in design theory. We call (X, Ç, (B) a X-GDD with 
group type g'j • • • g'* if $ Ç (*), (X, <B U Ç) is a PBD, and Ç is a partition of X into sets 
(called groups); for 1 < / < k, Q contains t[ groups with kt elements. The groups form 
essentially a spanning set of holes. 

The basic construction that we use in general forms { 3,4} -GDDs, and then "fills in 
groups" with IPBDs and PBDs as follows: 

LEMMA 3.1 (FILLING IN GROUPS). Let (X, Ç, (B)bea{ 3,4} -GDD with |X| = v and 
groups Gi , . . . , Gm. Let b4 be the number of quadruples in *B. Let w be a nonnegative 
integer. Let ft G Spec4(|G;| + w, w), and hi G Spec4(|G/| + w). Then for s such that 
1 < s < m, 

m 

b4 + J2ft € Spec4(v,w), 
i=l 

m 

b4+ Y^ fi + hs € Spec4(v), and 
i = 1 
/ ^ s 

m 

b4+ Y, fi € Spec4(v, \GS\+ w). 
i = 1 

/ T^ S 

PROOF. Add w new elements W to X. Now on G/ U W, place an IPBD leaving a hole 
on the set W\ do this for all / ^ s. Then we may either leave the final hole, place an IPBD 
on it, or a PBD on it, to obtain the three outcomes above. • 
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A (v, w, £)-IPBD is equivalent to a K-GDD of type w1 lv_vv, and hence we can apply 
Lemma 3.1 (with w = 0) to IPBDs as well. This is referred to as "filling the hole". 

For large v, we can use Wilson's fundamental construction for GDDs, which we state 
next: 

LEMMA 3.2 (FUNDAMENTAL CONSTRUCTION [35]). Suppose that (X, Ç, #) is a K-
GDD, and that w:X —• Z+ U { 0} is any function (which we call the weight function). Let 
Ç consist of groups G\,..., Gt. If for every {x\,... ,xm} G % there is a À'-GDD with 
m groups, in which the ith group has size w(Xi), then there is a K-GDD with t groups, so 
that the size of the ith group is EXGG( W(JC). • 

The application of the fundamental construction requires that we develop a substantial 
collection of GDDs with block sizes 3 and 4; filling in groups then requires that we 
develop some IPBDs and PBDs with block sizes 3 and 4. Hence we recall a large number 
of constructions that can be used to produce such GDDs and PBDs. 

LEMMA 3.3 [8]. Let g,t,u be nonnegative integers satisfying g > 1, t > 3, u < 
g(t- 1), \g2{£)+gtu = 0 (mod 3),pg(t- l) + u = 0 (mod 2), and if u ^ Othengt = 0 
(mod 2). Then there exists a {3} -GDD of group-type g*ul. m 

Lemma 3.3 includes as special cases three important results that we employ in a sub­
stantial way. When g = u = 1, Lemma 3.3 is equivalent to the existence of Steiner 
triple systems, determined in 1847 by Kirkman [15]. When g = 1, Lemma 3.3 gives 
the Doyen-Wilson theorem [11] that a (v, w, {3})-IPBD exists whenever v, w = 1,3 
(mod 6) and v > 2w +1. It also yields a theorem of Rosa and Hoffman [27]: a { 3} -GDD 
of group-type 4rul exists for all even u < 4t—4 for which t = Oor 1— u (mod 3), t > 3. 

LEMMA 3.4 [23]. Let v, w = 1 (mod 3), v(v - 1) = w(w - 1) (mod 12), and v > 

3w + 1. Then there exists a (v, w\ { 4} )-IPBD. • 

The spectrum of (v, { 4} )-PBDs was first determined by Hanani [12]. Lemma 3.4 has 
some useful corollaries. The truncation of a PBD is another PBD obtained by removing 
some elements, and all occurrences of those elements in blocks (and naturally removing 
all "blocks" of size 0 and 1 that result). Truncations of the IPBDs in Lemma 3.4 are 
particularly valuable. Removing a single element from the hole of size w gives a { 4} -
GDD with group-type 3(v-vv)/3(w — l)1. More generally, truncating the hole to w — x 
elements yields a (v — JC, w — x, { 3,4} )-IPBD with JC(V — w)j 3 triples. One can also 
truncate by removing x = 1, 3 or 4 points from a block with the elements not in the hole 
to produce a (V-JC, w, { 3,4} )-IPBD with JC(V-4)/ 3 triples for x = 3,4, and ( v - 4 ) / 3 +1 
triples for x = 1. (The case x = 4 only applies here when v ^ 3w — 1, since a quadruple 
disjoint from the hole is needed.) Naturally, one can truncate one point from the hole, 
and then two or three from a resulting triple as well. In general, we do not comment on 
the PBDs and GDDs from such obvious truncations; however, they prove very useful in 
constructing needed ingredients. 

Next we consider a special type of GDD. A { k} -GDD of group-type mk is often 
called a transversal design and denoted TD(fc, m). An incomplete transversal design 
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YTD(k, m, n) is a set of k disjoint groups G\,..., Gk of size m, a set H intersecting each 
Gi in n points, and a collection of blocks of size k, so that every 2-subset in H or in one of 
the groups does not appear in a block, and every other 2-subset appears precisely once. 
There is a TD(fc, m) if and only if there is an YTD(k, m, 1) (simply choose H to be a block, 
and omit that block). 

LEMMA 3.5 [13]. For m > 3n, n > 1 there is an ITD(4, m,n) except when m — 6 
andn = 1. • 

The additional hole in the ITD can be filled by using a { 3,4} -GDD of group-type nk 

to form a { 3,4} -GDD of group-type mk. 
Next we exploit a process that essentially reverses the truncation operation. Suppose 

that a PBD, IPBD, GDD or TD contains a set of blocks that contain every element pre­
cisely once; this is termed a parallel class of blocks. Let P i , . . . , Pt be a parallel class 
of blocks. Then if there exist {\Pt\ + w, w, { 3,4} )-IPBDs for each i, one can "fill in the 
parallel class" — this is analogous to filling in groups as in Lemma 3.1. Hence we are 
interested in designs with many parallel classes, so that we can extend many parallel 
classes in this way. A design is resolvable if its block set can be partitioned into parallel 
classes. 

LEMMA 3.6 [3,34]. There exists a resolvable TD(4, m) except form E { 2,3,6} and 
possibly form =10 . 

To use Lemma 3.6, for any parallel class we can add three fixed elements, and put 
a (7,3, { 3} )-IPBD on each block and the three elements, leaving the hole on the new 
elements. If s parallel classes are extended in this way, we add 3s elements that produce 
a hole of size 3s (that can then be filled). This essentially gives a GDD of group-type 
m43sl. 

LEMMA 3.7 [19]. For nonnegative integers t,x,y satisfyingx + 2y = 6t — 1, there is 
a resolvable (6f, { 2,3} )-PBD with x parallel classes of2-blocks and y parallel classes 
of triples, except when x — 1 and t G { 1,2}. • 

When x — 1, such resolvable PBDs are called nearly Kirkman triple systems. To use 
such PBDs to construct { 3,4} -PBDs, we extend each parallel class of 2-blocks to form 
triples, and then extend some of the parallel classes of triples to form quadruples. In the 
process of proving Lemma 3.7, Rees also proves a similar result on resolvable GDDs 
that we can exploit: 

LEMMA 3.8 [19]. For even n and all n < r < 2n, there exists a resolvable { 2,3} -
GDD of group-type n3 having 2r — 2n parallel classes of 2-blocks and 2n — r parallel 
classes of triples, except when n = r=2orn = r=6. m 

Lemma 3.8 is used similarly to Lemma 3.7, but enables us to fill in groups at the 
end. In order to produce many quadruples using the extension of parallel classes, we 
desire primarily parallel classes of quadruples, or of triples (that can then be extended). 
A particularly useful result in this vein was proved by Rees and Stinson [24], with some 
further cases settled by Assaf and Hartman [1]: 

https://doi.org/10.4153/CJM-1991-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-039-9


678 C. J. COLBOURN, A. ROSA, AND D. R. STINSON 

LEMMA 3.9. Let g,t satisfy t > 3, gt = 0 (mod 3) and g(t — 1) = 0 (mod 2). 
Then there is a resolvable {3} -GDD of group-type gl except for 23, 26, 63, and with the 
possible exceptions oft=6 and g = 2,10 (mod 1)2. • 

Thus far, we have considered only resolvable designs in which each parallel class 
is uniform, in that every block in the parallel class has the same size. Rees has made 
substantial advances on { 2,3} -PBDs in which the parallel classes are nonuniform: 

LEMMA 3.10 [20]. There exists a resolvable { 2,3} -PBD with an even numberp of 
elements and r parallel classes if and only if \p < r < p — 1 and p(r — p + 1) = 0 
(mod 3), with the exceptions (p, r) = (6,3), (12,6). • 

LEMMA 3.11 [21,22]. There exists a resolvable { 2,3} -PBD with an odd number p 
of elements and r parallel classes provided p(r — p + 1) = 0 (mod 3) and one of the 
following holds: 

(i) \p<r<p-4, 
(ii) p = 3 (mod 6) and r = \{p — 1), or 

(Hi) (p,r) = (9,6). -

A resolvable PBD produced by Lemma 3.10 or 3.11 has p(p — 1 — r)j 3 triples and 
p(2r — p+ 1)/2 pairs. 

Next we require further { 4} -GDDs for use in the Fundamental Construction. 

LEMMA 3.12 [7]. Let g,t be integers satisfying t > 4, g(t — 1) = 0 (mod 3) and 
g2t(t — 1) = 0 (mod 4). Then there exists a {4}-GDD of group-type g* except when 
(g,0G{(2,4),(6,4)}. 

At this point, { 4} -GDDs are available from Lemma 3.4 (by truncation), Lemma 3.5, 
and Lemma 3.12. We require a few further small GDDs: 

LEMMA 3.13 [25,26]. There exist { 4} - GDDs of group-type 3462, 3!64, 3692. 

Combining Lemmas 3.4, 3.12 and 3.13, we observe that { 4} -GDDs with group sizes 
3 and 6 exist on v elements except when v = 18; when at least one group of size 6 is 
required, we have 

LEMMA 3.14. There is a { 4} -GDD with groups of sizes 3 and 6, having at least one 
group of size 6, for all v = 0 (mod 3), v > 18. 

