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An analysis of laminar natural convection in inclined slots subjected to patterned heating
has been performed. The imposed heating takes a simple form characterized by a single
Fourier mode combined with uniform heating. It is shown that periodic heating applied
at the lower plate produces no net flow when the slot is either horizontal or vertical, but
a net upward flow is generated when the slot is tilted. Periodic heating applied at the
upper plate produces net downward flow in the inclined situation. The addition of uniform
heating promotes the upward flow while cooling has the opposite effect. There is a critical
inclination angle at which the maximum net flow rate is greatest. Dynamic and thermal
boundary layers are present when the wavenumber of the imposed heating is large. The
use of heating at both plates, with the same wavenumber, leads to a flow dominated by the
plate exposed to a more intense heating; when the two plates are heated equally no net flow
is observed irrespective of the inclination angle. Changes of the relative positions of the
two patterns can change the net flow rate by up to 50 %. The intensity of the flow increases
with reduction of the Prandtl number. If the heating applied to the plates is of different
wavelength, but of the same intensity, a wide range of behaviours of the flow system is
possible. The details of this response are sensitive to the ratio of the two wavenumbers.
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1. Introduction

Natural convection is important in many technological applications owing to the passive
character of the resulting heat transfer. It can change widely depending on the geometry
of the flow system, with inclined slots representing one of the fundamental reference
configurations (Bergman et al. 2017). Inclined slots are of interest in the development of
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energy-efficient building ventilation systems (Wong & Heryanto 2004; Mortensen, Walker
& Sherman 2011; Li, Yeoh & Timchenko 2015), passive cooling devices (Naylor, Floryan
& Tarasuk 1991; Straatman, Tarasuk & Floryan 1993; Straatman et al. 1994; Novak &
Floryan 1995; Shahin & Floryan 1999; Andreozzi, Buonomo & Manca 2005; Mehiris
et al. 2017), in predicting fire propagation (Song et al. 2020) and in the removal of smoke
from structures (Putnam 1882).

Structured convection, which results from the use of spatial heating patterns, possesses
some intriguing properties. It has been extensively studied in horizontal slots, but scant
information is available about inclined slots. Structured convection should not be confused
with the ubiquitous Rayleigh—Bénard convection (Bénard 1900; Rayleigh 1916) which
occurs only in horizontal slots and when critical conditions are met — these onset
conditions do not depend on the Prandtl number Pr. Patterned heating is different as it
creates convection rolls regardless of the heating intensity and the intensity of the resulting
movement as a function of Pr (Hossain & Floryan 2013). Patterned heating may lead to
secondary convection, but the heating intensity required for its onset strongly depends on
the heating wavenumber « (Hossain & Floryan 2013). The wavenumber of the secondary
convection is locked in with the heating wavenumber when o = O(1), but in the case
of short heating wavelength (¢ — 00), the wavenumber of the secondary convection
approaches the critical Rayleigh—Bénard value. The form of the secondary convection
changes significantly over the range of heating wavenumbers and it is possible to have
frustrated systems as well as responses in the form of soliton lattices (Hossain & Floryan
2013, 2022; Nixon et al. 2013). There is an up/down convection symmetry for heating
applied at the upper and lower plates (Hossain & Floryan 2014, 2015a). When a forced
convection component is added, an increase in the flow Reynolds number leads to rapid
transition from rolls to travelling waves (Hossain & Floryan 2015b). The use of staggered
heating has been reported as providing superior heat transfer in turbulent convection when
compared with uniform heating (Li et al. 2015).

The presence of grooves in the slots leads to particularly interesting system responses,
with the sparse available data limited to horizontal slots only. Corrugations on one of the
isothermal plates results in convection regardless of the heating intensity, with the form
of convection dictated by the groove geometry, and the intensity being a function of the
Prandtl number (Abtahi & Floryan 2017a). A combination of such grooves with heating
patterns activates the pattern interaction effect (Floryan & Inasawa 2021) which creates
thermal streaming (Abtahi & Floryan 2017b, 2018; Inasawa, Hara & Floryan 2021).

The use of patterned heating in channels has been investigated as a method for flow
control. It was shown that such heating reduces pressure losses in horizontal channels
(Hossain, Floryan & Floryan 2012; Floryan & Floryan 2015; Hossain & Floryan 2016;
Inasawa, Taneda & Floryan 2019). When channels are grooved the pattern interaction
effect can significantly reduce pressure losses, but this relies on carefully chosen relative
positions of the grooves and heating pattern (Hossain & Floryan 2020).

The present study represents the first analysis of laminar natural convection in inclined
slots exposed to patterned heating and our objective is to develop a basic understanding
of such convection. We limit our interests to small heating rates to avoid transition to a
secondary state. The remainder of the paper is organized as follows. In § 2, we provide
a description of the model problem. Section 3 discusses convection driven by heating
applied at the lower plate: in particular we look at purely periodic heating, the effect of
the Prandtl number and what happens when we have combined periodic/uniform heating.
Section 4 is devoted to the problem when both plates are heated while § 5 provides a short
summary of the main conclusions. The main results described in §§ 3 and 4 are numerical
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Figure 1. Schematic diagram of the flow system.

in nature, and further understanding of the properties of the convection is provided in a few
supplementary appendices. In these analytical sections we focus on both long-wavelength
and short-scale heating patterns as well as describing the properties of weak convection.

2. Problem formulation

Consider a slot formed by smooth plates and inclined with respect to gravity as shown
in figure 1. The slot is supposed to contain a Boussinesq fluid while the gravitational
acceleration acts downwards.

The plates are subjected to spatial heating patterns. Of course, there is an almost
limitless set of patterns that could be proposed, but as our aim is to develop some
elementary understanding of the problem, we focus on the simplest pattern fully
characterized by a single Fourier mode (although we relax this in §4.3). Hence, we
suppose that the two plates are held at temperatures given by

y=—1:60(x) = Raynir + 3Ray 1 cos(ax), 2.1)
y = +1:0y(x) = Raui,u + 3Rap y cos(ox + £2); (2.2)

Here, the subscripts L and U denote the lower and upper plates, o stands for the heating
wavenumber and A = 27/« is the heating wavelength. The relative temperature is defined
tobe & =T — Ty scaled on kv/ (th3); here T denotes the temperature, the lower plate
temperature 77 is adopted as the reference temperature while g, I, v and « are the
gravitational acceleration, the thermal expansion coefficient, the kinematic viscosity and
the thermal diffusivity respectively.

It is noted that the applied heating profiles comprise uniform and periodic parts.
The former is encapsulated by the two Rayleigh numbers Ra,; 1 = th39Lm,-,L/ (k)
and Rayuiu = th39um~,U/ (kv), where 6,,;1 and 6,,; y are the uniform temperature
components. The two parameters Ra,; = gI’ h30p, L/(kv) and Rap y = th30p,U /(kV)
are the lower and upper periodic Rayleigh numbers which measure the amplitudes of the
modulations; here, 6, ; and 6, ¢ are the differences between the maximum and minimum
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of the lower and upper periodic temperature components, respectively. Lastly, we note that,
while the periodic parts of the two heating profiles have identical wavelengths, we allow
them to be offset by a prescribed phase difference.

