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On the Classification of Simple Stably
Projectionless C*-Algebras

Shaloub Razak

Abstract. It is shown that simple stably projectionless C*-algebras which are inductive limits of cer-
tain specified building blocks with trivial K-theory are classified by their cone of positive traces with
distinguished subset. This is the first example of an isomorphism theorem verifying the conjecture of
Elliott for a subclass of the stably projectionless algebras.

1 Introduction

The K-theoretical invariant proposed by Elliott in [Ell5] to classify stable simple
amenable C*-algebras has been very successful in dividing the problem into three
broad classes:

Case (1) Ky =0;T" #0.
Case (2) KiN—K{=0,K§ —K§ =Ko #0;T" #£0.
Case 3) Kf =Kp; T" =0.

The construction of the Ky group of a C*-algebra can be described as follows.
The equivalence class of projections in a stable C*-algebra forms a semigroup under
addition. Two projections, p and q are considered equivalent if there is an algebra
element v such that p = v*v and g = vv*. The K, group is the enveloping group of
the semigroup of projections (if the algebra is not the stabilization of a unital algebra
then the given construction should be suitably modified).

Furthermore, the K, group has a natural pre-order structure; K is the positive
cone consisting of projections in the algebra. The space T* of densely defined, lower
semicontinuous, positive traces has a natural structure as a topological convex cone
(the topology considered is the w*-topology induced by the Pedersen ideal). In ad-
dition to K and T™, the proposed invariant also includes the abelian group K; (the
group of homotopy classes of unitaries in the algebra), and the natural pairing of the
cone of traces with K.

The breakthrough of Kirchberg [Kir] and Phillips [Phi] (based on earlier work of
Kirchberg’s) in the classification of “purely infinite” algebras has all but exhausted
Case (3) of the program (a technical restriction still remains). Numerous classifica-
tion results have been obtained in Case (2). The work of Elliott, Gong, and Li [EGL]
in classifying algebras which are inductive limits of simpler building blocks—matrix
algebras over arbitrary compact metrizable spaces of bounded finite dimension—is
the most general result known so far in Case (2). The Elliott, Gong and Li result
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generalizes earlier work of Elliott and Gong [EG] on classifying algebras of real rank
zero. A more axiomatic approach to the classification of Elliot, Gong and Li is given
by Lin in [Lin1] and [Lin2]. In this paper we will prove the first classification result
obtained in Case (1), the class of stably projectionless C*-algebras.

The first example of a simple stably projectionless C*-algebra was given by Black-
adar in [Bla]. In recent work of Dean [Dea] it was shown that a class of simple stably
projectionless C*-algebras constructed by Kishimoto and Kumjian in [KK] can be
decomposed into simpler building blocks. We will show that simple stably projec-
tionless algebras composed of certain building blocks are classified by their cone of
positive traces with the distinguished subset of traces of norm at most one.

A more explicit description is as follows:

Theorem 1.1  Let A and B be simple inductive limits of building block algebras with
injective connecting maps. If (T A, X4) is isomorphic to (T B, Xp) then A is isomor-
phic to B.

(In particular it should be noted that A and B are not unital.) The compact set &
is the subset of T* of traces of norm at most one. The building block algebras that are
considered are defined in Section 1.1. In Section 2 we will examine the invariant at the
level of a building block algebra. Later in the same section we will prove Theorem 1.1
using Elliott’s approximate intertwining argument. The intertwining argument relies
essentially on an existence theorem and a uniqueness theorem; we will prove these
theorems in Sections 3 and 4 respectively.

1.1 The Building Blocks

The building blocks that are considered are certain subhomogeneous algebras (of
the full matrix algebra over the interval) obtained by a generalized mapping torus
construction as in [EV] and [Ell6]. Specifically, given a pair of simple matrix algebras
C and D, a positive integer a, a pair of homomorphisms L and R from C to D with
multiplicities a and a + 1 respectively (we will assume that R is a unital map), the
associated building block algebra has the form:

A=A(C,D,a)
= {(¢,d);c € C,d € C([0,1];D),d(0) = L(c),d(1) = R(c)}.
The building block A is an extension of the suspension 8D of D by C
0—->8D—A—>C—0.

