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ON THE MONOTONIC VARIATION OF THE ZEROS 
OF ULTRASPHERICAL POLYNOMIALS WITH 

THE PARAMETERS 

BY 
(2) 

RENATO SPIGLER1 

ABSTRACT. We show that f(\)x(£l increases with À, for 0<A < 
1, x^l being the fcth zero of the ultraspherical polynomial P^x)(x) 
and /(A) a suitable function of À. As a consequence, some ine­
qualities for x(£l and an estimate for ôx^/dÀ can be obtained. 

1. Introduction. In this paper we show that / ( A ) x ^ increases with A, for 
0 < A < 1 , where x^l denotes the kth positive zero of the ultraspherical 
polynomial P^À)(x) and /(A) is a suitable function of A, which may also depend 
on n. 

The choice /(A) = Aa, for some a, 0 < a < l , for example, improves a result 
obtained in [3]. However, we obtain also bounds for x ^ / x ^ e ) which do not 
blow up as A —> 0. Moreover, we give an estimate for the derivative dx^l/dk, 
sharper than that might be obtained from [3]. This approach also provides 
inequalities for the zeros xfy. 

The basic idea is to use a more general scaling than in [3] of the independent 
variable in the Gegenbauer differential equation and use a version of Sturm's 
theorem proved in [1]. 

There is a physical interpretation for the zeros of the classical orthogonal 
polynomials (cf. [4, pp. 140-141]). Confining ourselves to the ultraspherical 
case, this can be stated as follows. 

Suppose that two electrical charges, whose common value is q > 0 , are 
located at x = 1 and x = — 1. Suppose that there are n > 2 unit charges at some 
points of the interval [—1, +1]. Then, when the system attains the equilibrium, 
the positions of the n unit charges coincide with the zeros x(£i of the 
ultraspherical polynomial P(^\x), with k = 2q — 1/2. 

It follows that studying the variations of x^l with the parameter A amounts 
to analyze the displacements of the unit charges from their position of 
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equilibrium, when the value of the charges at the end-points changes. The 
classical result dx^ /8A<0 (cf. e.g. [4, p. 121]), from this viewpoint, states 
simply that, when q increases, all the unit charges are pushed towards the 
origin, by effect of the increased repulsive force. 

2. The main result. Consider the differential equation 

(2.1) y"(t) + p,(t)y(t) = 0, t e (-1,1) , 

where 

(2.2) pÀ(f) = (n + A)2 / ( l-r2) + (2 + 4A-4À 2 + t 2 ) /4( l - t 2 ) 2 , 

which is satisfied by u(f) = ( l - t 2 )" 2 + 1 / 4P£°(t) , [4, p. 82]. P^°(x) and II(JC) have 
the same zeros in (—1,1). 

Let us introduce the scaling t = x//(A), /(À) being a suitable function of A (to 
be chosen), for 0 < A < 1 , with / (A)>0, / ' (A)>0 for 0 < A < 1 , feC\0,l). 

The functions of x, u(x//(A)), w(x//(A + e)) have, on the interval (0, /(A)) and 
(0,/(A + e)), the zeros fMx^l and /(A + e)x£k

+e), k = 1, 2 , . . . [n/2], being 
e > 0 and x^°k. The kth positive zero of the ultraspherical polynomial P(„\x). 
They satisfy the differential equations 

z"(x) + <fe(x)z(x) = 0, w"(x) + <fe,+e(x)w(x) = 0, 

respectively, where 

4>Ax) = U(v)T2pv(x/f(v)). 

We shall prove that tpK(x) is a decreasing function of A, for 0 < A < 1 , 
0 < x < / ( A ) and suitable choice of /(A). In fact 

( 2 3 ) ^ x ) = p,(x//(A))/f2(A) = (n + A)2/(/2(A)-x2) 

+ [2/2(A)(l + 2A - 2A2) + x2]/4(/2(A) - x2)2, 

and d(K(x)/dA<0 provided that 

[2(n + A)( / 2 -x 2 ) + 2f'(n + A)2 + f ' ( l + 2A-2A2) + / 2 ( l - 2 A ) ] ( f 2 - x 2 ) 

-# ' [4(n + A) 2( / 2-x 2) + 2/2(l + 2A-2A2) + x 2 ]<0 . 