Convection in the slot is described by the continuity, Navier—Stokes and energy
equations. When expressed in dimensionless forms these may be cast as

du ou ap 2 1, Ju Jv
U—+v—=——+Vu+Pr 0sinff, —+—=0, (2.3a,b)
ax ay dx dx  dy
0 a ) 00 a0
w0 = P V2 P l0cos B, u + v = PrIV20,  (23c.d)
dx ay ay ax ay

where (u, v) are the velocity components in the (x, y) directions, respectively, scaled on
U, = v/h, which is adopted as the velocity scale. Furthermore, here, p is the pressure
scaled on pU\Z), B denotes the inclination angle to the horizontal and Pr = v/k is the
Prandtl number. The associated boundary conditions at the lower and upper plates have
the form

uy=-=uly=1)=0vy=-D)=v(y=1)=0,
O(y=-1) =60, 6(y=1) =0y, (2.4a-d)

and are supplemented by the periodicity conditions in the x-direction. Since there is no
externally imposed mean pressure gradient acting along the slot, it is necessary to add the
zero mean pressure gradient constraint in the form

xo+A 9
= ! / P oy =0, (2.5)
mean X0 ox

dx
where the subscript mean refers to the mean value and 4 = 2n/« is the wavelength of
the heating. The system (2.1)-(2.5) was solved numerically by expressing the velocity
components in terms of a streamfunction i defined in the usual manner so that u =
0¥ /dy and v = —0d1/dx. This enables the pressure to be eliminated from the governing
system and the remaining unknowns were written in the form of Fourier expansions in
the x-direction together with Chebyshev expansions in the y-direction. Details of the
underlying algorithm and testing of its accuracy can be found in Hossain et al. (2012).
The pressure field was normalized by bringing the mean value of its periodic component
to zero. The net axial flow rate Q and the average Nusselt number Nu,, were then defined

to be
+1
0= [ / ) dy} , 2.6)

mean
N ! / oo
Uy = —
av B

— dx. 2.7)
o 0y

y:—l

Written in this way a positive value of Nuy, corresponds to the situation in which the lower
plate delivers energy to the fluid. Moreover, the shear forces acting on the fluid at the lower

950 Al11-4


https://doi.org/10.1017/jfm.2022.793

https://doi.org/10.1017/jfm.2022.793 Published online by Cambridge University Press

Patterned convection in inclined slots

and upper plates are given by

A A
9
FL=A‘1/ o—xv,de=—A—1/ -
0 o 0y

A A
0
FU=/1_1/ oxv,dezrlf o
0 o 9y

while the total (buoyancy) body force per unit length is

dx,
y==1

(2.8a,b)

dx,
):—}—]

1 A 1 A
Fxble_lPr_lsinﬂ/ / 6dxdy and Fyb=/1_1Pr_1cos,3/ / 6 dxdy,
-1J0 —-1J0

(2.9a,b)
where F;, and F;, denote the x- and y-components.

3. Heating of the lower plate

We begin our investigation by examining the convection that arises when only the lower
plate is heated so that Ra,,; v = Rap,y = 0. In passing, we remark that in the subsequent
calculations results are presented for air (Pr=0.71) unless otherwise noted. We limit our
interest to Ray, ; < 1400 unless demonstration of special flow properties requires use of
more intense heating.

3.1. Periodic heating

We first assume that the lower plate is subject to a purely periodic heating, i.e. Ra,; 1 = 0,
which means that the thermal boundary conditions take the form

0L (x) = lRap,Lcos(owc), Oy (x) = 0. (2.10a,b)

Fluid motion is driven by the buoyancy force and variations of its x- and y-components
as functions of the inclination angle are illustrated in figure 2. The x-component (acting
along the slot) vanishes if the slot is either horizontal or vertical but is non-zero for all
intermediate inclinations. The y-component (acting across the slot) is greatest when the
slot is horizontal and as 8 grows so this component diminishes until it is zero when the
slot is vertical. These forces lead to a vastly different patterns of convection, as shown in
figure 3, which illustrates the flow and temperature fields when the slot is either horizontal,
inclined or vertical.

Periodic heating of the horizontal slot produces convection in the form of pairs of
counter-rotating rolls (see figure 3a). Fluid rises above the hot spots and draws replacement
fluid along the plate from its sides; this eventually forms closed rolls with borders that
overlap with the hot and cold spots. Fluid elements move within the convective rolls
with no net movement in the horizontal direction. Periodic heating in a vertical slot also
forms counter-rotating rolls with no net movement in the vertical (see figure 3¢) but the
mechanics of the process is somewhat different. Now hot fluid adjacent to the heated
section of the plate moves upwards while cold fluid near the cooler section of the plate
moves downwards. These streams collide and are forced to turn towards the interior of the
slot, thereby creating counter-rotating rolls. The interface between adjacent rolls meets
the plate where its temperature is zero. We remark on the existence of the y-component of
the buoyancy force when the slot inclined away from the vertical.

Flow in an inclined slot is qualitatively different in character. The fact that the slot
is inclined breaks symmetries that are present in the horizontal or vertical positions,
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Figure 2. Variation of the x- and y-components of the total body force (Fyp, Fyp) and the shear forces acting
on the fluid at the lower (Fr) and upper (Fy) plates as functions of the inclination angle B for « = 1.5, and
(@) Rap,; =400 and (b) Ray, ;. = 1200.
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Figure 3. The flow and the temperature fields for Ra, = 400, « = 1.5 and (@) B =0, (b) B = /4 and
(¢) B =m/2. Solid lines identify streamlines within the separation bubbles while dashed lines identify
streamlines within the stream tube. The temperature was normalized with 6,,,x = Rap, /2. Solid arrows show
direction of gravity and different components of the buoyancy force.

thereby producing a net flow along the channel. The flow topology consists of a family
of counter-rotating rolls which is supplemented by a stream tube that meanders between
them and which carries the fluid in the upward direction (see figure 3b). This phenomenon
can be explained as the result of formation a non-zero component of the buoyancy force
that acts along the slot. One can interpret this process as a hot plume impacting and
bouncing off an oblique upper plate. Some of the fluid is permanently trapped inside the
rolls while the remainder travels along the slot. The cumulative net flow is a function
of both the inclination angle and the heating intensity, and it seems that the upper rolls
significantly weaken as the intensity of heating increases (see figure 4). Indeed, we note
that the upper rolls were completely washed away once Ray, 1 > 2200 (for the combination
of flow parameters used in figure 4).

The strength of the convective movement and its dependence on the inclination angle
and the applied heating can be ascertained by considering the nature of the flow rate Q
(see figure 5a). There is no net flow when the slot is horizontal as the buoyancy force is
directed across the slot. Similarly, there is also no net flow in a vertical channel as the mean
buoyancy force along the slot is zero. The flow rate increases with Ray, ; and the value of
B at which the flow rate is greatest does depends on Ray, ;. At relatively small values of
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Figure 4. The flow and the temperature fields for « = 1.5, B = 0.1667 and the four values of Rap =
(a) 400, (b) 1000, (c) 1600 and (d) 2200. Solid lines identify streamlines within the separation bubbles while
dashed lines identify streamlines within the stream tube. Temperature was normalized with 6,y = Ray,1/2.
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Figure 5. Variations of (a) the flow rate Q and (b) the average Nusselt number Nu,, as functions of the
inclination angle B for o = 1.5 and for selected values of Ray ;. The inset graph in figure 5(a) shows the
variation of the angle B,,4x corresponding to the maximum flow rate as a function of Ray 1.