The six term exact sequence in K-theory applied to the short exact sequence above
yields K()A = KlA = 0.

We can describe all irreducible representations of a building block algebra in terms
of “evaluation maps”. Let e;: A — D denote the representation of the building block
algebra A obtained by evaluating at s, 0 < s < 1. Fors € (0,1) the evaluation
map is an irreducible representation. Let e, : A — C denote the representation of A
obtained by evaluating at the irreducible fibre at infinity. Every irreducible represen-
tation of A is unitarily equivalent to e for s € (0, 1) or ex.
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2 The Invariant

The invariant consists of the cone of positive traces T* endowed with the weak-x
topology, together with the distinguished subset ¥ of traces of norm less than or
equal to one. The dual of the invariant is the space (Aff T*, || - ||) of continuous affine
functions on T, with the semi-norm || -|| given by the supremum of the restriction of
an affine function to the compact set 3. (If all the traces of the algebra are bounded
then || - || is a proper norm.) Isometric isomorphisms (with respect to the semi-
norm) of the dual of the invariant are canonically equivalent to isomorphisms of the
invariant. (In [Ste] a similar invariant is used to classify certain simple inductive limit
algebras.)

Here is an equivalent dual formulation of Theorem 1.1, the isomorphism theorem:

Theorem 2.1 Let A and B be simple inductive limits of building blocks with injective
connecting maps. If (Aff TTA, || - ||a) is isomorphic to (Aff T*B, || - ||g) then A is iso-
morphic to B.

In the remaining part of this section two different norms will be introduced on the
space of affine functions of a building block algebra. In each case it will be shown that
the space of affine functions can be identified isometrically with a certain subspace
of the positive real valued functions on the unit interval (which will be denoted as
C[0, 1]) endowed with the sup-norm.

All traces on a building block algebra A(C, D, a) are bounded and so ¥4 induces
a (proper) norm on the space of affine functions as follows:

(1) I flla=sup{f(r): 7€ Xs}, feEAHTA
where Y4 is the compact set defined as

Ya={reTA:|7|| < 1}.
Let A = lim_, (A;, ¢;;). Then it is easy to check that

@ [ioes CPlla = Jim 105101l

where f € Aff T*A; (the maps ¢;j, between the affine function spaces are induced
by the *-homomorphisms ¢;;). Let C[0, 1], denote the subspace of C[0, 1] defined

as f(l)}

a
a+1

Cl0,1], = {f € Cl0,1]: £(0) =
Proposition 2.1 Let A(C, D, a) be a building block algebra. Then there exists an iso-
metricisomorphism v: (Aff T*A, || - ||a) — (C[0,1]4, || - |oo). Furthermore, inf{ f(7) :
T € TYA, ||7]| = 1} = infu(f) forall f € AffT*A.

Proof Every trace on a building block A has the form tr @y, where tr is the usual
normalized matrix trace, and p is a finite measure on (0, 1]. The extreme traces of
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norm equal to one are parameterized by t € (0, 1], and are given as tr ®J;, where
d; is the normalized point mass at f. In the weak-* topology, as t — 0, tr ®; —
—4- tr ®6;. Therefore the map

a+1

v (AFFTA, || - [[a) — (C[0,1]a, || - [lo0)
fr—tr@8,(f) = u(f)(1)

establishes an isometric isomorphism between the two spaces. Since the infimum of
an affine function occurs on the set of extreme traces, the second part of the propo-
sition follows directly from the definition of the map .

A second norm can be introduced on the building block algebra A(C, D, a) as
follows: given a function n € Aff T*A such that infi(n) > 0 (with the map ¢ as
defined in Proposition 2.1), define the closed convex set

Y,={r €T A:n(r) =1}.
Let

(3) [£llw = sup{f(7) : 7 € Z}.