PROOF. Using the GDD of type 6234, we have such a GDD for all v = 0,3 (mod 12), 
v > 75. Lemma 3.4 provides such GDDs for v = 6,9 (mod 12), and Lemma 3.12 gives 
such GDDs for v G { 36,48,60,72}. Hence we need only treat the cases v = 39, 51 and 
63. For v = 39, take elements { 1, . . . , 39}, and take the blocks obtained from the starter 
blocks { 1,3,11,18}, { 1,4,15,24}, { 1,2,6,37} under the action of the permutation 
(12---36)(3738 39). This is a GDD of type 3166. For v - 51, take elements 
{ 1 , - - , 5 1 } , and take the blocks obtained from starter blocks {1,2,6,49}, 
{1,3,16,22}, {1,4,13,27} and {1,8,18,38} under the action of the permutation 
( 1 2 3 . . .48)(49 50 51). This is a GDD of type 3168. 
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For v — 63, take elements { 1, . . . , 63}, and take the blocks to be those obtained from 
starter blocks {1,2,6,61}, {1,3,9,22}, {1,4,13,36}, {1,8,25,39} and 
{1,12,27,45} under the action of the permutation (1 2 3 • • • 60)(61 62 63). • 

When v = 0,1,3,4,7,10 (mod 12), we have seen the PBD with the maximum num­
ber of quadruples; all are obtained from Lemma 3.4. However, for v = 6,9 (mod 12), 
this maximum is not obtained in this way. Instead we employ a result of Mills on "cov­
erings"; his result implies the following: 

LEMMA 3.15 [17]. For v = 6,9 (mod 12), there is a {3,4}-PBD with precisely 
(v + 3)/ 3 triples. m 

Actually, Mills proved that the minimum covering of pairs on a set of size v ~ 7,10 
(mod 12) by quadruples has an excess that is a single pair covered four times rather than 
once. Truncating Mills's covering by removing either of the elements in this excess pair 
produces Lemma 3.15. 

In the constructions that follow, we assume that whenever possible, the basic designs 
given by Lemmas 3.3-3.15 are employed as ingredients to fill in groups, fill holes, extend 
parallel classes, and truncate. We typically state only the basic design that is constructed, 
and assume that the operations mentioned are performed in a suitable way to obtain the 
specified number of quadruples. 

4. Small ingredients. In this section, we develop quite a large collection of small 
{ 3,4} -PBDs, IPBDs and GDDs for use in the recursive constructions of section 3. Since 
we require IPBDs to fill in groups effectively, we remark first on some trivial connections 
between Spec4(v, w) and Spec4(v). First observe that Spec4(v) = Spec4(v, 0) = Spec4(v, 1). 
Now, Spec4(v, 3) = Spec4(v)\ { v(v — 1)/ 12}. Furthermore, 

Spec4(v,4) = {s - 1 : s G Spec4(v), s ^ 0} . 

Finally, if s G Spec4(v, w) and / G Spec4(w), then filling the hole gives s + t G Spec4(v). 
Since A(v) has approximately v2/ 12 elements, we are naturally unable to present 

explicit constructions for each case. We organize the presentation by defining the period 
of v to be |_ v/ 12J. In the zeroth and first periods, we give explicit constructions for 
each design. In the second and third periods, we simply summarize the consequences 
of Lemmas 3.3-3.15 supplemented by filling in groups and holes, extending parallel 
classes, and truncating. Additional designs in these periods are presented explicitly in a 
supplementary report. The solution for the fourth and higher periods is then pursued in 
section 5. 

4.1. Zeroth and first periods. The systematic investigation of small PBDs was first un­
dertaken by Kelly and Nwankpa [14]; they classified all PBDs on at most fourteen ele­
ments. The classification of PBDs was extended to v = 15 by Brouwer [6]. Beyond that 
point, no complete classification is available. Nevertheless, we can exploit the available 
catalogues to determine Spec4(v, w) for v < 15. 
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In the zeroth period, there are unique (v, {3,4} )-PBDs except for v = 6 where no 
such PBD exists: 

v # triples # quadruples 
0 0 0 
1 0 0 
3 1 0 
4 0 1 
7 7 0 
9 12 0 
10 9 3 

Truncating the (9, { 3} )-PBD gives a { 3} -GDD of type 24 of which we make exten­
sive use. 

In the first period, a variety of PBDs begins to appear. For v = 12, we have 
Spec4(12) = { 3,9}. Using parallel classes in these PBDs, we obtain a { 3} -GDD of 
type 43, a { 4} -GDD of type 34, and a { 3,4} -GDD of type 34 with 3 quadruples and 12 
triples. 

For v = 13, we have Spec4(13) = {0,6,7,13}. Brouwer [6] established that 
Spec4(15) = { 0,5,6,7,10,14,15}. In the process, he established the following: 

LEMMA 4.1. There exist { 3,4} -GDDs of type 35 having 0, 5, 6, 10 and 15 quadru­
ples, m 

The Doyen-Wilson Theorem (see Lemma 3.3) establishes that for w = 1,3 (mod 6), 
Spec4(2w + 1, w) = { 0} ; hence Spec4(15,7) = { 0} . In addition, Spec4(15,6) = { 6} . 

For v > 16, we can no longer rely on exhaustive catalogues. 

LEMMA 4.2. Spec4(16) = {4,5,6,7,9,10,11,12,15,20}. Moreover, there exist 
{3,4} -GDDs of type 44 having 0, 8 and 16 quadruples. 

PROOF. The GDDs are constructed as follows. Use Lemma 3.8 with n — 4, r — 4, 
5 and 6 to produce a resolvable { 2,3} -GDD of type 43 with 0, 2 or 4 parallel classes of 
2-blocks (and hence 4, 3 or 2 parallel classes of triples). Extend four parallel classes to 
produce the required GDD. Taking groups as blocks in these GDDs gives { 4,12,20} Ç 
Spec4(16). 

FillingingroupsinLemma4.1gives{5,10,11,15} Ç Spec4(16).For6 G Spec4(16), 
take the following PBD: 

dehi dfjk dglm efno egpa fgbc dnb doa dpc ejb ekm elc fhp 
fil fma ghj gin gko hkl hmn hob hac ijc ika imb iop 
jlo jmp jna knc kpb Inp lab moc 

In this notation, we use letters to represent the elements of the design, and use abc to 
denote a block { a, b, c}. 
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7 G Spec4(16) 
abch cdei aefj bdfk adlm beno cfgp agn aik aop bgl bij bmp 

cjn ckl cmo dgo dhn djp egk ehm elp fhl fio fmn ghj 

gim hip hko iln jkm jlo knp 

9 G Spec4(16) 
abed aefg ahij behk cfil dgjm bfjn cgho deip akp aln amo bgp 

bio blm cej ckn emp dfk dhl dno elo emn fhm fop gin 

gkl hnp ikm jko jlp 

We next show that the remaining values in .#(16) do not appear in Spec4(16). Now 
if s > 12, any such PBD with s quadruples must have an element that meets only 
quadruples. Truncating to remove this element gives s — 5 G Spec4(15). This rules out 
s G { 13,14,16} from Spec4(16). 

The final case to consider is s = 8. Elementary counting shows that there is a unique 
possible configuration of eight quadruples up to isomorphism, namely 012a, 345b, 036c, 
147d, 057e, 246f, 156g and 237h. A exhaustive search by computer showed that among 
the remaining pairs, the closest one can come to a partition into triples is to obtain 22 
triples and one hexagon. Hence no solution exists here. • 

It is easy to verify that 10 G Spec4(16,6) using a resolvable (10, { 2,3} )-PBD with 
six parallel classes from Lemma 3.10. 

For v = 18, we have the following: 

LEMMA 4.3. {5,6,7,8,9,10,11,12,13,14,15,16} C Spec4(18), and 
{2O,21,22}nSpec4(18) = 0. 

PROOF. First we treat the affirmative cases. The PBD with 5 quadruples is given by 
Lemma 6.14 of [27], and that with 6 quadruples by Lemma 6.15 of [27]. The PBD with 11 
quadruples is obtained from a resolvable (11, { 2,3} )-PBD with 7 parallel classes from 
Lemma 3.11. The PBD with 15 quadruples is obtained by extending three parallel classes 
of a resolvable (15, { 3} )-PBD. The PBD with 16 blocks is obtained by truncating a point 
from a PBD given by Stanton [29]. 

We next exhibit a number of designs explicitly. In each case, we chose a set of quadru­
ples meeting the necessary conditions on degrees; then we used a hill-climbing algorithm 
similar to that of Stinson [32] to partition the remaining pairs into triples. 

7 G Spec4(18) 
abed aefg ahij dgjr dklm gkno jkpq akr alq amo anp ber bfi 

bgl bhk bjm bnq bop cem cfk cgq chl cin cjo cpr dep 

dfn dho diq ehq eik ejn elo fhr fjl fmp foq ghp gim 

hmn ilp ior Inr mqr 
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8 G Spec4(18) 
abed aefg ahij cfik dgjl dimn cgop fjqr akm air anp aoq bej 

bfn bgm bho bir bkq bip cer chl cjm enq dek dfo dhq 
dpr ehn eip elq emo fhp flm ghk giq gnr hmr ilo jkp 

jno kin kor mpq 

9 G Spec4(18) 

abek bcfl edgm dehn efio fgap ghbq hier Iadj acq aho aim anr 

bdp bim bjr bno cej cko enp dfk dlr doq egr elq emp 

fhj fmn fqr gik gjn glo hkm hip iln ipq jkl jmq jop 

knq kpr mor 

10 G Spec4(18) 

abed aefg ahij behk cfik dgjk bfjl cemn dhop giqr akl amo anq 

apr bgp bim bnr boq ego chq cjr elp der dfq din dim 

eip ejo elq fhn fmp for ghm gin hlr ilo jmq jnp kmr 

kno kpq 

12 G Spec4(18) 

abed efgh ijkl mnopaeim bfjn cgko dhlq afkr bglm chin dejo agp 

aho ajq aln bek bhr bip boq eel cfm cjp cqr dfp dgi 
dkn dmr enr epq fiq flo gjr gnq hjm hkp ior kmq Ipr 

13 G Spec4(18) 

abed aefg ahij dlmn glop jlqr dgjk bfio einq bhnp mpre orch qcfm 
akl amo anr apq bel bgq bjm bkr cek cgn cil cjp deh 
dfr dip doq ejo fhl fjn fkp ghm gir hkq ikm kno 

14 G Spec4(18) 

abhn aclp adij aegq afmo rbgl rcio rdfp rejn rhmq bede fghi jklm 
nopq akr bfk biq bjo bmp cfn cgm chj ckq dgo dhk dlq 
dmn efl ehp eim eko fjq gjp gkn hlo ikp iln 

The nonexistence results follow from the nonexistence of PBDs on 17 elements with 

31 or fewer blocks [30]; for truncating a (18, { 3,4} )-PBD gives a PBD with maximum 

block size four on 17 points, having the same number of blocks. • 
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We also have {3,4,11,12} Ç Spec4(18,6). These four values are obtained as fol­
lows. The first is a { 3} -GDD of type 4361. The second is obtained by filling groups in a 
{3} -GDD of type 345*. The third is obtained by taking a resolvable { 2,3} -GDD with 
type 43, and 2 parallel classes of triples (from Lemma 3.8 with n = 4 and r = 6), and 
extending all six parallel classes. The fourth is obtained by removing one point from a 
TD(4,4), then filling in groups using a (7, { 3} )-PBD and leaving a 6-hole. 