Ray, 1 the critical inclination angle for greatest Q is approximately 8 = 1 /4 but as Ray 1.
increases, this angle decreases and reaches 8 ~ 0.157 when Ra;, ; = 1400 (see the inset
of figure 5a). The maximum of Q correlates well with the maximum of the x-component
of the buoyancy force F,; (see figure 2). The heat transfer shows a somewhat different
dependence; it is greatest when § = 0 and decreases to zero when 8 = /2. We point out
that the variations in the heat transfer are similar to those of the transverse component
of the buoyancy force Fy, (see figure 2). The mean fluid temperature increases above the
base value in horizontal and inclined slots but Nu,, = 0 when the slot is vertical (see
figure 5b). We also notice that at relatively modest values of Ra, ;. the value of Nug,
decreases monotonically with 8 but this behaviour ceases at larger Ray, 1. These properties
are in accord with the analytical solutions developed for the long- and short-wavelength
limits (see the appendices).

More information concerning the velocity and temperature fields can be gleaned by
examining these quantities at some carefully chosen streamwise locations. We consider
the four stations x = 0, x = A/4, x = 1/2 and x = 31/4; the first and third of these are
hot and cold spots, respectively, while at the other two locations the wall temperature is
zero. The hot and cold spots coincide with the borders between adjacent rolls in horizontal
slots while the points of zero temperature are where the fluid movement is strongest. The
situation is exactly reversed in vertical slots. The distributions of the u-velocity and the
temperature profiles displayed in figure 6 help illustrate the effects of the inclination angle.
The thermal structures are barely affected at all by the convection in a vertical slot at
x = A/4 and 34/4 (see figure 6¢); the changes are still minor but noticeable in horizontal
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Figure 6. Distribution of the x-velocity component u (solid lines) and the temperature 6 (dashed lines) as
functions of y for Ra, ; =400, = 1.5 and (a) B =0, (b) B = /4 and (c) B = 1/2, 2 = 7. Temperature
was normalized with 6,,,x = Ra,, 1/2. The thin dotted horizontal line in (b) identifies the zero level in u and 6.

(@) 50 ®) 30
/4 /2 =0
25 s 3n/8 - 15 L 37/8 II' -
- T/4

va,L 0 va,U 0

/2 -
=25 / -15

/8 B=0
/8
-50 L -30 :
0 0.5 1.0 0 0.5 1.0
x/A x/A

Figure 7. Distributions of shear stress acting on the fluid at (a) the lower and () the upper plates for
Ray,; =400, a = 1.5.

slots (see the distributions at x = 0, 4/2 in figure 6a) whilst significant changes can be
observed in inclined slots (see figure 6b). The velocity distributions show no net flow
at x = A1/4 and 34/4 in horizontal slots (figure 6a) and at x = 0, 4/2 in vertical slots
(figure 6¢). By way of contrast, large changes in velocity distributions between different
test locations are observed in the case of inclined slots (figure 6b).

The distributions of shear stresses acting on the fluid at each plate are illustrated in
figure 7. The zero-stress points coincide with the hot and cold spots when the slot is
horizontal and with the zero-temperature points when the slot is vertical. The average
shear stress is zero on each plate for each of these two slot orientations. The situation is
markedly different for inclined slots as then the positions of the zero-stress points shift
between the two extreme positions discussed above. The two plates experience different
average stresses with the larger value associated with the heated plate; note that the sum
of these two stresses balance the x-component of the total buoyancy force Fyp,.

The forms of Q and Nu,, as functions of Ra, are shown in figure 8 for various
inclination angles B. At relatively modest values of the Rayleigh number, it is found
that both Q and Nu,, are proportional to Ral%, ; irrespective of the inclination angle.
As Ray, ; grows there are signs of saturation leading to a reduction of the growth of
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Figure 8. Variations of (a) the flow rate Q and (b) the average Nusselt number Nug, as functions of the
periodic Rayleigh number Ray,, 1 for o = 1.5.
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Figure 9. Variations of (a) the flow rate Q and (b) the average Nusselt number Nug, as functions of the
heating wavenumber o for Rap 1 = 400.

these quantities observed once Ra,, 1 exceeds approximately 500, with the saturation of Q
being more pronounced and occurring much earlier for the near-vertical slot position (see
figure 8a). The structure of the flow at modest values of Ray, ; is explained analytically in
Appendix C.

A calculation of the effects of the heating wavenumber « on Q and Nu,, suggests that
the maximum flow rate and the maximum heat flow occur when o ~ 1.5; the values
of the wavenumbers at which these maximums are achieved seem to be insensitive to
the inclination angle (see figure 9). Both Q and Nu,, appear to be proportional to a?
in the long-wavelength limit @ — 0 and to decrease like @ > in the limit of @ — oo0.
These predictions can be confirmed by suitable asymptotic analyses which are outlined in
Appendices A and B, respectively.

The convection adopts some interesting characteristics as the wavenumber « grows,
as illustrated in figures 10 and 11. The temperature variations are confined to a thin
boundary layer adjacent to the heated plate while the convective movement takes the
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Figure 10. The flow and temperature fields for Rap ; = 400, @ = 10, and for the three inclination angles
(a) B=0,() B =m/4and (c) B = /2. Solid lines identify streamlines within the separation bubbles while
dashed lines identify streamlines within the stream tube. The temperature was normalized with 6,,,4x = Rap /2.
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Figure 11. The profiles of the u-velocity component (solid lines) and the temperature 6 (dashed lines) as
functions of y for Ra, ; = 400, & = 10 at four streamwise locations and the three inclinations angles (a) 8 = 0,
(b) B = 7/4 and (c) B = 1/2. Again, the temperature was normalized with 6;,qx = Ray, /2.

form of counter-rotating rolls confined to the same zone, at least when the slot is either
horizontal or vertical (see figures 10a and 10c¢). The fluid motion is qualitatively different
when the slot is inclined as then it occupies the whole slot (see figures 106 and 11). In
this case, the heating creates spatial modulations within the boundary layer which drives
a unidirectional flow across the remainder of the slot. Theoretical analysis of the flow
structures is relegated to Appendix B.

3.2. Effects of Prandtl number

All the results discussed so far pertain to the Prandtl number Pr = 0.71. Some additional
data displayed in figure 12 suggest that the flow rate Q decreases with an increase of Pr
and that this quantity may be proportional to Pr—! for Pr > 1 regardless of the inclination
angle. On the other hand, the average Nusselt number appears to increase with Pr before
approaching a limiting S-dependent value when Pr exceeds approximately 3.

