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Let G be a finite additive abelian group, and suppose that A and B are subsets of G. We
say that G = A(&B if every element ge G can be uniquely written in the form g = a + b,
where aeA, beB. The study of such decompositions (usually called factorizations in the
literature) was initiated by G. Hajos [3] in connection with his solution to a problem of
Minkowski in the geometry of numbers.

Several problems concerning Hajos factorizations are collected in [2]. The current
(1977) status of these problems is the following. Problem 77, in its original form, was
solved in the negative by A. D. Sands [4]. However a revised version of the problem, in
which the word "subgroup" is replaced by "periodic subset", is still open. Problem 78 was
solved by Sands [5], [6]. An affirmative answer to problem 79 can be derived from the
work of Sands. Problem 80 is still open. Problem 81 was solved in the negative by Sands
[7]. Problem 82 was solved in the negative by the present authors [1]. Finally, problem 83
is still open.

In his paper disposing of problem 81, Sands posed still another question, viz. if
G*{Q}, and G = A®B, where OeA, OeB, must one of the sets A, B be, contained in
some proper subgroup of G? The purpose of the present paper is to answer this question
in the negative.

To obtain a counterexample, let G be the vector space F£ of all ordered n-tuples
( x j , . . . , x j , where the Xj lie in the field Fp = { 0 , 1 , . . . , p -1} of integers (mod p). As an
additive group, G is the direct sum of n cyclic groups of order p. Moreover the subgroups
of G are the subspaces of the vector space F£.

We now recall some terminology from the theory of error-correcting codes (see for
example [9]). The Hamming distance d(u, v) between two vectors u = (xu ..., x,,) and
v = (vi> • • •, yn) in F£ is defined to be the number of integers i such that ^ y{. With
respect to this distance, the sphere of radius e and center ueFj} is the set Se(u) =
{veF|| | d(u, v)^c}. A perfect e-error-correcting code is a set C of vectors ueFJJ such that
FjJ is the disjoint union of the spheres Se(u), ueC. In the terminology of Hajos
factorizations, this amounts to the requirement that F£ = C©Se(0).

The linear perfect error-correcting codes C (i.e. those where C is a subspace of Fp
have all been determined [10]. These, however, are of no use for our present purpose. Of
more interest is the fact that there exist non-linear perfect codes. An account of them can
be found, for example, in van Lint's book [9]. In his terminology, the codes we use here
are actually "equivalent" to linear codes. To construct them, we first form the Hamming
codes, which are obtained as follows.

Let n = ( p r - l ) / ( p - l ) , and let H be an r by n matrix whose columns are all the
nonzero vectors (au ..., a,,) e Fjl such that the first nonzero component a+ is equal to 1.
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For example, if p = 5 and r = 2, we have n = 6, and we can take

H-\° ! ! ! ! XlH~ll 0 1 2 3 4 }

Let C = {u e Fj) | Hu' = 0}. It can be shown that C is a perfect one-error-correcting code,
called a Hamming code.

For example, in the above case p = 5, r = 2, C consists of all vectors u = (x 1 ; . . . , x6) e
Ff such that

x4+ x5+ x6 = 0,

Xj + x3 + 2x4+3x5+4x6 = 0.

These vectors form a four-dimensional subspace C of Ff; a basis of C is given by
the vectors 1^ = (4,4,1,0,0,0), n2 = (3,4,0,1,0,0), u3 = (2,4,0,0,1,0), and U4 =
(1,4,0,0,0,1).

Now if iTi (i = 1,. . . , n) are permutations of the elements {0, 1,. . . , p — 1} of -Fp, the
map

IT : (x 1 ; . . . , xj

of F[) onto itself obviously preserves the Hamming distance. Therefore the image of any
perfect e-error-correcting code under this map is again a perfect e-error-correcting code.

In particular, we consider the Hamming code C with p = 5, r = 2 discussed above. We
choose TTX = TT2 = (23), and let i r 3 , . . . , ir6 be the identity maps. Then ir(O) = 0, so
0e7r(C). Moreover,

TT(UI) = (4,4,1,0,0,0), ir(u2) = (2,4,0,1,0,0), TT(U3) = (3,4,0,0,1,0),

ir(u4) = (1,4, 0,0,0,1), ir(Ul+u2) = (3,2,1,1,0,0),

and

ir(u3+u4) = (2,2,0,0,1,1).

These six vectors are linearly independent, since

4 4 1 0 0 0

2 4 0 1 0 0

3 4 0 0 1 0

1 4 0 0 0 1

3 2 1 1 0 0

2 2 0 0 1 1

=1 (mod 5).

Hence TT(C) is not contained in any proper subspace of Ff. Moreover the sphere S^O)
contains 0, and it does not lie in any proper subspace of Ff, since it contains e{. Since
Ff = TT(C)©S1(0), we have answered Sands' question in the negative.
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It is easily seen that an infinite number of counterexamples can be constructed by the
same method.

In conclusion we remark that Sands' problem for the special case of cyclic groups G
was raised earlier by C. Swenson [8]. Our methods do not yield counterexamples for this
case; thus Swenson's problem remains open.
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