Clearly, the set ¥, is closed in the weak-* topology. The fact that it is compact follows
immediately from the following proposition:

Proposition 2.2 Let A(C, D, a) be a building block algebra and n € Aff T*A be an
element of its space of affine functions such that ||n||4 < 1. Ifinfu(n) = o > 0 then
¥y C 234

Proof Let us show that ||7]| < 1/« forall 7 € X,. Let f be an affine function such
that ||f]la < 1. By Proposition 2.1, for all traces 7 € T*A of norm equal to one,
n(7t) > «, and hence

af(rt) <n(r) forallT € TTA.

Then forany 7 € 3, 7(f) < 7(n)/a < 1/, and therefore ||7]| < 1/

For the remainder of this section (C(T), || - [|«) » the space of positive real val-
ued functions over the circle, will be identified with the subspace ({f € C[0,1] :

f(0) = f(1)}, ] - [lo) - The proof of the following proposition is similar to that of
Proposition 2.1.

Proposition 2.3  Let A(C, D, a) be a building block algebra and n € Aff T*A such
that inf t(n) > 0 (where v denotes the map defined in Proposition 2.1). Then (Aff T*A,
|| - 1) is isometrically isomorphic to (C(T), || - ||o) by an isomorphism that carries n
to the unit element of C(T). The isomorphism can be concretely realized as follows:

s (AFETA, |- 1) — (S, [+ [l0)
fr—u(f)/u(n).
Furthermore, inf{ f(7) : 7 € ¥, } = inf.)(f).
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Proof Firstlet’s check that the image of ¢/, lies in the subspace of C[0, 1] that has been
identified with C(T) by showing that the values of the function ¢(f)/c(n) € C[0,1]
are equal at the endpoints:

v(f) oy UNO)  / a a _uh
0 = e ~ @m0/ (Gemm) = o

Since inf¢(n) > 0 it follows from Proposition 2.2 that X, = {7 € T*A : n(r) = 1}
is a compact base for the cone T*A. We claim that the extreme traces of X, are
parameterized by ¢ € (0, 1], and are given as

o(f)
)

1
S TS

where J, is the normalized point mass at ¢. To see that this is true it suffices to show
that every such trace is actually in X, (clearly every extreme ray of T*A is a multiple
of one of these traces);

1 o )
" <L<n>(r> “ ®5f> = @™ = T !

Therefore the map

s (AFETPA, | - ||,) — C(T)

(o )
r= 1 (g ) = oy

establishes an isometric isomorphism between the two spaces. The statement equat-
ing the infimum of f on the compact convex set ¥, to the infimum of ¢/,(f) follows
immediately from the definition of the map ¢/.

2.1 Intertwining the Invariant

In Section 2 two different norms were introduced on the space of affine functions
of a building block algebra. As noted in Section 2, the norms || - |4, defined by
equation (1) extend continuously to a semi-norm on the inductive limit algebra by
equation (2). In the first part of this section the norms || - ||,, induced by certain
elements n; € Aff T*A; and defined by equation (3) will be extended continuously
to a norm on the inductive limit algebra.

In [ElI3] an intertwining of the invariant is obtained by factoring the identity map
through a finite dimensional normed space, approximately on finitely many elements
at each finite stage. In our setting the approximation will be made with respect to the
two different norms at each finite stage. In the second part of this section these results
are established.

Let (A;, ¢;;) be an inductive limit system of building blocks A;(C;, D;, a;) with
inductive limit A. There are induced maps qﬁfj: T*Aj — T*A;and ¢;j.: AfTYA; —
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Aff T*A; between the tracial cones and the affine function spaces, respectively, for
j >

Let ny € Aff T*A; be any function such that infi(n;) > 0. Given an inductive
limit system (A;, ¢;;), define n; = ¢;.(n1). The following proposition ensures that
ifinfi(n;) > 0 theninfi(n;) > 0 forall j > i (this condition is necessary to define a
coherent family of norms || - ||, on the inductive limit system).