In an effort to explain the underlying large Pr structure, we seek solutions that take the

forms
u:PrillA](x,y)—{—---, v:Prfl\A/(x,y)_F...,
15 . (3.1a—d)
p:PF_P(X,y)+---, 9:@()5’)})4_

950 A11-10


https://doi.org/10.1017/jfm.2022.793

https://doi.org/10.1017/jfm.2022.793 Published online by Cambridge University Press

Patterned convection in inclined slots

(a) e ——rrm (b)) 40
1L -
1% 1 30
r p=m/4 ]
- 1 20
L B=37/8
Q B " 1 Nuav
B=m/8
100 ", E wfE A g .
X L ] i \ |
L Pr AN B=3n/8 ]
O R T P G % i s r
10! 100 10! 107! 100 10!
Pr Pr

Figure 12. Variations of (a) the flow rate Q and (b) the average Nusselt number Nug, as functions of Pr for
a=1.5.

The substitution of these in the continuity, Navier—Stokes and energy equations give rise

to the leading-order balances
Oz_i)x—i_(’\]xx—i_(’\]yy‘i_éslnﬂ,oz_ﬁy+‘,\/xx+f/yy+(:)cosﬂ, (32 d)
R R A A R N 2a—
0=U+Vy, UBOx+VOy= 0Oy + Oy.

Unfortunately, these equations are only slightly simpler than the full system, with only the
nonlinear terms in the two momentum equations removed. A complete account of the large
Pr problem would necessitate a numerical solution of these minimally reduced equations;
this is not particularly illuminating so is not discussed further here. Nevertheless, we can
be confident that, in the large Prandtl number limit, the Nusselt number remains O(1)

while the mass flux diminishes proportional to O(Pr~"), as suggested in figure 12.

3.3. Combined uniform heating/cooling and periodic heating

To generalize the results thus far, we supplement the periodic heating of the lower plate
with a uniform component. Consequently, the appropriate thermal boundary conditions
become

Oy(x) = 0.

OL(x) = Rauni, + SRay, 1cos(ax), (3.3a,b)

We point out that, if we turn off the periodic component of the heating, the associated
temperature and velocity fields, the flow rate and the average Nusselt number are

u = LIeauni,L Sin(ﬁ)(yz - 1)(y - 3)’

1
0 = —Ray,i (1 —y),
5 aum,L( y) Pr

1 (3.4a-d)
0= ERaum‘,L sin(B),
There is no longitudinal flow in a horizontal slot — such flow only appears when the slot
is inclined. Sinusoidal heating alone generates an upward flow, as discussed previously.
The addition of a small component of uniform heating leads to an increase in the upward
flow (see figure 13). There is an optimal value of B at which the flow rate is largest
and further increase in the inclination angle then reduces the flow rate (see figure 13a).
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Figure 13. Illustration of the effects of uniform heating; (@) the variation of the flow rate Q and (b) the average
Nusselt number Nuy, for various levels of uniform heating as functions of the inclination angle 8 when @ = 1.5.
Solid lines denote results for combined uniform and periodic heating with Ra;, ; = 200. Dashed lines indicate
the reference results for a purely uniform heating (Ray,, . = 0).

(@) 4 T T I (b)

uni,L ~

Figure 14. Illustrations of the effects of uniform cooling — variations of (a) the flow rate Q and (b) the average
Nusselt number Nug,, for a selection of uniform cooling values as functions of the inclination angle g for
o = 1.5. Dashed lines provide reference results for a purely uniform cooling. Solid lines denote results for the
combined uniform cooling and periodic heating with Ra,, ; = 200.

Computations suggest that the optimal angle approaches 1/2 as Ra,p; 1 increases. The
dependence of the average Nusselt number on f is very reminiscent of its form in the
purely periodic case (see figure 5b) with the curves displaced upwards by a distance equal
to Nug, for uniform heating (see figure 13b0).

The effects of uniform cooling are illustrated in figure 14. Enhanced cooling tends to
suppress the flow rate and reverses its direction for larger inclinations angles, as shown
in figure 14(a). It also decreases the average Nusselt number and changes the direction of
heat flow if g is sufficiently large, as depicted in figure 14(b).
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(b

Figure 15. The flow and temperature fields for Rap, y = 400, @ = 1.5 and three inclinations angles (a) 8 = 0,
(b) B =m/4 and (c¢) B = w/2. Solid lines identify streamlines within the separation bubbles while dashed
lines identify streamlines within the stream tube. The temperature was normalized with 6,4 = Ray,, v /2. Thick
arrows show direction of gravity and different components of the buoyancy force.

3.4. Periodic heating of the upper plate

We briefly mention the situation where the heating is switched from the lower to the upper
plate. In the purely periodic case

0L(x) =0, Oy(x) = yRa, y cos(ax), (3.5a,b)

and some sample results are shown in figure 15. The mechanics of the flow is akin to
that seen previously for the heating of the lower plate in as much that is there is no net
flow within horizontal or vertical slots (see figures 15a and 15¢) but there is a non-zero
downward flow when the slot is inclined (see figure 15b).

The similarity in the flow patterns depending on whether the upper or lower plate is
heated is perhaps not surprising. Indeed, it is relatively simple to show that the governing
systems for the two problems are closely related. If we take the problem of a heated
lower plate with Ra,, ;, = B and Ra, y = 0 and then make the transformation Ray, ; — 0,
Rapy — B,u— -U,v— —-V,p— P,0 - —O,x - —X + n,y — —Y, we find that
the underlying equations are unchanged but the thermal boundary conditions are reversed
in sign. The consequence is that the flux Q switches sign while Nug, is unaltered. Given
this relationship between the two cases, there is no need to dwell further on the case of
upper plate heating as all the interesting properties can be inferred directly from the results
of the computations when it is the lower plate that is heated.

4. Sinusoidal heating of both plates

We next consider the problem when the heating of both plates gives rise to the pattern
interaction problem. The uniform heating is removed thereby leading to thermal boundary
conditions of the form

OL(x) = SRay  cos(ax), Oy (x) = $Ray ycos(ax + £2), (4.1a,b)
i.e. both patterns are characterized by the same wavenumber « while their relative position

is specified in terms of a phase difference 2. In general, we allow the two heating
intensities to be different, but perform our initial calculations with them being the same.

4.1. Identical heating intensities

Our first set of results relates to the case when Rap ; = Rap y. There is a wide variety
of possible flow patterns depending on the slot inclination 8 and the phase shift £2, and
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Figure 16. The flow and temperature fields for Ra, ; = Ra, y = 200, « = 1.5 and various combinations of
the inclination angle B and phase offset 2. The temperature was normalized with 6,,qx = Rap v /2; (a) B =0,
2=0, b) B=0,2=7/2, (¢) B=0,0w=pi, (d) B=1/42=0, (¢) B=m1/4 2 =1/2,
NHB=7/4,2=7,gB=7/2,2=0,h) B=7/2,2 =7/2and (i) B = 7t/2,2 = 7.

a sample of the possibilities is shown in figure 16. We can see an example of a layer of
straight rolls (figures 16a,i), a layer of inclined rolls (figure 16b,d—f,h) and two layers of
rolls (figure 16¢,g).