After some straightforward algebra, (2.4) becomes: 

- ( f - x2)[2(n + A)2/' - (2n + 1 ) / ] / - 2x2(n + A)(/2 - x2) 

- # ' ( l + 2A-2A2)( /2 + x 2 ) - x 2 f < 0 . 

Now, this is certainly satisfied for / (A)>0, f (A)>0 , 0 < x < / ( A ) , 0 < A < 1 
(actually for 0 < A < ( l + V3)/2), and 2(n + A)2f - ( 2 n + l ) / > 0 , i.e.: 

(2.5) f(A)//(A)>(2n + l)/2(n + A)2. 
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By integrating this differential inequality, we get 

(2.5') /(A) > /(A0)exp{(2n + 1)(A - A0)/2(n + A)(n + A0)}, 

where A o ^0 and /(Ao)>0 are arbitrary. 
Note that (2.5) gives only a sufficient condition. 
Now we apply the version of Sturm's theorem proved in [1], as in [3]. We 

have only to prove the validity of the limit-condition: 

(2.6) I = lim {u'(x/f (A))u(x/f (A + e))//(A) 

- u(x//(A))u'(x//(A + e))//(A + e)} = 0. 

Setting !^limx_^0+F(x), we have: 

(2 7) F ( X ) = [M'(O) + (JÇ//(A))M"(O) + - • •][M(o) + (^//(A + e))M'(o) + - • -]//(A) 

- [u(o) + (x//(A))u'(o) + • • -][M'(O) + (x//(A + e))w"(o) + • • -]//(A + e) 

= [1//(A) - 1//(A + e)Mo)u\o) + x[l/f2 (A) - 1/f (A + e)] 

xu(o)u"(o) + 0(x2). 

Therefore 1 = 0, because the ultraspherical polynomials enjoy the property that 
u(o) = 0 or u'(o) = 0. 

Thus, for every 8 > 0 

(2.8) f (A)x^< / (A + e)x£k
+e), 

for n, k fixed. 
Let us introduce, for short, the 

DEFINITION 2.1. We call acceptable a function /(A), possibly depending on n, 
such that /(A) > 0, /'(A) > 0 f o r 0 < A < l , / e C\0,1) and satisfying (2.4') for all 
xe(0, /(A)) . 

In particular, we get an acceptable function when (2.4') is replaced by (2.5), 
in the Definition 2.1. 

Then we proved the following: 

THEOREM 2.2. If x^l is the k-th positive zero of the ultraspherical polynomial 
P^°(x), k = 1, 2 , . . . , [n/2], with 0<A < 1 , and /(A) is an acceptable function, 
then /(A)x£k increases with A, for 0 < A < 1 . 

3. Some consequences. Together with x£k>x£k
+ e ) , which follows from 

(6.21.3) of [4, p. 121], (2.8) yields: 

(3.1) 1 <x££/x£k
+B)</(A + e)//(A), k = 1, 2 , . . . , [n/2]. 

This relation permits us to estimate the Lipschitz constant of x£k as a 
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function of À. In fact we obtain 

(3.2) | x £ k
+ ° - * & | < t f (* + e)-/(A)]x^+ 'V/(A). 

As x^k is differentiable with respect to A, we get the estimate for the derivative 

(3.3) |ax^/aA|<(f(A)//(À))x^<f(À)//(À), 

or better 

COROLLARY 3.1. Under the hypotheses of Theorem 2.1, we have 

(3.3') |ô(logx^)/aA|<f(À)//(À). 

Considering for /(A) the r.h.s. of (2.5'), with Ao = 0, /(A0) = 1, i.e. 

(3.4) g(A) = exp {(2n + l)A/2n(n + A)}, 

formulae (3.1), (3.3') can be rewritten for g (A) as 

(3.5) 1 < x££/x££e) < exp{(2n + l)e/2(n + A)(n + A + e)}, 

(3.6) |ô(log x^D/dk | < (2n + l)/2(n + A)2. 

Several remarks are now in order. 

REMARK 3.1. Formulae (3.5), (3.6) do not blow up as A approaches 0, other 
than in [3]. 

REMARK 3.2. Inequality (3.5) holds for negative zeros of P£°(x), as well. In 
fact, iK(x) is an even function of x. On the other hand, P£°(-x) = (-l)nP£°(x), 
(see e.g. [4, p. 80]). 