Proposition 2.4  Let f € Aff TT A, be a continuous affine function on a building block
algebra that is bounded below; inf o(f) > 0. Then infL(qbij*(f)) > 0forall j > i.

Proof From the structure theory of representations of building block algebras
A;(C;, Dj, b;), we know that for any homomorphism ¢;; and y € [0, 1] there exist

positive integers M; , and E; ,, and real numbers x; € (0,1), k = 1,...,M;, such
that ¢;;(y)(f') is unitarily equivalent to

My Ejy Ziy
(4) P ') e@Pes(f)ePo

k=1 1 1
forall f’ € A;. Therefore for y € [0, 1],

L(ijx () () = trp, (6i(f)(»)

B dim(D;) <& , dim(C;) <& ,
~ dim(D,) ;tr”‘(f () + dim(D;) kz:;trc"(e‘”(f )

M, E;
_ dim(D;) - dim(C;) &
= m(D) ;wf)(xk) * Jim(D) ;Lm(l)

>0,

where ' € A; isany lift of f € Aff T*A;.

As infi(n;) > 0 for all j > 1, by Proposition 2.2, Zﬂ] is compact base for the
tracial cone T* A, and therefore induces a bounded norm ||-|,,; on the affine function
space Aff T*A;.

Proposition 2.5  Let n; € Aff T*A, be such that 1(n;) > 0, and let nj = ¢1.(n,) for

all j > 1. Then d);*j(an) C Xy,

Proof Consider the following calculation:
Enj = Z(Dij*("i) = {7’ S T+Aj : qb,-j*(ni)(T) = 1} = {T S T+A]‘ : n,(¢f](7)) = 1}.

It follows that
¢1*](Enj) C Zn,- M
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Corollary 2.1 Let ny € At T*A, be an affine function such that infi(n;) > 0, and
let nj = ¢1jx(n1) forall j > 1. Then infe, (f) < infL;j(gZ)ij*(f)) for any affine
function f € At TYA; if j > i.

Proof By Proposition 2.5, ¢;‘j(2nj) C X,,. Therefore, for j > i,

infu, (¢ij=(f) = inf{gij () : 7 € By}
=inf{f(7) : 7 € ¢7;(n))}
>inf{f(r): 7€ X}
= infe, (f).

By Proposition 2.5, 3, forms a coherent sequence of sets for the inverse limit
system (T*A;, ¢?j). Every trace of A restricts to a trace of A;, and in particular a
bounded trace, as all traces of A; are bounded. Therefore the tracial cone T*A is
generated by positive multiples of threads of the restricted inverse limit system

(Em; (251*])

Let the set of threads of this inverse system be denoted by ¥, . Since each of the
finite stages X,,, is compact, so is the set of threads. Therefore ¥,,__ is a compact base
for the cone of traces of the inductive limit algebra A and hence induces a norm on
its space of continuous affine functions. Another way to define ¥,,__ is as the subset
of T*A of traces that are equal to one on the element 1., € Aff T*A. Recall from
Proposition 2.3 that inf¢, (f) = inf{f(7) : 7 € X,,}; using this definition it is easy
to check the following continuity properties for the infimum and supremum:

(5) inf{Picex(f)(T): T €X,_} = }ggo infb,/lj(@j*(f))
(6) sup{Qioox ()(7) : T € X, } = jlir& sup t,, (ij(f)) -

forall f € Aff T*A;. In particular it should be noted that ¥,,__ does not contain the
zero trace; this follows immediately from the fact that every trace in 3, evaluates to
one on the element n,, € Aff T*A.