We have further that 11 G Spec4(18,7); this is the same construction as that for 11 
quadruples in Lemma 4.3. 

LEMMA 4.4. Jl(19)\ { 17,23,24,25} C Spec4(19). { 23,24,25} n Spec4(19) = 0. 
Moreover, {0,7,8,16} Ç Spec4(19,7). 

PROOF. For7 G Spec4(19,7),takearesolvable{2,3}-GDDoftype43fromLemma 
3.8 (with n = 4, r = 7) and extend all seven parallel classes. For 8 G Spec4(19,7), take 
a resolvable (12, { 2,3} )-PBD with five parallel classes of 2-blocks and three parallel 
classes of triples (Lemma 3.7 with x = 5, y = 3); extend 7 parallel classes. For 16 G 
Spec4(19,7), fill in groups in a { 4} -GDD of type 44 using (7,3, { 3} )-IPBDs. 

Now Spec4(19,7) Ç Spec4(19). The case 18 G Spec4(19) is handled by truncating 
two points in a group from a { 4} -GDD of type 210, and filling in the remaining groups. 
The case 19 G Spec4(19) is handled by removing two points on a triple from the PBD on 
21 elements given in Lemma 3.15. The case 20 G Spec4(19) was found by hand using 
an ad hoc construction, and has blocks as follows: abed, aepq, ahmr, alos, bgms, bkoq, 
blnr, cekr, cips, cjmq, dglq, dhks, djpr, efgh, ejns, fqrs, gior, hinq, ijkl, mnop, afi, agj, akn, 
bei, bfp, bhj, cfl, cgn, cho, deo, dfn, dim, elm, fjo, fkm, gkp, hip. 

For 21 G Spec4(19), remove three points from the hole of a (22,7, { 4} )-IPBD. Stan­
ton [29] gives a solution with 22 quadruples. 

The case 12 G Spec4(19) is handled by taking elements Z^ x {1,2,3} U {oo}, 
and starter blocks 0ili2223, 0i2i0253, 0i3252, 0i0343, 021243, 021323, and {oo} 0/3/ for 
*G{1,2 ,3} . 

5 G Spec4(19) 
abed aefg behi cfhj dgij ahr ais ajp ako aln amq bfq bgl 

bjo bkp bms bnr cer cgq cio ckn els emp dep dfn dhk 

dim doq drs ejs ekq elo emn fim fkr flp fos ghm gks 

gno gpr hlq hns hop ikl inp iqr jkm jlr jnq mor pqs 

6 G Spec4(19) 
abed efgh aeij bfkl cgik dhjl afr agn ahp ako alq ams bes 

bgo bhi bjr bmq bnp cer cfo chm cjp cln cqs deq dfs 

dgp dio dkm dnr ekp elo emn fin fjm fpq gjq gls gmr 

hkq hns hor ilm ips iqr jkn jos krs Ipr mop noq 
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9 G Spec4(19) 
abed aefg nhij nklm ehko cfip gjmq blqr opdr ahs aik ajl amp 

anr aoq ben bfm bgk bhp bio bjs cem cgh cjr cks do 

enq dej dfn dgs dhl dim dkq eil epq ers fhq fjo fkr 

fis gir glp gno hmr iqs jkp mos nps 

10 G Spec4(19) 
abed aefg ahij aklm beno hkpq cfrs ilns dgop jmqr anq aor aps 

bfk bgj bhs bir blq bmp ceq egl cho cim cjp ckn dem 

dfi dhn djk dlr dqs ehl eip ejs ekr fhm fjn flp foq 

ghr giq gks gmn iko jlo mos npr 

11 GSpec4(19) 

befh degi nprs almr ajqs hiqr gjkr fkls emos abno aedp aeh afg 

aik bdr bel bgs bij bkp bmq cer ego cis cjm ckq cln 

dfm dhs djl dko dnq efq ejp ekn fip fjn for ghn glq 
gmp hjo hkm hip ilo imn opq 

13 G Spec4(19) 

bede bfkp bhna bqrs cjoa dhmqefgh einr ekqa glsa hijk klmn nopq 
adr afi amp bgm bio bjl cfn cgp chs cim ckr clq dfo 
dgn dil djp dks ejm elp eos fjq fir fms giq gjr gko 
hlo hpr ips jns mor 

14 G Spec4(19) 

beda efga hija klma nopa qrsa behk bfio cenq cjmr dfjq bglq cflp 
ejls bjp bms bnr cgh cik cos dem dgk dhn dis dlo dpr 
eip eor fhs fkr fmn gir gjo gmp gns hlr hmo hpq iln 
imq jkn koq kps 

15 G Spec4(19) 

bedk efgl hijm behn cfio dgjp bfjq cghr deis bgia ceja dfha kpra 
Insa moqablm bor bps dp cms enq dlq dmr dno ekm eop 
eqr fks fmp fnr gko gmn gqs hkl hos hpq ikq ilr inp 
jkn jlo jrs 

For the nonexistence results, see Stanton [29]. 
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LEMMA 4.5. {0,8} C Spec4(21,9), {0,8,28} C Spec4(21,7), 30 G Spec4(21,6), 
and 

{0,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,28,30,31} Ç Spec4(21). 

PROOF. For 8 G Spec4(21,9), extend nine parallel classes of a resolvable 
(12, { 2,3} )-PBD with 2 parallel classes of triples and 7 parallel classes of 2-blocks (from 
Lemma 3.7). For 8 G Spec4(21,7), truncate one group of an ITD(4,6,2) to the two points 
of the hole, and extend the groups that result by one point. For 28 G Spec4(21,7), punc­
ture one point not in the hole of a (22,7, {4})-PBD. For 30 G Spec4(21,6), remove 
instead a point of the 7-hole. 

This settles 8 and 28 in Spec4(21). For 12 G Spec4(21), extend two parallel classes 
and the groups of a nearly Kirkman triple system of order 18 (from Lemma 3.7). For 21 G 
Spec4(21), remove the four points of a block in a (25, { 4} ) - PBD. For 30 G Spec4(21), 
add one infinite point to the groups in a { 4} -GDD of type 210. For 31 G Spec4(21), use 
Lemma 3.15. 

For 7 G Spec4(21), on elements Z7 x { 1,2,3}, take starter blocks 0i3i 1222, 0i0203, 
0ili42 , 0i2i62, Oil333, 0i2353, 022213, 024223 and023343 (modulo (7,-)) . 

For 10 G Spec4(21), on elements (Zio x { 1,2} )U { oo}, take starter blocks 0i4i0232, 
0ili3i, 0il252 , 0i2242, 0i7282, oo0i5i and oo0252. 

For 14 G Spec4(21), on elements Z7 x {1,2,3}, take starter blocks 
0i3i 1222, 012 l4353, 0i0203, 0i 1 A , 0! 1363, 022253, 023243 and 022363. 

For 15 G Spec4(21), on elements (Zî0 x { 1,2} )U { oo}, take starter blocks 0i 122242, 
0i5i0252, 0 Î3 2 7 2 , OiMi, 0i2i82 and ooli02. 

For 18 G Spec4(21), on elements Z\% U { A, B, C}, take starter blocks { 0,1,3,8} and 
{ 0,6,12}. This leaves differences 4 and 9 unused in Z\%. The corresponding cubic graph 
has a 1-factorization [31] F\, F2, F3. Form triples consisting of pairs in F\ together with 
A, pairs in F2 together with B and pairs in F3 together with C. Finally, add the triple ABC. 

For 20 G Spec4(21), on elements (Zio x { 1,2} )U { 90} take starter blocks 0i 1 i4i52, 
0i223262, 0i2i02, 0i7292, oo0i5i and oo0252. 