None of these configurations appear to produce a net flow along the slot. If this is
the case, then it ought to be provable from the governing system of equations. If we
take the system (2.3) with Ra, ; = Ra, vy then we can transform the variables according
tou—-U,v—>—-V,p—>P,0 > —0O,x—> —X+1n—£ and y - —Y. With these
changes it can be verified that the governing equations are unaltered whilst the boundary
conditions are also preserved. The upshot is that the x-independent mean component of the
streamwise velocity u, call it u,,(y), has the property that u,,(y) = —u,,(—y) and hence
it is an odd function of y. Since the integral of any odd-valued function over the interval
—1 <y < 1 necessarily vanishes, the flow rate Q = 0 for any values of «, 8 and £2. Using
an analogous argument, it can be concluded that the mean part of the thermal profile is
also an odd-valued function of y, but this does not have any implication for the value of
the average Nusselt number.
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Figure 17. The flow and temperature fields when Rap 1 = 200, Rap y = 100, a = 1.5 for a selection of slot
inclinations B and phase shifts £2. The temperature was normalized so that 6,4y = Ray,1/2; (a) B =0, 2 =
/2, (b)) B=7/4,R2=7/2,(c) B=1/2,2=7/2,(d) B=0,2=31/2, () Bp=m/4,§2 =31/2 and
() B=m/2,8 =3m/2.

4.2. Different heating intensities

We next turn to comment on the possibilities when the heating intensities are different.
Some sample flow and temperature fields are illustrated in figure 17 when it is the lower
plate that is heated more strongly. The convection patterns are dominated by more intense
heating with the net upward flow rate persisting even in vertical slots.

The dependence of the flow rate on the phase difference 2 is sketched in figure 18. Two
cases are considered; in the first the upper plate is cooler than the lower one while the
second set of results relates to the case when the situation is reversed. The identity of the
hotter plate seems to dictate the direction of the fluid movement; the flow is predominantly
upwards when the lower plate is hotter and downwards otherwise. There is no net flow rate
when the slot is horizontal. It is possible to get a net flow rate either up or down within a
vertical slot — this depends on the phase difference between the two heating patterns. The
flow rate can also change significantly in an inclined slot as the phase difference is varied
and this is illustrated in figure 19. It is possible to change the flow rate by up to 50 % by
changing the phase difference, with the largest change generally occurring when g ~ m/4.

The role played by the heating wavenumber is explored in figure 20. These results
demonstrate a large sensitivity of Q to changes of §2 for o« = O(1) but this effect is
moderated and is accompanied by a rapid decrease in the flow rate in both the small
and large « limits. The Nusselt number retains a delicate dependence on 2 when the
wavenumber is not large, and the direction of the heat flow can change direction under
certain conditions.

A vertical slot represents a special case for which the unequal heating of the sides
generates a net flow. The size of this effect can be significant for O(1) values of « but
rapidly decreases to zero as o« — o0, as illustrated in figure 21.
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Figure 18. The variation of the flow rate Q as a function of the phase difference 2 when Ra, 1 = 200,
a = 1.5. In (a) the lower plate is hotter with Ray, y = 100; in (b) the upper plate is the warmer (Ra,, ¢ = 300).
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Figure 19. The variations of the flow rate Q as a function of 8 when Ra, ; = 200, & = 1.5. In (a)
Rap y = 100 while in (b) Rap, y = 300. Dashed lines show the values of Q generated by heating one plate
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Figure 20. The variations of (a) the flow rate Q and (b, c) the average Nusselt number Nu,, as functions of the
heating wavenumber @ when 8 = /4. In (a) Rap . = 200, Rap y = 100 (left y-axis) together with Rap | =
200, Ray, y = 300 (right y-axis). In (b) Ray, ; = 200, Ra, y = 100 while in (¢) Rap 1 = 200, Ray, y = 300.
Dashed lines in (b,c) denote a change in sign.
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Figure 21. Variations in (a) the flow rate Q and (b) the average Nusselt number Nug,, in a vertical slot as
functions of the heating wavenumber «. Blue curves correspond to Ray, 1 = 200, Ra, y = 100, £2 = 1/2; red
curves correspond to Rap 1 = 200, Rap y = 300, 2 = 7/2.

We comment that an analysis of long-wavelength heating shows that the flow rate

0 o*(Ra, | — Ra3 1)) sin(2), 4.2)

~ 18900Pr
does not depend on the phase difference and its direction depends on which plate is heated
the more strongly. Details of the solution can be found in Appendix A. The form of Nug,
is given by

Nugy = —s350Ra, 1 Ray, y sin(£2) sin(p), (4.3)

and shows a sensitivity to £2; moreover, there is a linear reduction of Nu,, with o when
B #0 and sin £2 # 0. If the slot is horizontal, or if the phase shift £2 = 0 or m, then Nug,
decreases proportional to o2

An analysis of the short-wavelength heating limit demonstrates that

I
—=a > (Ray | +Ra, ;) cos(B).

Q 512
(4.4a,b)

= 5@ (Ra) — Ra) )sin(2B) and  Nugy =

Details of the solution can be found in Appendix B.

4.3. Different heating wavenumbers
For completeness we briefly consider the modifications to the picture that emerge should
the two prescribed heating wavenumbers be different. This then is an example of a pattern
interaction problem (Floryan & Inasawa 2021). To focus the presentation, consider patterns
at the lower and upper plates characterized by wavenumbers oy, and ay, respectively. This
gives rise to thermal boundary conditions of the form

Ray 1.

Ray, 1.
0r(—1) = 2’ cos(arx), Oy(l) = cos(ayx + £2). (4.5a,b)

Here, for simplicity, we have assumed that both plates are exposed to the same
heating intensity Rap . The expected form of the system response depends on the
ratio of the two wavenumbers CI = oy /oy, which we shall henceforth refer to as the
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Figure 22. Variation of (a) the flow rate Q and (b) the average Nusselt number Nu,, as functions of the phase
shift §2 for three values of the commensurability index CI = 0.5, 1, 2, and for 8 = /4, Ra, 1 = Rap y =
200. In all cases the wavenumber at the lower wall is oy, = 2.

commensurability index. Rational values of CI lead to periodic system responses with
wavelengths which can vary by several orders of magnitude, and these are so-called
commensurable states. On the other hand, irrational values give rise to aperiodic
responses. If one denotes the system wavelength by A;, clearly this needs to be an integer
multiple of the individual wavelengths 27t /oz and 21 /ay.

An illustrative system performance is depicted in figure 22 where the lower wavenumber
was set as oz = 2 while the upper wavenumber was allowed to take one of several
prescribed values. Only results for the simplest systems are described here. When CI = 1,
so that oy, = oy, we recover the situation described in § 4.1, which is unable to generate
net flow regardless of the slot inclination angle. When C/ = 0.5, so that the upper heating
wavelength is twice that of the lower, the situation changes. The resulting flow and
temperature fields (when £2 = m/4) are shown in figure 23(a) and further computations
show that a net flow is produced that can be directed either to the left or to the right,
depending on the relative positioning of the heating patterns. As the offset £2 is adjusted, it
appears that the corresponding Nu,, undergoes much smaller changes in value than is the
case when o7 = «ay. In the opposite situation CI = 2, when the upper heating wavelength
is now one half of the lower, some typical flow and temperature patterns are now presented
in figure 23(b). The resulting flow rate is now much larger and always seems to be directed
upwards with a magnitude that only varies slightly with £2.