To apply Elliott’s intertwining argument it is necessary to factor the invariant at
each finite stage through a finite space, approximately on finitely many elements:

(AffT+Ai7 ” : ||Ai~,”i) - (C(Ri\])v ” : ||A[;nx) - (AffT+Ai7 ” . ||Ai~,”i)'
Given a finite set F C Aff T*A;, this is accomplished as in [Ell1] by choosing a suffi-

ciently fine partition of unity {v;})¥ C Aff T*A; and then approximately factorizing
the identity map as follows:

N
fe (Fea), fx), fxs), .o, flaw) = Y flai.
i=1
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Recall that in Proposition 2.3 we established the isomorphism ¢, : (Aff T*A;,
[ lls) = (CD), |l - [loc) - Given a finite set {x;}}_; C [0,1) and n; € AffT*A;
such that inf(n;) > 0 define a positive map p’ as follows:

(7) p': AFFTTA; — RY
(8) fr— i (D), k=1,...,N.
Define the norms || - ||4, and || - [, on (1)L, € RY as follows:

1Y [l = sup{u i,
[ )Y 1|4, = sup{ uge(e(me) (i) }l,j:].

It is clear that p’ is contractive with respect to the norm || - ||,,. Let us check that the
map is also contractive with respect to the norm || - |43 if f € Aff T*A; then

" ()L, = sup{ey, (f)e)e(ni) () ity
= sup{e(f) () ity
< [ £llas-

Lemma 2.1 Let A(C,D,a) be a building block algebra and n € Aft T*A such that
infu(n) > 0 and ||n||a < 1. Forany ¢ > 0 and finite set F C (Aff T*A, || - ||4,n) there
exists a positive integer N, finite sets {x;}3_, C [0,1) and {y}_, C AffT*A, and a
positive contraction p = (pp)i_,: (A TTA, || - [[an) — RY, || - ||an) such that

=St <2
k=1 ’

forall f € Fand

N

> o], < 1fla
k=1 "

forall f € AffTA.

Proof Without loss of generality we may assume that || f]|4, < 1. Let {7/}, C
C(T) be a partition of unity, and let {x;}3", C [0, 1) be such that

N
) = u o] <e

k=1

forall f € Fand

Un(x)
¢(1)(xx)

IH <e forx € supp(yy)-
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(We have used supp(/) to denote the subset {t € T : ’y,é(t) > 0}.) Let p’ be
defined as in equation (8) with respect to the finite set {x; }&Y repandn € AffTTA. Let

p(f) = 120" (f) = 2= (N, and 1 = (1)~ (3)). Then

N
H f- ZPk(f)'YkH =
k=1

N
1 !
w) = ;L;( Y R

N

0D =Y |

k=1

N

+ 1D e (Hew - —— ZL (NG|

k=1

<et+—1I1!
<ot =il

< 2e.

And, using the above inequality,

=S| = a0 - 3 mipuen|
k=1 k=1

N

H< (f)—— Lé(f)(xk)%) u(n)
=1 o0

< 2¢ln||a < 2e.

To complete the proof of the lemma we need to check that the map f —
Zk 1 Pe( )k is contractive with respect to both norms:

HZpkq | H e

< an(f)lloo < £l

With respect to the norm || - ||4 we can make a similar estimate as follows:

N | N
| othmul], = H —— > UG
k=1 k=1

oo

_ 1
T 1l+e

o(f) (o)
Z S

N

ZL(f)(xk)rYk ( )( )H

1+5‘
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By assumption, the partition of unity was chosen fine enough so that
| Am 3| < ¢ for x € supp(y{). Therefore

v(n)( x;\
t(n)(x) ,
) () <1l+¢e forx e supp(v;)
and hence
N ] N
H;Pk(f)’)/kHA: T3e kz_:b(f)(xk)% D )H

< —(1 te H Zb(f)(xk)'VkH

IN

[e(lloe = NI flla-

This completes the proof of the lemma.

Let n; € Aff T*A; and m; € Aff T*B; be affine functions such that
inf(L(nl)) >0 and inf(L(ml)) >0

Let
ni = ¢x(n1) and  my; = ¢1j.(my).

The remaining part of this section will be devoted to constructing an intertwining of
the affine function spaces lim_, (Aff T*A;, |||\ a;.»,) and lim_, (Aff T*B;, ||-||5,.m;)- The
inclusion of Propositions 2.6 and 2.7 at the end of this section sets the stage for the
intertwining of the inductive limit algebras lim_, (A;, ¢;;) and lim_, (B;, ¥;;) which
will be carried out in Section 2.2.