5 G Spec4(21) 
abed aefg behi cfhj dgij ahq aio 

bgq bjm blu bnt bos bpr cer 

den dfl dhm dkp doq drs dtu 

fmq fno fpu fst gho gkn gls 

ilp ims inu iqt jks jln jor 

aju akr aim ans apt bfk 

cgt elk clq cmn cou eps 

ejt ekl emu eop eqs fir 

gmp gru hkt hlr hnp hsu 

jpq kmo kqu lot mrt nqr 
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6 G Spec4(21) 

abed efgh aeij bfkl cgik dhjl afn 

bem bgq bhr bin bjt bos bpu 

cqt deo dfp dgu diq dkr dms 

fjq fmr ftu gjo gls gmt gnr 

iot jkp jmn jru kno kqu lou 

9 € Spec4(21) 
abed aefg nhij nklm ehko cfip gjmq 
alu amo anp bej bfu bgh bim 
cjk enr cqt csu deu dfn dgk 

ent epq fhq fjo fks fit fmr 

ikt ilo jpu jrs km mps nqu 

11 e Spec4(21) 
befh degi nprs almr ajqs hiqr gjkr 
aiu akt bdk beq bgs bim bju 

clq cot cru dfu dhs djt din 
fin fjo fmt fpq ghm gio gpu 
iko ipt jmp knq mnu oqu stu 

13 € Spec4(21) 
bede bfkp bhna bqrs cjoa 
adf aim apt aru bgm 
emp cnu dgn dis djl 
fjn flq fmu frt gip 
jqu ksu Ipr mor nst 

16 G Spec4(21) 
qrst rcei csfj deuk eftl fuim ghjn 
noae opbf pacg abh adf aiq aju 
bgq bit bms cdh ckt enq dgi 
fgk fhq fnr glu gmr got his 
oqu psu 

17 G Spec4(21) 
rsth scei ctfj degk efhl fgim ghjn 

noqd opae pqbf qacg abi ads afk 
ben bgs bkt bru cdl cku cor 
eqt fns fou glu got gpr hqu 
ptu 

agp aho aks alq amu art 

cer cfo chp cjs elm cnu 

dnt ekt eln epq esu fis 

hiu h km hnq hst ilr imp 

Ipt moq nps opr qrs 

blqr opdr ahr ais ajt akq 

bkp bno bst cem ego chl 

dhs diq djl dmt eir els 

giu glp gns grt hmu hpt 

oqs otu 

fkls emos abno aedp aeh afg 
bip brt cej cgn cis ckm 
dmq dor efr ekp elu ent 
gqt hjn hku hit hop ijl 

einr ekqa glsa hijk klmn nopq 
bio cfs cgq chr cil ckt 
dpu ejp elu emt eos fio 
gtu hit hou hps iqt jms 

hiko ijlp jkmq klnb Imoc mnpd 
aks air amt bcu bdr bej 

djt diq dos egs ehm epq 
hpt hru ins jor kpr ntu 

hiko ijlp jkmq klnr Imob mnpc 
ahm ajr alt anu bch bdj 
dfr dhp diu dmt eju emr 
int iqr jos kps Iqs msu 
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19 G Spec4(21) 
abdi bcej cdfk degl efhm fgin ghjo hikp ijlq jkmr kins Imoa mnpb 

noqc oprd pqse qraf rsbg sach aeu agp ajn akt bfo bht bkq 

blu cgm ciu dp crt dhn dju dmq dst eir eko ent fjs 

fit fpu gku gqt hlr hqu imt ios jpt msu nru otu • 

LEMMA 4.6. 4 G Spec4(22,10). 13 G Spec4(22,9). {7,15,35} C Spec4(22,7). 
4 G Spec4(22,6). Finally, Spec4(22) contains 

{6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,28,35}. 

PROOF. For 4 G Spec4(22,10), extend the groups of a { 3} -GDD of type 9134. For 
13 G Spec4(22,9), use a resolvable (13, { 2,3} )-PBD with nine parallel classes (from 
Lemma 3.11). For 7 € Spec4(22,7), truncate a group of a TD(4,7) to one point. For 
15 G Spec4(22,7), remove three points not in the hole from a group of an ITD(4,6,2) 
and add one point at infinity to the groups. For 35 G Spec4(22,7), take a (22,7, { 4} )-
PBD. For 4 G Spec4(22,6), take a { 3} -GDD of type 6*44. 

In consequence, we obtain 7, 13, 15 and 35 in Spec4(22). For 19 G Spec4(22), ex­
tend three parallel classes and the groups of a nearly Kirkman triple system of order 
18. For 28 G Spec4(22), remove three points from a block of a (25, {4})-PBD. Now 
6 G Spec4(22) is given by Lemma 6.23 in [27]. We obtain 14, 21 and 25 from extend­
ing parallel classes in the solutions for 7, 14 and 18 in Lemma 4.5 for 21 points. For 
11 G Spec4(22), on elements Zn x { 1,2} take starter blocks 0i4i5]02,026i9j, 028il0i, 
02l22i, 02427i and 022252. For 22 G Spec4(22), take instead starter blocks 0i4i02l2, 
0i2i3i52, 022i7i, 02425i and 022252. 

For 16 G Spec4(22), add a point to the parallel class { afg, bim, clq, dor, ekp, hjn, stu} 
of the the solution for 9 G Spec4(21). For 18 G Spec4(22), add a point to the parallel 
class {ahr, bfu, cjk, dmt, epq, gns, ilo} of the solution for 11 G Spec4(21). 

8 G Spec4(22) 
abed aefg ahij dgjr dklm gkno jkpq stuv akt alp amn aos aqu 

arv beu bft bgs bhr bip bjm bkv bio bnq ceo cfi cgh 

cjl cks cmr env cpu cqt deh dfu div dnt doq dps eik 

ejs eln emq epv ert fho fjv fkr flq fms fnp giq glv 

gmu gpt hku hit hmp hns hqv ils imt inr iou jnu jot 

Iru mov opr qrs 
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9 G Spec4(22) 
abed aefg ahij cfik dgjl dimn cgop fjqr stuv akv aim ans aot 

apq am bes bfn bgk bhq bio bju blv bmt bpr ceh cjv 
clu cmr cnt cqs deq dft dhs dkp dou drv eir ejm eku 

elt enp eov fhu flp fmv fos ghm giu gnv gqt grs hko 

hln hpv hrt ils ipt iqv jkt jno jps klq kms knr lor 

moq mpu nqu 

10 G Spec4(22) 
abek bcfl edgm dehn efio fgap ghbq hier iadj stuv acv aht alo 

amu anr aqs bds bim bjt bnu bop brv cet cjk cno cps 

cqu dfu dkt dlv doq dpr egs ejm elq epv eru fhm fjs 
fkr fnv fqt giu gjn gkv glr got hjv hko his hpu ikp 
ilt ins iqv jlp jou jqr klu kms knq Imn mov mpq mrt 

npt ors 

12 G Spec4(22) 
sbed efgh ijkl mnopteim bfjn cgko vhlq afkr bglm chin uejo abq 
acj adg aep aho aiu alt ams anv bek bht bir bov bpu 

cev cfl cmr cpq ctu der dfq dhm div djp dkn dlu dot 

eln eqs fip fmu fos ftv gis gjt gnu gpv gqr hjr hkp 
hsu ioq jmq jsv kmv kqu kst lor Ips nqt nrs prt ruv 

17 G Spec4(22) 
abed aefg ahij aklm beno hkpq cfrs ilns dgop jmqr anrv aou aps 
aqt bfk bgjv bhr biu bit bmp bqs ceh cgq cipv cjt ckn 
clu cmo deu dfhv dim djk dlr dnq dst eiq ejl ekr emsv 
ept fit fjo flp fmn fqu ghl gir gks gmt gnu hmu hnt 
hos iko jnp jsu ktuv loqv ort pru 

20 G Spec4(22) 
bede bfkp bhna bqrs cjoa dhmqefgh einr ekqa glsa hijk klmn nopq 

adf aip amrv atu bgt bilv bju bmo cfm cgr chuv ciq cks 
clp cnt dgp diu djl dkt dnsv dor ejpv elt emu eos fis 
fjn fir fou fqtv gim gjq gkov gnu hlo hpr hst iot jms 
jrt km Iqu mpt psu 
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23 G Spec4(22) 
qrst rcei csfj deuk eftl fuim ghjn hiko ijlp jkmq klnb Imoc mnpd 
noae opbf pacg abh adfv aiq aju akr als amt bcu bdr bej 

bgq bitv bms cdh ckt cnqv dgi djt dlq dos egs ehmv epq 
fgk fhq fnr gluv gmr got hlr hpt hsu ins jorv kpsv ntu 
oqu pru • 

4.2. Second and Third Periods We simply state the results obtained from the recursive 
constructions of section 3 using the small designs from section 4.1. The vérification is 
purely mechanical; in fact, we have employed a sequence of computer programs em­
bodying the constructions of Lemmas 3.1-3.15 in order to verify that the results stated 
are correct. We have also constructed a number of specific designs in these periods. These 
are given explicitly in the supplementary report. In Tables 4.1 and 4.2, we list the pos­
sible exceptions, i.e. the values in A(v) not shown to be in Spec4(v) by example or by 
recursive construction. In Table 4.2, we list a value s when Mv — s is a possible excep­
tion, since in the third period all remaining exceptions are near the maximum number 
of quadruples. We do not comment on Spec4(v, w) in these periods; although we obtain 
many results from the recursive constructions for w > 6, few are needed for the proof of 
the Main Theorem to follow. 

TABLE 4.1 Second Period. 

v Possible Values in A(v)\ Spec4(v) 
24 19 22 23 24 26 27 28 29 31 32 33 34 36 37 38 39 40 41 
25 27 28 30 31 33 34 35 37 39 40 41 42 44 45 46 
27 22 23 28 29 31 33 34 35 38 39 40 41 43 44 46 47 49 50 51 53 
28 31 32 34 35 38 40 42 43 44 47 48 50 52 53 55 56 57 58 59 
30 25 26 28 29 31 32 34 35 36 37 38 40 41 42 43 44 46 50 53 55 56 57 58 59 60 61 

62 65 66 

31 27 28 29 34 35 38 39 40 43 45 46 49 50 51 52 53 54 63 65 66 67 68 69 70 71 72 
33 28 29 30 34 36 38 41 44 45 50 51 55 56 57 61 62 63 67 68 69 70 71 72 73 75 76 

81 
34 28 35 48 54 58 60 61 64 66 67 70 72 73 74 76 78 79 80 81 82 83 84 86 87 

5. Proof of the Main Theorem. In order to prove the Main Theorem, we treat con­
gruence classes of v (mod 1)2. In all eight classes, we begin with two applications of the 
Fundamental Construction; hence we examine these first before considering particular 
classes. 

LEMMA 5.1. For t = 0,1 (mod 4), 0 < s < lit2 - 12f, s = 0 (mod 8), there 
is a {3,4} -GDD of group-type 12r with precisely s quadruples. For t = 2,3 (mod 4), 
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TABLE 4.2 Third Period, 

v Values Mv — s for possible s G -#(v)\ Spec4(v) 
36 13 45 7 10 1113 15 16 19 2127 46 47 5153 55 6163 65 71 
37 45 67 8 10 1112 13 14 15 16 17 19 20 23 26 27 
39 1 2 5 8 9 15 
40 5 89 15 
42 1 2 5 6 7 8 9 13 
43 2 3 45 6 7 8 9 10 11 12 
45 15 89 13 14 15 
46 2 3 4 5 6 7 8 9 10 11 12 14 

t> 7, 0 < s < Ut1-lit-24 and s = 0 (mod 8), there is a {3,4}-GDD of group-type 
Ylt~124t with precisely s quadruples. 