These limited results are enough to demonstrate that a wide range of possible behaviours
of the flow system arises when it is subject to heating governed at two wavenumbers. Our
intention here is simply to point out the wealth of possible phenomena rather than to
prosecute an exhaustive analysis. Our calculations seem to suggest that it is the component
of the heating pattern associated with the longer wavelength that prevails and dictates
direction of the net flow. One may also look at the responses from a symmetry point
of view. We have seen that no net flow is created when both plates are subject to the
same heating at the same wavenumber but the symmetry inherent within this situation is
destroyed when the two intensities are different; of course, the one-wall heating result
discussed in § 3 is just an extreme example of this effect. The symmetry can also be
lost should the two heating intensities be kept equal but different heating wavenumbers
employed. It is not straightforward to infer the likely properties of the flow and requires a
detailed combination of analysis and computations.
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(®)

Figure 23. The flow and temperature fields when (a) CI = 0.5 and (b) CI = 2. All results correspond to
the values B = w/4, Rap | = Rap y = 200 and £2 = n/4. The solid lines identify streamlines within the
separation bubbles while dashed lines identify streamlines within the stream tube. The temperature was
normalized with 6,,qx = Rayp, /2. The lower wall wavenumber is o7 = 2 in both cases.

There is no doubt that a comprehensive understanding of flows induced by heating
the walls with different wavelength modes is a topic of some complexity and one which
merits separate study. Although the details of the response for O(1) wavelength modes
will require a systematic and careful set of computations, we can use the analytical work
summarized in the appendices to deduce the likely behaviours when the two wavelengths
are either both long or both short. When the heating wavenumber is small, Appendix A
shows that the flow field is obtained as a power series of the wavenumber and the procedure
to generalize to two small wavenumbers is clear, albeit that the details of the process
will be algebraically tedious. The situation is somewhat more straightforward for short
wavelengths. We see from Appendix B that short-wavelength heating gives rise to flow
structures with thin layers adjacent to the walls that bound a core layer that is sandwiched
between them. The upshot is that the two wall layers interact only exponentially weakly
and are effectively independent of each other. This means that, if the two plates are heated
with modes of different (short) wavelengths, the analysis of Appendix B can be modified
to account for this with minimal additional effort.

5. Discussion and closing remarks

A first analysis of natural convection in inclined slots driven by heating patterns has been
conducted. The heating patterns imposed on the bounding plates were taken to be simple
in form and consisted of a uniform component plus a single Fourier component.

It has been shown that periodic heating applied at the lower plate produces no net flow
in horizontal or vertical slots but does generate a net upward flow in the case of a tilted
slot. The inclusion of uniform heating magnifies this effect. We have been able to identify
a critical inclination angle which is distinguished by the fact that the maximum net flow
rate results. Increasing the heating wavenumber leads to the formation of boundary layers
and all the spatial modulations are confined to these regions.

Heating of both plates can lead to a plethora of structures governed largely by the relative
heating strengths. If the intensities are equal the net flow is eliminated regardless of the
inclination angle. On the other hand, when the heating strengths are unequal, a change in
the phase shift between the two distributions can lead to a change of the net flow rate by up
to 50 %. In summary, the range of structured convection properties is considerable, even
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when the imposed plate temperatures assume quite simple forms. It would be of interest
to investigate how this picture may be modified and refined should more intricate heating
patterns be introduced. Further extensions include a complete description of the possible
flows that may be generated should the two plates be subject to heating patterns of differing
wavelengths; our concise study of this problem here suggests that the picture is likely to
be complicated. Such work is likely to be essentially computational in character and is
currently under investigation.
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Appendix A. Long-wavelength heating

In this appendix we examine the nature of the convection in the case of long-wavelength
heating (¢ < 1). To this end we define the stretched coordinate X = ax and then the
governing equations (2.3) become

1
auuy + vy = —apx + azuxx + uyy + Pr sin(f)0, (Ala)
1
auvy + vvy = —py + ozzvxx + vyy + Py cos(B)0, (A1b)
1
auy +vy =0 and auby + vb, = E(oﬂexx + Oyy). (Alc,d)

We solve these equations subject to periodic heating on the lower and upper plates so that
0(X, —1) = $Ray ; cos(X), O(X,1) = IRap ycos(X + £2). (A2a,b)
When « <« 1 we seek a solution which assumes the structure
(u, v,p.6) = a”'(0,0, P_1,0) + (Uo, 0, Po, 60)
+a(Uy, Vo, P, 61) + *(Uz, Vi, P2, 05) + - -, (A3)

where all the unknowns are functions of X and y. Given the form of the boundary
conditions we are led to the leading-order solutions

sin(B) ’ . .
Uyg=— 24P y(I =y ){[Rap, 1 — Rap y cos(§2)] cos(X) + Ray, y sin(§2) sin(X)},
(Ada)
Vo = B | 2 Q)]s in(2 Ad
0= S6pr (1 —y)*{[Rap,1. — Ray,y cos(£2)]sin(X) — Ray,, v sin(§2) cos(X)}, (A4b)
60 = F[Rap (1 —y) + Rap (1 +y) cos(£2)] cos(X) — +Rap (1 +y) sin(£2) sin(X).
(Adc)
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The O(w) thermal field consists of both mean and X-dependent parts. If we denote the
mean part as 617(y) then the solution which vanishes at y = +1 is given by

Ra, [ Ra, y . .
O (y) = = SF=y(1L = y)(T = 3y sin(2) sin(B); (A5)
the derivative of this solution gives the Nusselt number according to
Ra, 1R
Nitgy = —a LU G0 () sin(B) + 0(?). (A6)

720

We can also deduce the mean part of the streamwise velocity and thereby infer the mass
flux. It may be shown that

B _Rap,L sin(£2) cos(B) =, B 2 B
U = 1S0Pr (v 1)(5y" 4+ 20y — 1) cos(X)
- Z‘;S;)(I’fr) (42 = D{[Ray 1 — Ray y cos(2)1(1 — 5y%)
+ 20[Ray, 1 + Rap,y cos(§2)]y} sin(X) + Un(y) + Urn(X), (A7)
B _Rap,L sin(£2) cos(B) =, _ .
Vi = 180Pr 0" — D(y +5)sin(X)
+ %ﬁ)(yz — 1){5[Rap.1. + Rap.y cos(2)]
— [Rap,1. — Rap, y cos($2))yly} cos(X) + Vi2(X); (A8)

Here, the functions Uj2(X) and Vi2(X) are higher harmonics. Furthermore, the mean
component Ujys(y) is a polynomial in y that consists only of terms of odd degree — this
means that the mass flux across the slot is zero to this order.