REMARK 3.3. The result (3.1) can be used to obtain some inequalities for 
x£k. From the monotonie character of / (A)x^ , in fact, we get 

(3.7) (/(A1)//(A))x^) =£ x<& ̂  (f (À2)//(À)x<& 

for 0 < A ! < A < A 2 ^ 1 . For a given acceptable /(A), knowing the zeros of two 
particular ultraspherical polynomials, P^ l}(x), P^2>(x), (e.g. Cebysev, for A = 0, 
A = 1), we can derive bounds for x^l, for every A e (A1? A2). 

We observe that the differential inequality (2.5) is also satisfied by /(A) = A, 
which yields the result of [3]. On the other hand, looking for solutions of the 
form /(A) = Ao:, 0 < a < l , we obtain from it 

/(A)/f (A) = A/a < 2(A2 + 2nA + n2)l(2n + 1), 

i.e., setting a = l/(2a): 

Pa(A) = A2 + [ 2 n - a ( 2 n + l)]A + n 2 > 0 . 

As the discriminant of Pa(A) is A = [ 2 n - a ( 2 n + l ) ] 2 - 4 n 2 = 
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a(2n + l)[a(2n + l ) - 4 n ] , w e o b t a i n A < 0 f o r a < 4 n / ( 2 n + l) , i.e. Pa(A)>Ofor 

(3.8) a > ( 2 n + l)/8n. 

We conclude that, if a >maxn>1(2n + l)/8n = §, (3.8) holds uniformly (in n) 
for all n>l, and therefore i/>xM is a monotonie decreasing function of A, for 
all n > 1. If a > (2n 0 + l)/8n0 for some n 0 > 1, then Pa(A) > 0 for all n > n 0 and 
therefore iKM decreases with A only for n > n 0 . 

Inequalities (3.1), (3.3') become, in this case 

(3.9) l < x X + £ ) < ( l + eM)a, k = 1, 2 , . . . , [n/2], Vs > 0 , 

(3.10) |a(logx^)/aA|<a/A. 

If the parameter a is chosen greater than or equal to 3/8, these hold uniformly 
in n, for n > 1; if a > (2n0+ l)/8n0 for some positive integer n0, they hold only 
for n > n 0 . As 0 < a < l , these estimates are sharper than the corresponding 
ones with a = 1; (3.9) with a = 1 was proved in [3]: they share the property of 
blowing up as À —> 0. 

Following a suggestion of R. Askey, S. Ahmed [2] used the scaling function 
/(A) = V(A+i) and showed that 

(3.11) ^ ^ (
n ^ e ) < ( l + s/(A+è))1/2, 

with the usual meaning for n, k, A, e. The relation (3.3') becomes, in this case 

(3.12) |a(logx(
n^)/aA|<l/(2A + l) . 

FINAL REMARK. It is natural, at this point, to compare the various results. 
The best estimate for d(log x^)/oA is obviously provided by the smallest 

value of /'(A)//(A). It is easy to check that this is given by (3.6), correspond­
ingly to /(A) = g(A), defined in (3.4), when n > 2 . Moreover, the smallest value 
of [/(A + e)-/(A)]//(A) is also obtained when /(A) = g(A), at least for e 
sufficiently small. In fact, setting (A/)(e)=/(A+ e ) - / (A) , if /i(A), /2(A) are two 
acceptable functions and fi(A)//1(A)</2(A)/f2(A), then (A/1)(e)//1(A)< 
(A/2)(e)//2(A), at least for e sufficiently small. In fact, from / l / / i ^ / 2 / / 2 , i-e. 

< K s a o g / i ) ' ^ a o g / 2 ) ' = «2, allows <MÀ + e)-<MÀ)<<fe(À + e)-<fe(À), at 
least for e > 0 sufficiently small. Thus log (/X(A + e)//i(A))<log (/2(A + e)//2(A)), 
i.e. A(A + 8)//1(A)</2(A + e)//2(A) and therefore Afjf, < A/2//2. 

Therefore f(A) = g(A) yields the best estimate available here, also in (3.2), 
which means that (3.5) is the best obtained. 

Added in proof. When the limit-condition (2.6) is being checked, in (2.7), 
care should be used, as the function u(-) actually depends on A. The conclusion 
still holds true. 
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