PROOF. Use Lemma 3.4 to produce { 4} -GDDs with group-types 3* when t = 0,1 
(mod 4), and 3r~261 when t = 2,3 (mod 4). Apply Lemma 3.2 with weight 4 to each 
element, using the { 3,4} -GDDs of type 44 having 0, 8 or 16 quadruples (see Lemma 
4.2). • 

The omission of t — 6 in Lemma 5.1 can be remedied to a certain extent by a different 
application of the Fundamental Construction: 

LEMMA 5.2. There is a { 3,4} -GDD of group-type 126 having precisely s quadruples 
foralls = 0 (mod 5), 0 < s < 360. 

PROOF. Truncate a (25, { 5} )-PBD to obtain a { 5} -GDD of type 46. Now apply 
Lemma 3.2 giving every element weight 3, and using the { 3,4} -GDDs of type 35 having 
0, 5, 10 or 15 quadruples (see Lemma 4.1). • 

In specific cases, we also employ variants of Lemmas 5.1 and 5.2 that assist in partic­
ular classes. However our general strategy is to fill in groups in the GDDs produced by 
Lemma 5.1, using the GDDs of Lemma 5.2 to handle the exception in 5.1. 

5.1. v = 1 (mod 12) 
We write v = 12/ + 1, and first apply the general construction. 

LEMMA 5.3. For \2t+ 1 > 49, t ^ 6, if s G Jl(12t+ I) then s e Spec4(12f + I) for 
sfi {5,9,10,11,17} andMv-s£ {4,5,9,10,11,17}. 

PROOF. Using Spec4(13) and results on Spec4(25), fill in groups in the 12' or 
12r~2241 { 3,4} -GDDs. When t = 0,1 (mod 4), we choose t numbers from { 0,6,7,13} 
and (3t2 — t)/ 4 numbers from {0,8,16} to form the number of quadruples. When 
t = 2,3 (mod 4), we choose t — 2 numbers from { 0,6,7,13}, one from { 0,50}, and 
(3t2 — t — 6)/ 4 from { 0,8,16}. This produces all numbers of quadruples in A(\2t + 1) 
with the exceptions stated. • 

We next consider order 73: 
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LEMMA 5.4. For s G #(73), s fi {8,9,M73 - 9,M73 - 8,M73 - 4}, there is a 
(73, { 3,4} )-PBD with precisely s quadruples. 

PROOF. Fill in groups in the GDD of type 126 using Spec4( 13). • 

Now we clear up the remaining exceptions. In view of Lemma 3.3, if v, w = 1,3 
(mod 6), v > 2w + 1 and s G Spec4(w), we have s G Spec4(v). Hence we have the 
following: 

LEMMA 5.5. For 5 < s < 17, ifv = 1,3 (mod 6), v > 49, then s G Spec4(v). 

PROOF. Apply the observations using Lemma 3.3 to {6,7,13} Ç Spec4(13), 
{5,10,14,15} Ç Spec4(15), {8,9,11,12,16} Ç Spec4(19), and 17 G Spec4(25). This 
leaves only 17 G Spec4(49) to construct; this is straightforward using a {3}-GDD of 
type 153 and filling groups with (19,4)-IPBDs. • 

We use Lemma 3.4 in a similar way to fill in the "top end": 

LEMMA 5.6. For v = 1,4 (mod 12), Mv-s G Spec4(v)/or 

(i) s = 4andv> 121, 
(ii) 5 G {5,8,9,10,11,14,15,16} andv> 49, 

(Hi) s G {6,7,13} and v> 40, 

(iv) s = 12 and v > 76, and 

(v) s= 17 and v > 85. 

PROOF. Use Lemma 3.4 to produce a (v, w, { 4} )-IPBD with w = 40 (case (i)), w = 
16 (case (ii)), w = 13 (case (iii)), w = 25 (case (iv)) or w = 28 (case (v)). In each case, 
Mw — s G Spec4(w), and this PBD is used to fill the hole in the IPBD. • 

The case of Mv — 4 can often be handled by the following construction: 

LEMMA 5.7. Let v = 1,4,13,16,40 (mod 48), v > 40. Then Mv - 4 G Spec4(v). 

PROOF. For v = 4,16 (mod 48), there exists an ITD(4, v/4,2) using Lemma 3.5. 
Form a { 3,4} -GDD of type (v/ 4)4 with precisely 8 triples by filling the hole in the ITD 
with a { 3} -GDD of type 24. Now fill groups using a ((v/ 4), { 4} )-PBD. For v = 1,13 
(mod 48), use an ITD(4, ((v— 1)/ 4), 2) in the same way, filling groups with (((v—1)/4)+ 
1,1, { 4} )-IPBDs. For v = 40 (mod 48), we use an ITD(4, (v -4) / 4,4) and fill in groups 
with (((v — 4)/ 4) + 4,4, { 4} )-IPBDs; at the end we place a quadruple on the resulting 
hole of order four. • 

As a consequence of the previous three lemmas, when v > 49 we are left with the 
possible exception of Mv — 4 for v G { 73,85}, and Mv — 17 for v G { 49,61}. These 
last two cases can be treated by modifying the construction in Lemma 5.7 to use one 
IPBD(13,1, { 3}) (for v = 49) and one IPBD(16,1, { 3,4} ) (for v = 61), both of which 
have 26 triples (and hence have 13 quadruples fewer than the maximum). 

To summarize, we have 
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LEMMA 5.8. For v = 1 (mod 12) and v > 49, A(v) = Spec4(v) except possibly for 
M v - 4 , vG {73,85}. • 

5.2. v = 3 (mod 12) 
We write v = 12/ + 3. From filling in groups in the GDDs of Lemma 5.1 using 

Spec4(15,3) and Spec4(27,3), along with Lemma 5.5, we have 

LEMMA 5.9. For 12/ + 3 > 51, t± 6, Spec4(12/ + 3) = Jl(12r + 3). • 

Now filling in groups of the GDD of type 126 using Spec4(15,3), we obtain all values 
in .#(75) except 8 and 9. Hence by using Lemma 5.5 as well, we obtain 

LEMMA 5.10. Spec4(75) = Jï(75). • 

Hence we have shown 

LEMMA 5.11. For v = 3 (mod 12) and v > 51, #(v) = Spec4(v). • 

5.3. v = 4 (mod 12) 
We write v = 12/ + 4. Applying the basic construction using Spec4(16,4) and 

Spec4(28,4), we obtain 

LEMMA 5.12. For 12/ + 4 > 52, / ^ 6, if s G A(12t + 4) and s £ {Mv- 12,MV-
7,MV-6,MV - 4 } then s G Spec4(12/ +4). • 

For v = 76, we use Spec4(16,4) to fill groups in the GDD of type 126 to obtain 

LEMMA5.13. A(16)\{M76- 12 ,M 7 6-7 ,M76-6 ,M 7 6-4} C Spec4(76). • 

Now we treat the remaining cases. Applying Lemmas 5.6 and 5.7 leaves only the 
cases Mv — 4 for v = 76, and Mv — 12 for v G {52,64}. For the first case, apply 
the Fundamental Construction giving every point weight 3 to an ITD(4,6,2) and fill the 
resulting 6-hole with an ITD(4,6,2). The result is an ITD(4,18,2) with a sub-TD(4,3). 
Now fill the hole with a { 3} -GDD of type 24, and "unplug" the TD(4,3). Add four points 
at infinity. On each group together with these four points, place a (22,7, { 4} )-IPBD so 
that the hole coincides with the four additional points and the three points of the TD(4,3) 
in this group. Finally, on the twelve points of the TD(4,3) and the four additional points, 
placea(16;{4})-PBD. 

ForM 5 2 -12 G Spec4(52), fill groups of aTD(4,13) using {7,13} C Spec4(13).For 
M64 - 12 G Spec4(64), fill the hole of an ITD(4,16,2) with a { 3} -GDD of type 24, and 
fill groups using { 12,20} Ç Spec4(16). 

To summarize, 

LEMMA 5.14. For v = 4 (mod 12) and v > 52, A(y) = Spec4(v). • 

5.4. v = 0 (mod 12) 
We write v = 12/. This case poses a special problem, because Spec4(12) only contains 

two different values. Hence filling in groups as usual in the GDDs of Lemma 5.1 gives 
only: 
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LEMMA 5.15. For t = 2,3 (mod 4), t > 7, if s G J?(12/) am/ s ^ Mv - si for 

st G { 1,2,3,4,5,9,10,11} f/œn j G Spec4(12r). • 

LEMMA 5.16. For t = 0,1 (mod 4), if s £ A(\2t) and s — mv is even, then if 
{s-mv,Mv-s}n {2,4,10} = 0, s G Spec4(12f). • 

Lemma 5.16 is quite weak, in that it produces only values of the same parity. Hence 
instead of using Lemma 5.1, we apply the Fundamental Construction using weight 4 to 
GDDs of type 3fl6 ,̂fc > 1, to obtain {3,4}-GDDs with type 12*24^; these exist provided 
t>l (Lemma 3.14). In this way, we refine Lemma 5.16 to obtain: 

LEMMA 5.17. For t = 0,1 (mod 4), t > 8, if s G .#(120 and s ^ Mv - st for 
st G { 1,2,3,4,5,9,10,11}, then s G Spec4(120. • 

The case v = 72 is also complicated by the sparsity of Spec4(12). Here we take a 
(25, {5} )-PBD; truncating a point leaves a { 4,5} -GDD of group-type 544* having 5 
quadruples and 20 blocks of size 5. Use the { 3,4} -GDDs of type 35 and 34 in the Fun­
damental Construction to form a { 3,4} -GDD of group-type 154121 in which the number 
of quadruples is s\ one can choose any s that is the sum of 20 numbers in { 0,5,6,10,15} 
and five numbers in { 3,9}. Now use Spec4(12) and Spec4(15) to fill in groups. In con­
sequence, we obtain 

LEMMA 5.18. If s G A(12\ s £ { 19,20,21,22,26,27} then s G Spec4(72). • 

The cases in Lemma 5.18 are mv + x for x G { 1,2,3,4,8,9}. Using Lemma 3.3, 
there is a { 3} -GDD of group-type 24J412. Since { 7,8,9,10,14,15} C Spec4(24), the 
exceptions left in the Lemma are all handled by filling groups in the GDD. 