We can now see the significance of the phase difference in the plate heating. If both
sides of the slot are heated periodically then the Nusselt number is of O(«), as given by
(A6). The mass flux is no larger than (a?); although we can calculate this term in theory,
in practice the result is excessively long and unilluminating, so we do not derive it. Rather,
we can proceed to examining in more detail the case when only the lower plate is heated
so that Ra, y = 0. With this restriction the leading-order solutions (A4) become

Ray, 1 sin(p)
Uo(X,y) = == —=—y(1 = y*) cos(X),
Ray, 1 sin(B) 2 .
Vo(X,y) = ——”96Pr (1 —y? sin(X) ¢ - (A9)
1
Oo(X,y) = ZRap,L(l —y) cos(X)
Equation (Alc) shows that
Ray, 1 cos(B)

¥(2 = y)cos(X) + /o (X),
(A10a,b)

1
P_ = ZRap’L sin(8)sin(X) and Pg= <Pr

for some function fy(X). The next-order term in the temperature equation (A1d) shows that
0 is proportional to sin 2X and for 1 = 0 on y = %1 it follows that

- Ra[%’ ; sin(pB) sin(2X)

53040 (1 =)y — 6y° — 2y% + 14y — 17). (A11)

01 =

950 Al1-21


https://doi.org/10.1017/jfm.2022.793

https://doi.org/10.1017/jfm.2022.793 Published online by Cambridge University Press

J.M. Floryan, A. Baayoun, S. Panday and A.P. Bassom

We now turn to the momentum equation (Ala). The nonlinearity in this equation implies
that U is composed of two parts — one proportional to sin X and the other one proportional
to sin(2X). Routine work leads to the results that

R

= %;Sr(ﬁ)(yz — 1)(5y* — 20y — 1) sin(X) + Up2(y) sin(2X)

= Uy (y) sin(X) + Uj2(y) sin(2X), (A12)
R

- %;Sr(ﬂ)(yz — 1)(5 —y) cos(X) + Via(y) cos(2X)

= Vi1(y) cos(X) + Vi2(y) cos(2X), (A13)

where the functional forms of U2(y) and Vi2(y) are not needed for what follows.

At O(a?) we are only interested in the mean components of the quantities U, and 6, —
let us denote these Usys and 6oy, respectively. The mean parts of the temperature equation
(A1d) and the momentum equation (Ala) may be integrated to give

Ra? cos(B)
oy = —2E 2 (32 — 1)(5y° — 35y* + 26y° + T0y% — 79y — 35), Al4
M 34400 (v )(Sy V' +26y° + 70y 'y ) (A14)

Ra} | sin(2f) (187 1, 34 14 1 8)
Uom = y

23040P2 \2520 6" 200 T T

268 800Pr \ 72 8 2 2 4
35, 79, 35, 611 93
S e B Al5
R + ¢ + 7Y =7~ 3 ) (A15)

Given these expressions it is an elementary task to compute the Nusselt number and the
flow rate so that

Ra?, Ra*,
0= “ZW&SPr sin(28),  Niugy = o 14’(’)’0 cos(B), (A16a,b)

which show good agreement with asymptotes in figure 9.
We can state the equivalent result for two-plate heating without the need to detail all of
the intermediate steps. Then the generalization is given by

sin(28)

2 2 2
Q= o (Rap 1 = Ry 1) 15 900p,

(A17)
Figure 24 illustrates the numerically and analytically determined forms of Q and Nu,,
as functions of «. Moreover, we indicate the differences between the numerically
and analytically determined quantities, i.e. |AQ| = |0, — Q| and |ANuyy| = [Nugy n —
Nugy 4] Here, the subscript n identifies quantities determined numerically using the full
equations and the subscript a identifies approximate values determined analytically. The
results demonstrate that Q and Nu, do indeed decrease proportionally to o? as & — 0
and are in excellent accord with the predictions given by (A16). For the value of Ray, 1
used it appears that the analytic solution provides a very good approximation for o < 0.4
and the error of the approximation decreases as a*.
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Figure 24. A comparison of the numerically and analytically determined flow rates Q and average Nusselt
numbers Nuy, for the long-wavelength heating with Ray, 1 = 400, 8 = 1 /4. The red lines refer to the flow rate
with Q, the dashed line, Q, the dotted line and |AQ)| the solid line. The blue lines refer to the Nusselt number:
Nugy, , —dashed line, Nug, o — dotted line, | ANug, | — solid line.

Appendix B. Short-wavelength heating
Here, we look at the opposite limit of short-wavelength heating with @ >> 1. Much of the

important motion takes place in an O(a~!) region next to the boundaries of the slot.

We begin by focussing on the lower boundary y = —1 and define new coordinates
X =axand Y = a(y + 1). Expressed in terms of these variables the governing equations
become

5 sin(f)
a(uuy + vuy) = —apx + o (uxx + uyy) + Pr 0, (Bla)
2 cos(B)
a(uvy + vvy) = —apy +a” (vxx + vyy) + P 0, (B1b)
ux +vy =0 and ufy + vly = %(GXX + Oyy). (Ble,d)
r

Given that we expect that & = O(1) in this region, (Bla) suggests that the streamwise
velocity u = O(a~2) and the continuity equation suggests that v is of a similar size. The
nonlinear terms in (B1d) drive a temperature correction term of magnitude O(ex—>) and
we are led to suppose that in this boundary layer we have

u= a_ZUO(X, Y)+ a_4MY + a_SUl(X, )+,
v=a" VX, V) +a VX, Y) 4,
p=aPyX. V) +a T PIX, V) + -
0=00X,Y)+a 01X, Y)+a Oy +---.

(B2a,b)

(B2c,d)

We remark on the presence of the simple shear at O(« ~4) in the form of (B2a), this term
is required for consistent matching with the flow away from the boundaries of the slot.

We substitute expression (B2d) in the thermal equation (B1d) and immediately find that
the leading-order temperature profile satisfies

Ooxx + Ooyy = 0 = Oy(X, Y) = 3Rap  exp(—Y) cos(X), (B3)
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in order to satisfy the plate condition on ¥ = 0. The leading-order velocity and pressure

fields satisfy

sin(B)
Pr

0 = —Pox + Uoxx + Upyy +
cos(B)

r

O,
(B4a—c)

0 = —Poy + Voxx + Voyy + ®o, Uox + Voy =0.

Given the form of ®y(X, Y), it is a routine exercise to deduce that

Rap,L

Uy =—
0 16Pr

. Rap’L 2
Y2 —-Y)exp(—Y)sin(X — B), Vo= _WY exp(—Y) cos(X — B).
r
(B5a,b)
If we turn back to the energy equation, it follows that the first-order correction to the

thermal field satisfies
2

Ra
Oixx + Oryy = 3;’1‘ exp(—2Y)[Y(1 — Y)cos(B) — Y cos(2X)]. (B6)

We can show that the X-dependent part of the solution will necessarily decay as we leave
the plate layer ¥ — oo and we do not need to determine this component. On the other
hand, the X-independent part of the solution, which we denote ®1,,(Y), is found to be

RaIZJ’L cos(pB)

256

when the plate condition ®(0) =0 is imposed. We point out that having an
X-independent thermal component of magnitude O(a>) in this plate layer might suggest
that the Nusselt number would be of size 0(01*2); however, it can be verified that the
derivative of the solution (B7) vanishes at ¥ = 0, which means that the Nusselt number
must be smaller.