It remains to consider the exceptions in Lemmas 5.15 and 5.17. To do this, we establish 
the following: 

LEMMA 5.19. For v = 0,3 (mod 12) and 1 < s < 11, Mv - s G Spec4(v)/or 

(i) s = 6 and v > 39, 
(ii) s G {1,5,8,9,10} andv>48, 

(Hi) s — 1 and v > 75, 
(iv) s = 2andv> 84, 
(v) s G {3,4,11} andv> 120. 

PROOF. Truncate a ( v + l , w + l , { 4 } )-IPBD to form a { 3,4} -GDD of group-type 
3(V-M0/3W19 w h e r e w = 12, 15, 24, 27, or 39 in the five cases respectively. Fill the hole 
with a (w, { 3,4} )-PBD having Mw — s quadruples. • 

Now we treat the remaining exceptions: 
{M84 - 11,M84 - 4,M84 - 3} Ç Spec4(84): 
Use aTD(4,21) and observe that4M2i +212 = M84 - 2. Since {M2\ -3 ,M 2 i - 1 } Ç 

Spec4(21), we obtain the desired results by filling in groups of the TD. 
M96 - 3 G Spec4(96); Mm - 3 G Spec4(108): 
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For the first, take a resolvable TD(4,7). Extend the groups by adding one point, and 
extend two parallel classes of blocks by adding a point to each. The result is a { 4,5,8} -
GDD with group-type 4731. Apply the Fundamental Construction with weight 3 to form 
a {4}-GDD of group-type 1279! using {4}-GDDs of type 34, 35 and 38. Now fill in 
groups using a (12,3,{3,4})-IPBD and four (15,3,{3,4})-IPBDs having the maxi­
mum number of quadruples, and three (15,3, { 3,4} )-IPBDs having one fewer than the 
maximum. 

For the second, use instead a resolvable TD(4,8) and extend three parallel classes and 
no groups. 

M% - 4 G Spec4(96); Ml0s - 4 6 Spec4(108): 
Truncate the solutions given by Lemma 5.7 for 97 and 109 elements. 
M 9 6 - l l <ESpec4(96): 

Use an ITD(4,24,2) along with M24 - 7 G Spec4(24). 

M 1 0 8 - H €Spec4(108): 
Use an ITD(4,26,2) and fill in groups using (30,4, { 3,4} )-IPBDs and a (30, { 3,4} )-

PBD. Each IPBD has the maximum number of quadruples, and we use M30 — 3 G 
Spec4(30). 

We have also verified by a set of tedious computations (by computer) that Spec4(48) = 
J4(48) and Spec4(60) = ^1(60), using the constructions of section 3 and this section 
together with the ingredients of section 4. 

We have shown 

LEMMA 5.20. For v = 0 (mod 12) and v > 48, A(v) = Spec4(v). • 

5.5. v = 6 (mod 12) 
Write v = \2t + 6. We apply the Fundamental Construction as in Lemma 5.1, but to 

a general class of GDDs: 

LEMMA5.21. If there exists a {4} -GDD of group-type 3a6b with a > 1 anda+2b = 
ty then if s G A(\2t + 6) and s < M\2t+6 — 9a+ 3, then s G Spec4(12r + 6). In particular, 
this holds for t = 0,1 (mod 4) and a = t, and t = 2,3 (mod 4), t ^ 6, and a = t — 2. 

PROOF. Form a {3,4}-GDD of group-type 12^24^ as in Lemma 5.1. Fill in groups 
using b (30,6,{3,4})-IPBDs, a - 1 (18,6, {3,4} )-IPBDs, and one (18, {3,4})-PBD. 
For the IPBD of order 30, Lemma 3.3 provides an IPBD with 6 quadruples, and Lemma 
3.4 provides one with 64 quadruples; simply delete a point of the hole of a (31,7, { 4} -
IPBD. The particular cases mentioned are from Lemma 3.4. • 

We employ a further general construction: 

LEMMA5.22. Let z G {0,4,6,8,16}, s{ G Spec4(3f + 3,3), and {s2,s3,s4} Q 
Spec4(3f + 4,3). Then for t > 4, 

(30(3/+ 1) — z + s\ +s 2 +^3 + S4 G Spec4(12/ + 6). 
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PROOF. Set y = 2, 3 or 4 when z = 4, z = 6, or z G {0,8,16} respectively. 
Puncture an ITD(4,3t + 1, v) by removing an element outside the hole, and fill the hole 
with a { 3,4} -GDD of type y4 having 2z triples. This gives a { 3,4} -GDD of group-type 
(3t)l(3t + l)3. Fill in the groups. • 

In Lemma 5.22, we come "close" to the maximum number of quadruples, but do 
not attain it. In particular, the maximum number obtainable in this way in general is 
Mnt+6 - 10 for t = 0,3 (mod 4), and M]2,+6 - 9 for t = 1,2 (mod 4). We therefore 
comment next on the cases close to the maximum: 

LEMMA 5.23. Let v = 6,9 (mod 12), and st = Mv - s. Then si G Spec4(v) in each 
of the following cases: 

(i) s = 4 and v > 30, 
(H) 6<s< 17 and v > 57, 

(mj s G {1,3,18,19,20,21,22,23,24,25,26,31} andv> 66, 
(ïvj s=2Sandv> 93, 
(V) 5 G {2,5,29,30} andv > 102, 

(v/j s = 21 andv > 129, 

PROOF. Using Lemma 3.4, form a (v + 1, w + 1, { 4} )-IPBD with w = 9, 18, 21, 30, 
33 and 42 in the six cases above. Truncate to form a { 4} -GDD of type 3 (v -vv)/3 w1. Place 
a (w, { 3,4} )-IPBD on the hole having Mw — s quadruples. • 

Now we turn to specific cases. For v = 54, Lemmas 5.21 and 5.22 give all values 
up to M54 — 13, except M54 — 15. We obtain M54 from Lemma 3.15, and M54 — 4 from 
Lemma 5.23. M54 — 3 is obtained by puncturing a (55,7, {4})-PBD outside the hole, 
and filling the hole. For Mv — s, s G { 8,9,11,12,15}, modify Lemma 5.22 to use one 
(16, { 4} )-PBD in place of one of the IPBDs. For M54 -10, use Lemma 3.7 with 6t = 36, 
x — 1 and y — 17, and extend parallel classes to form a (54,18, { 3,4} )-IPBD with 18 
triples; then fill the hole using 15 G Spec4(18). This leaves as possible exceptions M54—s 
fors G {1,2,5,6,7}. 

For v = 66, use Lemmas 5.21 and 5.23 to obtain all but M^ — s for s G { 2,5}. 
For v = 78, we cannot apply Lemma 5.1. Instead, we use a construction similar to 

Lemma 5.2. Take a { 5} -GDD of type 55 (i.e., the affine plane of order 5), and apply the 
Fundamental Construction giving each element weight 3. This gives a { 3,4} -GDD of 
type 155 with s quadruples for any 0 < s < 375, s = 0 (mod 5). Use (18,3, {3,4})-
IPBDs to fill in groups. This handles all values up to M7g — 32. Now applying Lemmas 
5.22 and 5.23 leaves only M78 - s for s G { 2,5}. 

For larger v, we proceed as follows. For all values except those in an interval of length 
at most 9t — 3 at the top end, we use Lemma 5.1. For the remaining values near the max­
imum, we employ Lemma 5.22 recursively. The recursion uses both the determinations 
for v = 0,3 (mod 12) already completed, and it uses determinations for smaller orders 
in the classes v = 6,9 (mod 12). The last case, v = 9 (mod 12), is examined in a later 
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section. Using Lemmas 3.4, 5.8 and 5.14, one can always choose the (3t + 4,3, { 3,4} )-
IPBD to have the maximum number of quadruples allowed by the necessary conditions, 
with the possible exceptions of v G {25,28,37,73,76,85}. In these cases, one can use 
instead the solutions for Mv — 5 for v G { 73,76,85}, Mv — 1 for v = 25 and Mv — 9 
for v G { 28,37} ; this reduces the maximum in Lemma 5.22 by three, nine and fifteen 
quadruples, respectively. 

Hence if we have A(3t + 3) = Spec4(3f + 3), the recursion provides all values up to 
MUt+6 - 25 for t G { 8,11}, Ml2t+6 - 19 for t = 7, MX2t+6 - 13 for t G { 23,24,27}, 
Mnt+b - 10 for other t = 0,3 (mod 4), t > 7, and Mi2t+6 ~ 9 for t = 1,2 (mod 4), 
t > 6. Lemma 5.23 can then be used to provide the missing values. 

It remains to consider the "small" cases, in which Spec4(3J +3,3) = Si{3t + 3) has 
not been established. In general, we observe that if Spec4(3f + 3) contains all values up 
to M3f+3 — 18 and t fi { 7,8,11}, Lemma 5.22 gives all values up to M\2t+e — 31 at least. 
One can verify that this holds for all t > 12 using the results of section 4.2, Lemmas 5.11 
and 5.20, and the induction. Then Lemma 5.23 completes the determination. 

At this point, we must consider the cases 7 < t < 11. For t = 7, we obtain all 
values up to M90 — 42 from Lemma 5.21. Using Lemma 5.22 with 42 G Spec4(24) and 
the determination of Spec4(25) in section 4.2, we obtain all values up to M90 — 30, and 
M90 — 28. Using 35 G Spec4(24) instead, we also obtain M90 — 27 and M90 — 29. 

For t = 8, use the { 4} -GDD of type 3462 (Lemma 3.13) in Lemma 5.21 to obtain all 
values up to M\02 — 36. Filling in groups of a TD(4,27) using Spec4(27) then gives all 
values up to Mi02 — 32 (at least), and Mi 02 — 27. 

For t G { 9,10}, using the determination of Spec4(31,3) and Spec4(34,3) in Lemma 
5.22, along with Lemma 5.23, handles all values. 

For t = 11, Lemma 5.21 handles all values up to Mi38 — 78. Filling the hole of a 
(138,42, { 3,4} )-IPBD with the maximum number of quadruples using Spec4(42) han­
dles all values up to Mi33 — 14. 

In each case, provided that the case v = 9 (mod 12) is handled, we have established 
that the possible exceptions in the ingredients of Lemma 5.22 only cause possible ex­
ceptions that are eliminated by Lemma 5.23. Hence although the determination is not 
completed for the small cases, the possible exceptions do not propagate. Once we have 
completed the case v = 9 (mod 12) (in the next section), we have finished the case v = 6 
(mod 12). 

We treat a few of the exceptions remaining for v < 90: 

LEMMA 5.24. For t = 0,3 (mod 4), t > 4, M]2,+6 - 5 G Spec4(12f + 6). Moreover, 
{ M 5 4 - 7 , M 5 4 - 6 } CSpec4(54). 

PROOF. Form an ITD(4,3t + 1,2). Add two points "at infinity". On each group of 
the ITD plus the two extra points, place a (3f + 3,4, { 3,4} )-IPBD, so that the 4-hole in 
the IPBD coincides with the two extra points and the two points in the hole of the ITD. 
The result is a (12f+6,10, { 3,4} )-IPBD; fill the final hole. Now if each IPBD is taken to 
have the maximum number of quadruples possible, the PBD produced has 4t+13 triples, 
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and hence has Mi2t+6 — 5 quadruples. In the case t — 4, we obtain the two further values 
by using ( 15,4, { 3,4} )-PBD with one fewer quadruple than the maximum. • 

We have shown 

LEMMA 5.25. Forv = 6 (mod \2)andv > 54, Si{v) = Spec4(v) except possibly 
forMv-lwithv = 5A,Mv-2withv G {54,66,78,90} andMv-5withv G {66,78}. 

• 

5.6. v = 9 (mod 12) 
Write v = \2t + 9. We first adapt Lemma 5.1 to the case at hand. 

LEMMA5.26. Ifthere exists a {4} -GDD oftype ?>a6b with a > 1 anda+2b - t, and 
if s G A(12t+9)ands < Mi2t+9-l9a+9orMl2t+9-s G { 19a-16,19a-18,19a-19}, 
Then s eSptc4(\2t +9). 

PROOF. Apply the Fundamental Construction with weight four to the GDD and fill 
in groups using [> (33,9, {3,4} )-IPBDs, a-1(21,9,(3,4}-IPBDs and one (21, {3,4})-
PBD. • 

In Lemma 5.26, we take in general the (33,9, { 3,4} )-IPBDs to have no quadruples 
(from Lemma 3.3), or the maximum number (from Lemma 3.4). 

To supplement this, we require a construction for large values in 5l(\2t + 9): 

LEMMA5.27. Fori= 1,2,3,4, letst G Spec4(3f+ 3). Letz G {0,4,6,8,16}. Then 
for t > 4, 

(3f + 2)2 -z + s\+s2+S3+s4e Spec4(12f + 9). 

PROOF. Set y = 2, 3 or 4 when z = 4, z = 6 or z G { 0,8,16}, respectively. Fill the 
hole in an ITD(4,3t + 2, y) with a { 3,4} -GDD of type y4 having 2z triples. Now fill in 
groups of the resulting GDD using (3/ + 3,1, { 3,4} )-IPBDs. • 

In Lemma 5.27, when t = 0,3 (mod 4), the maximum value produced is Mnt+9', 
when t = 1,2 (mod 4), the maximum value is M\2t+9 — 2. 

When t ^ 6, we apply Lemmas 5.26 and 5.27, using Lemma 5.23 to take care of 
certain exceptions. As in the case v = 6 (mod 12), we employ an induction from smaller 
values; however, in this case, the induction is dramatically simplified by the fact that 
Lemma 5.27 comes quite close to the maximum. When t = 1,2 (mod 4), there are 
no exceptions left; more precisely, Lemma 5.23 handles all exceptions left by applying 
Lemma 5.27 inductively, since Lemma 5.23 handles Mv — s for s < 26 except s G { 2,5} 
for v G { 69,81}. Lemma 5.27 handles these cases directly (recall that the maximum in 
Lemma 5.27 is Mv — 2 in these congruence classes). 

When t = 0,3 (mod 4), no exceptions result whenever M^+i — 1 G Spec4(3f + 3); 
otherwise we must treat the possible exceptions Mv—5 and Mv — 2 for values not handled 
by Lemma 5.23. This leaves the cases Mv — 2 and Mv — 5 only for v = 93. 

It remains to treat the case v = 81 : 
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LEMMA 5.28. Spec4(81) = Jl(81). 

PROOF. Apply the Fundamental Construction with weight 4 to a TD(4,5) to obtain 
a { 3,4} -GDD of type 204 having s quadruples for any 0 < s < 400, s = 0 (mod 8). 
Fill in groups with a (21,1, {3,4})-IPBD. This construction establishes thatMgi — x e 
Spec4(81) except for x G {0,1}. These two values are provided by Lemma 3.15 and 
5.23. • 

We should remark that the induction required is immediate once we have Spec4(3f + 
3) = Jl(3/+3) in the above; below that point, one must verify that the possible exceptions 
in Spec4(3f+3) do not propagate to make new possible exceptions in Spec4(12f+9), other 
than those explicitly mentioned above. This is a straightforward computation. 

Now we treat the remaining exceptions. For v = 93, take a resolvable TD(4,7); add a 
point to the groups and a point to one parallel class of blocks to obtain a { 4,5,8} -GDD 
of type 2*47. Apply the Fundamental Construction with weight 3, using {4} -GDDs of 
types 34, 35 and 38. Then fill groups with a (9,3, { 3} )-IPBD and seven (15,3, { 3,4} )-
IPBDs. This produces M93 — 5. 

Hence we have 

LEMMA 5.29. For v = 9 (mod 12) and v > 57, J?(v) = Spec4(v) except possibly 
for Mv - 2, v = 93. m 

5.7. v = l (mod 12) 

Write v = 12*+ 7. 

LEMMA 5.30. If there exists a {A} -GDD of type 3a6b with a > 1 and a + 2b = t, 
and if s G -#(12f + 7) and s < M]2t+i - 9a + 6, then s G Spec4(12f + 7). 

PROOF. Apply the Fundamental Construction to obtain a {3,4}-GDD of type 
12*24*. Fill in groups using b (31,7, {3,4} )-IPBDs, a - 1 (19,7,{3,4})-IPBDs, and 
one(19,{3,4})-PBD. • 

The (31,7, { 3,4} )-IPBD is taken to have no quadruples (Lemma 3.3) or all quadru­
ples (Lemma 3.4). 

Next we treat the bulk of the cases at the top end. 

LEMMA5.31. Fort>4,z G {0,4,6,8,16} andst G Spec4(3f+4,3)(7 = 1,2,3,4), 

(3t+ l)2 - z + S] +s2 +s3 +s4 G Spec4(12f + 7). 

PROOF. Choose v as in Lemma 5.27. Fill groups in an ITD(4,3t + \,y) using (3t + 
4,3,{3,4})-IPBDs. • 

The maximum realizable in Lemma 5.31 is Mm+i — 9 for t = 1,2 (mod 4), and 
A/i2r+7 — 11 for f = 0,3 (mod 4). Hence we need some values near the maximum: 
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LEMMA5.32. For v = 7,10 (mod 12), Mv - s G Spec4(v) when 
(i) s = 1 am/v > 31, 

(ii) s G { 3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,25} and v > 58, and 
(Hi) s G { 21,22,23,24,26,27,28,29} and v > 67. 
(iv) s — 2 and v > 103. 

PROOF. Set w — 10, 19, 22 or 34 according to the case considered. Fill the hole of 
a (v, w, { 4} )-IPBD from Lemma 3.4 using Mw — s G Spec4(w). • 

There remain four issues: the case v = 79, the induction using Lemmas 5.31 and 5.32, 
the remaining exceptions for v = 55, and the missing value Mv — 8. We treat each in 
turn. 

LEMMA5.33. R(19)\{M19 - 8,M79 - 2} C Spec4(79). 

PROOF. Apply the Fundamental Construction with weight 3 to a { 5} -GDD of type 
55, and fill groups with five (19,4, { 3,4} )-IPBDs. This handles all values up to M7 9-29. 
Use Lemma 5.32 to complete the proof. • 

Now for the induction, we require a solution for all v = 1 (mod 3), and hence we 
require in particular the solution for v = 10 (mod 12) yet to come. We can state the 
following: 

LEMMA5.34. Fort = 0,3 (mod 4), t > 4, A(l2t+7)\{Ml2t+i-%} C Spec4(12f+ 
7) except possibly for Mv — 5 for v = 55, and Mv — 2 for v G { 55,91}. 

PROOF. When Spec4(3r + 4) = A(3t + 4), the verification is routine. Hence we need 
only consider small values of t; with the results on small cases, one can check that all 
required values are constructed by Lemmas 5.30, 5.31 and 5.32. • 

The cases t = 1,2 (mod 4) are treated inductively using solutions for 3t + 4 = 7,10 
(mod 12). It is easy to establish the following: 

LEMMA5.35. Fort= 1,2 (mod 4), i/Jl(3r+4)\{M3t+4-%,M3t+4-5,M3t+4-2} C 
Spec4(3f + 4), then JZ(\2t + l)\{Ml2t+i - 8} Ç Spec4(12/ + 7), except possibly for 
MX2t+i-2forte{5,6}. m 

The induction now proceeds in a manner analogous to the cases v = 6,9 (mod 12). 
It is easy to verify from the results in section 4 and using Lemma 5.32 that for v > 55, all 
values up to Mv — 29 are handled inductively, and Lemma 5.32 then provides a number of 
further values near the maximum. Hence we need only treat the cases missed by Lemma 
5.32. The particular case Mv — 8 is not addressed by Lemma 5.32, and hence we also 
need to consider this special value. 

In the induction, there remain a number of cases to be checked when Spec4(3f+4) has 
further possible exceptions. We remark that t — 6 is handled by Lemma 5.33. For t — 5, 
we have M\9 — 3 G Spec4(19), and hence Lemma 5.32 provides all of the additional 
cases that result. For t > 9, no further exceptions result, since we always have M3t+4 and 
M 3 H 4 — 1 in Spec4(3r + 4) (where f = 1,2 (mod 4)). 