If we switch attention to the streamwise velocity U;(X, Y), it too has both mean and
X-dependent parts. The mean component, say Ujps(Y), satisfies

Owm = [1—(1+2Y421% exp(—=Y)], B7)

Uy Ra; | sin(2p)

o " by [1— (1 4+2Y +2Y?) exp(=2Y)]. (B8)
There is no need to solve this equation completely for it is sufficient to note that
Raf,’ Lsin2p)
UlMe—WY +-.--asY — oo. (B9)

If we examine the results (B7) and (B9), it is noted that &, tends to a constant while
U1y grows quadratically in the limit ¥ — oo; this implies that across the bulk of the slot
where —1 < y < 1 we are left with residual mean fields

u=a U+, 0=a60()+ . (B10a,b)
It is straightforward to deduce that these fields satisfy
d*U  sinp - \C)
LTIy —o. (Blla,b)
dy Pr dy?

In the case when the upper boundary of the slot is not heated, we need to solve for @
so that it vanishes on y = 1 and matches with the plate-layer solution (B7) as y — —1.
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This gives
. RaIZLL cos(B)
O(y) = =B 1=y, (B12)
and then we infer that
. Ra? |, sin(2p)
Uly) = 2523 —y)(1 —y?). BI13
» caap2 G~ nd=y) (B13)

We point out that, if we write y = —1 + y, then for small y we have that

IM~(8_6~+...) (B14)
6144pPr Y '

This implies the presence of an O(«~*) shear component in the streamwise velocity within
the plate layer which therefore fixes the size of the constant u in the flow field expansion
(B2a). Furthermore, since we have that

- Ralz)’L cos(B) _
6=t 0, (B15)

the constant matches with the large Y form of ®1,,(Y) as given by (B7) while the linear
term shows that the O(a~*) temperature field in the plate-layer form (B2d) is simply

Ra? cos(pB)
Ly,

B16
512 (B16)

G, =
This result implies that in the large «-limit the Nusselt number follows directly from (B16)
while the mass flux Q is obtained by integrating the velocity field (B13) across the slot.
Hence
Ra> Rd?
-3 p.L . -3 p,L
= sin(28), N =
Q= "536p, @A) Nuaw ="
These results are superimposed on figure 9 and it is seen that there is excellent agreement
between these predictions and the computations. It is also remarked that these findings can
be extended relatively easily, for instance, if both plates of the slot are subject to periodic
heating, then the mechanism outlined here generates O(c—>) mean-field contributions at
each boundary and

cos(B). (B17a.,b)

Rd? , — Ra* Rd? , + Ra?
L U . _ L U
3_P P sin(28), Nugy =« S — R

1536Pr spCos(B). (Bl8ab)

O=a
The flow fields near the two plates operate almost independently of each other and are only
weakly coupled via the thermal field across the core.

Figure 25 illustrates the variation of the numerically and analytically determined Q
and Nu,, as functions of «. The results demonstrate that Q and Nu,, decrease to
zero proportionally to o> as o — oo, that the analytic solution provides a very good
approximation for & > 3 and the error of the approximation decreases as > for Q and as
a8 for Nug,.
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Figure 25. A comparison of the numerically and analytically determined flow rates Q and average Nusselt
numbers Nug, for the short-wavelength heating when Rap 1 = 400, 8 = 7 /4. The red lines refer to the flow
rate: Q, dashed line, Q, — dotted line, |AQ| — solid line. Blue colour refers to the Nusselt number: Nug, , —
dashed line, Nug, o — dotted line, | ANug, | — solid line.

Appendix C. The weak convection approximation
The calculations illustrated in Figure 8 suggest that, for small Rayleigh numbers, both

the Nusselt number and the mass flux are proportional to Ra? as the Rayleigh number
diminishes. This can be confirmed by a formal analysis of the problem in this limit; for
simplicity (and for consistency with figure 8) we assume that only the lower plate is heated
and is so periodically so that 6 (x) = %Rap’ 1 cos(ax) and Oy (x) = 0.

We propose that the flow develops with

(u, v, p,0) = Rap (uy, v, p1,01) + Ralz,,L(uz, V2, p2,6h) - (C1)

The energy equation immediately gives that V26, = 0 so, in light of the prescribed plate
temperatures,

01 =01(y) e +cc., (C2)
where c.c. denotes complex conjugate and

~ B sinh[a (1 — y)]
010) = = e €3

The leading-order velocity and pressure fields can be written

(u1, v1, p1) = [U1(), Vi(y), P1(»)]e® +c.c., (C4)
which satisfy

~ N ~ sin(B) ~
0= —iaP1+ U —U) + P(r’g)el,

(C5a—c)
—~ ~I! ZA Cos(ﬁ)/—\ e —~/
O0=—-P1+V, —a"Vi+ 01 and iaU1+ V=0,
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where the dash denotes differentiation with respect to y. These quantities can be combined
to yield the fourth-order equation

" 7 2

Vi —20% V) +atv = zm»;Tza){COS(ﬂ) sinhf(1—y)] — isin(B) coshler(1— )1},
(C6)

—~ —~
which is to be solved subject to the boundary conditions that V| =V;=0aty = £1. It
is possible to write down an analytical solution to this problem although this is rather
unwieldy.
At O(Ra[%’ ;) both the thermal and streamwise velocity components acquire mean

components that we denote by 62y and Uou, respectively. The mean parts of the energy
equation give that

d? 521\4

d ~ ~
fom_ © o)l C7
= gl ec)] ()

where 51 (y) is given by (C3) and /\;1 () is the solution of (C6). This equation needs to be

integrated and solved subject to 52M(:|:1) = 0. The required Nusselt number at the lower
plate is defined as

d52M
Nuav :Ralzj’l‘d—y aty: —1. (CS)
We find that
G(@) cos
Nty = e rIeas (C9)
12 288Pra3sinh” (2a) [4a2 — sinh*(2a)] P
where

G(a) = 3sinh(8a) — 6(32a* + 8% + 1) sinh(4a) + 8 (16a.> — 3) cosh(4a)

(C10)
— 8a(32a* — 8o — 3).
The streamwise mean velocity component Uy satisfies
dzazM [ o~~~k sin 8 ~
—_— == — - — . Cl1
o = VIV Vi 1= e (€11

This equation needs to be integrated so that Uop(£1) = 0. The required flux is then given
by

1
Ray / U dy. (C12)
-1

Considerable algebra leads to the result that

sin(28) x S(w)

= Ra%, + .-, C13
860 160Pr2absinh? 2a)[4a2 — sinh?>(2a)] - (C13)

Q
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where

S(a) = —32 cosh(8a) + 35¢(9 — &) sinh(8cx)
+ (4480 — 768a® + 3200 + 880" + 4300 + 1080a” + 585 + 375) cosh(4ar)
— (4480 — 350 + 25200% + 315a) sinh(4a) — 1576a” — 26240 + 7680.°

+ 36800 — 880a* + 12200 — 1080” — 6750 — 232,
(Cl14)

Evidently, the results (C9) and (C13) are intricate and not particularly helpful. Of course,
should the heating profiles be more involved the corresponding findings will be that much
more complex. Nevertheless, we conclude that both Nug, and Q are proportional to Ra’ in
the small Rayleigh number limit.
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