To treat Mv — 8, we prove the following: 
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LEMMA 5.36. Suppose there exists a GDD on t elements with one group of size 1 or 
6, all other groups of sizes = 0,3 (mod 4), and all blocks of sizes = 0,1 (mod 4). If the 
GDD contains a group of size 4, then M^+4 — 8 G Spec4(3f + 4). 

PROOF. Apply the Fundamental Construction with weight 3 to the GDD, using 
GDDs of types 3X for x = 0,1 (mod 4), and (3g + 4,4, { 3,4} )-IPBDs for each group of 
size g. It is evident that all but the resulting group of size 3 or 18 can be replaced entirely 
by quadruples. Choose a (16,4, { 3,4} )-IPBD with 16 triples to fill the group of size 4 
and the other IPBDs to have only quadruples. • 

We apply Lemma 5.36 to a number of cases. For v = 55, use a TD(4,4) and extend 
the groups to form a { 4,5} -GDD of type 441x. The construction of Lemma 5.36 can be 
generalized to give M55 — s G Spec4(55) for s G { 5,6,8,9,10}. For v = 67, extend 
one parallel class in a resolvable TD(4,5) to obtain a {4,5}-GDD of type 4 5 1 ] . For 
v = 91, extend one parallel class of a resolvable TD(4,7) to get a GDD of type 1] 47. For 
v = 139, use instead a TD(4,11). The solution for v = 55 gives solutions for all v > 175 
by Lemma 3.4. 

LEMMA 5.37. MX2t+i - 8 G Spec4(12f + l)for t = 6, and for t = 0,1 (mod 4) and 
t>5. 

PROOF. Apply the Fundamental Construction to a { 4,5} -GDD of group-type 4154 

(puncture the affine plane of order 5), having 5 quadruples and 20 5-blocks. Give every 
point weight 3, and use five { 4} -GDDs of type 34, 19 { 4} -GDDs of type 35, and one 
{ 3,4} -GDD of type 35 having 10 quadruples. Now fill in groups with four (22,7, { 4} )-
IPBDs and one (19, { 3,4} )-PBD having 22 quadruples. This establishes that M79 - 8 G 
Spec4(79). 

For t = 0,1 (mod 4), t > 5, use an ITD(4,3f, 4) and fill the hole with a { 3,4} -GDD 
of type 44 having 8 quadruples. Fill in groups using a (3t + 7,7, { 4} )-IPBD. • 

These results leave only Mv — 8 on 127 elements. We proceed as follows using a 
construction of Bose, Shrikhande and Parker [4]. Using a {4,5}-GDD of group-type 
3174, we form a TD(4,31) that has a set of spanning TDs, namely one TD(4,3) and 
four TD(4,7)s. Omit one of the TD(4,7)'s to form an ITD(4,31,7). Add three points at 
infinity. On three of the groups of the ITD, place a (34,10, { 4} )-IPBD whose hole is on 
the seven points of the hole of the ITD and the three additional points. Now (partially) fill 
the hole in the ITD using a (31,10, { 4} )-IPBD. At this point, we have a (127,34, { 4} )-
IPBD. To get M127 - 8, use M34 - 2 G Spec4(34) and replace the TD(4,3) by a { 3,4} -
GDD of type 34 with three quadruples. 

For M55 — 4 G Spec4(55), we form an ITD(4,13,2) adding three points at infinity. We 
fill the hole with a { 3} -GDD of type 24, and delete one block disjoint from this GDD. 
On each group together with the three extra points, place a (16,4; { 4} )-IPBD with the 
hole on the three extra points and the point of the deleted block. Fill the final hole with 
a(7;{3})-PBD. 

In summary, 
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LEMMA 5.38. Forv = 7 (mod 12) and v > 55, Si(v) — Spec4(v) except possibly 
for Mv — 2 when v G { 55,67,79,91}, and Mv — 3 and Mv — 1 when v = 55. • 

5.8. v = 10 (mod 12) 
Write v= \2t + 10. In analogy with Lemma 5.28, we obtain 

LEMMA 5.39. If there exists a {A} -GDD of group-type 3a6b with a > 1 anda+2b = 
t, and if s e Sl(\2t + 10), s < Ml2t+\o - 21 a + 27, then s GSpec4(12f + 10). 

PROOF. Fill groups in the GDD of type 12*24^ with b (34,10, { 3,4} )-IPBDs, a - 1 
(22,10, { 3,4} )-IPBDs and one (22, { 3,4} )-PBD. • 

The maximum attainable here is quite low compared to the previous three congruence 
classes. Nevertheless, we can employ truncated ITDs again as follows: 

LEMMA 5.40. Let t > 4, z G {0,4,6,8,16}, s\ G Spec4(3r+ 1) and S2,s3,s4 G 
Spec4(3£ + 3). Then 

(3f+ l ) (3 f+3) -z + si + s2+s3+s4 eSpec4(12/+10). 

PROOF, similar to Lemma 5.30. • 
The primary difficulty in this case is that the recursion is using PBDs in the 0 (mod 3) 

class to construct those in the 1 (mod 3) class; hence the largest value that we can obtain 
using Lemma 5.39 is M\2t+\o— |_ (4.5H-1)J (an easy computation). This leaves an interval 
of large values to consider that grows as v grows, unlike all of the previous congruence 
classes considered. To deal with this problem, we use a simple observation, namely that 
if M\2t+i — s G Spec(12f+7), then by Lemma 3.4 we have M3^+22 — s G Spec4(36f + 22), 
^36r+34 — s G Spec4(36f + 34) and M36H46 — s G Spec4(36f + 46). 

We have only to settle the case v = 82, apply the induction, and treat the remaining 
exceptions. We do each in turn. 

LEMMA5.41. #(82)\ {M82 - 8,M82 - 2} C Spec4(82). 

PROOF. Take the {3,4}-GDD of type 155 constructed in Lemma 5.33; fill four 
groups using (22,7, { 3,4} )-IPBDs, and one using a (22, { 3,4} )-PBD. This handles all 
but Mg2 — s for s G { 1,2,3,4,6,8,9,11}. Lemma 5.32 completes the proof. • 

At this point, the induction is routine, and leaves only the exceptions Mv — 8 and 
Mv — 2 for small values. Given the solutions for v = 55 from Lemma 5.36, we need only 
consider M^+m — 8 for v < 154. For v = 118, extend six parallel classes in a resolvable 
TD(4,8) to get a {4,5,8}-GDD of type 6!48 and apply Lemma 5.36. For v = 130, 
extend six parallel classes in a resolvable TD(4,9). 

LEMMA 5.42. Mnt+\o - 8 G Spec4(12r + 10) for t = 0,3 (mod 4) and t > 7. 

PROOF. Construct an ITD(4,3/, 4) and fill the hole using a { 3,4} -GDD of type 44 

having 8 quadruples. Then fill in groups using a (3/ + 10,10, {4})-IPBD and a (3t + 
10, { 3,4} )-PBD having M3,+io quadruples. • 
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For M82 - 8, apply weight 4 to a { 4} -GDD of type 54. Use { 4} -GDDs except for 
one GDD of type 44 having eight quadruples. Now unplug one of the TD(4,5)'s in the 
result, and add two points at infinity. Fill groups with (22,7; {4})-IPBDs, and fill the 
final hole with a (22; { 3,4} )-PBD with the maximum number of quadruples. 

To summarize, 

LEMMA 5.43. For v = 10 (mod 12) and v > 58, A(v) = Spec4(v) except possibly 
forMv-2 when v G { 58,70,82,94}, M v -5 when v = 58 andMv-% when v G { 58,70}. 

• 

5.9. Summary 
In each congruence class of v (modulo 12), we have established that Jï(v) Ç Spec4(v) 

for all v > 96. Together with the necessary conditions from Lemma 2.1, this completes 
the proof of the Main Theorem. 

6. Applications. In the development of the proof of the Main Theorem, we have 
seen substantial connections between the construction of { 3,4} -PBDs with a specified 
number of quadruples and many central problems in design theory. Here we comment on 
a few further connections. First of all, Batten and Totten [2] have classified all (v, { n — 
l,n})-PBDs with v < n2, v / 15; our Main Theorem is in a similar vein. In fact, 
PBDs are just linear spaces in which the blocks are lines; hence our result has a natural 
geometric interpretation. 

Lindner and Rosa [16] and Rosa and Hoffman [27] determined the possible numbers 
of repeated blocks in a triple system with À = 2 for v = 1,3 (mod 6), and v = 0,4 
(mod 6), respectively. In a {3,4}-GDD with a triples and b quadruples, duplicating 
each triple, and replacing each quadruple by the four distinct triples on the same points, 
gives a triple system with a repeated blocks. Hence our Main Theorem can be viewed as 
the determination of triple systems with À = 2 having a prescribed number of repeated 
blocks and all other blocks in subdesigns of order four. 

The general theme of specifying the numbers of blocks of each size is useful in exam­
ining extremal problems in design theory; see, for example, [9]. Colbourn and Rodl [10] 
have shown that if a AT-PBD exists, then one can (asymptotically) specify the percentage 
of blocks of each size, and achieve the specified percentages to any fixed tolerance. Our 
Main Theorem shows that for K — {3 ,4}, one has a much stronger result. 

Since PBDs are basic building blocks in much of combinatorial design theory, the 
determination of many numerical or extremal properties of designs requires control over 
the proportion of blocks of each size. Our Main Theorem is the first nontri vial result that 
shows that one can control the distribution of block sizes completely. 

7. Concluding Remarks. At the present time, there remain only twenty-two values 
in doubt for 48 < v < 96; we certainly expect that all of the corresponding PBDs exist in 
this range. However, for smaller values of v, the situation appears to be quite complicated. 
A complete solution for v E { 18,19,21,22} would certainly be useful in clarifying the 
extent of genuine exceptions, i.e. values in Sl(v)\ Spec4(v). 
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In the second period, the large number of open cases that remain is largely a conse­
quence of the limitations of recursive constructions. We have succeeded in constructing 
a large number of designs in this range, but have not attempted an extensive search. 
Undoubtedly a number of the open cases could be settled, especially those with few 
quadruples. 

For all v > 96, we have completely determined the possible numbers of triples and 
quadruples. This is the first interesting case of the general problem of determining dis­
tributions of block sizes in PBDs, and suggests that one can obtain quite precise control 
over that distribution. 
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