By Lemma 2.1, given a finite set F C Aff T*A; and € > 0 there exists an positive
integer N(A;) and an approximate factorization of the identity map on (Aff T + A;,
|| Ila;.;) through the finitely generated cone (RY“", ||-||4,.,,) within & on the finite set
F. By choosing an appropriate dense sequence in Aff T*A and factorizing the identity
map on finite subsets of the sequence at each finite stage within an appropriate tol-
erance we can construct an approximate intertwining of lim_, (Aff T*A;, || - ||a;.n,)
and lim_, (RY™), Il - [la;n)- It then follows directly from Theorem 2.2 of [ElI2]
that lim_, (Aff T*A;, || - ||a,.,) and lim_, (RY“) || - ||4,.) are isomorphic. Simi-
larly we can construct an approximate intertwining of lim_, (Aff T*B;, || - ||5,.m;) and
lim_ (RY®7, [ 1 5,m,)-

By the above arguments, and the assumption that (Aff T*A, || - ||4) is isomorphic
to (Aff T*B, || - ||5), we know that lim_, (RY ") NB)
I 115,)- Itis easy to intertwine finitely generated normed spaces; the argument is very
similar to that given in [Ell1], and appears explicitly in [ElI3]. Two facts should be
noted; the first is that the finite spaces (RY ", || - [|4,) and (RY® ||| - ||,) are unital
as ordered normed spaces, i.e., there exists an element Id such that || Id || = 1 and if
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||lal| < Id then a < 1 for all elements a in the normed space. We can therefore ensure
that the approximate intertwining is unital, and hence contractive with respect to
the norms || - ||4, and || - ||5,- The second fact that should be noted is that the given
isomorphism, ¢: Aff T*A — Aff T*B is not isometric with respect to the norms
Il - lno. and || - || ;.. - It is, however, for the purposes of constructing an intertwining
enough to check that the norms are equivalent with respect to the isomorphism ¢ in
the following sense: there exist positive constants M; and M, such that

M| fllnee < No(Hllmee < Millfllne

forall f € AffTHA. Let M} = ||¢(100)||m., = sup{d(neo)(7) : 7 € £, }. Using
this expression for the norm, it follows that

[6(Nlmae = sup{ f(¢* (7)) :7 € T }
< sup{ f(* (7)) : dlnoo)(1) = My}
= My sup{ f(¢"(7) : d(noo)(r) =1}
= Mysup{ f(¢"(7)) : nec (¢7(7)) =1}
=M sup || f|[n.

for all f € Aff T*A. Similarly, |¢~ (f)|ln. < M| fllm., forall f € AffT*B. Let
M, = 1/M], then together with the previous result

9) M| fllnee < NS Ima < Mill fllnae

forall f € Aff T*A.
We can also prove that there exist real numbers my, m; > 0 such that

(10) inf{op(f)(r) : 7 € Sy} > myinf{f(r) : 7 € X, }

and
inf{op()(r): 7€ Xy} <myinf{f(r): 7€ X, }

by similar means. Let m; = inf{ (gb(noo)) (1) : 7 € Emm} (these estimates will
prove useful at a later stage in the intertwining argument). Then

inf{¢(f)(1) : 7 € T } = inf{ f("(7)) : P1100) () = my }
=myinf{ f($*(7)) : ¢(neo)(1) = 1}
= myinf{ f(4*(1) : neo(¢*(1)) =1}
= myinf{f(7) : noo (1) = 1}
=minf{f(r):7€%,_}.

The identical statement that holds for ¢~! can be used to find the constant 1.

https://doi.org/10.4153/CJM-2002-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-006-7

Simple Stably Projectionless C*-Algebras 149

Approximate intertwinings are transitive (this property is used implicitly in con-
structing an intertwining of the affine function spaces in [EL3]), and by the argu-
ments given previously, we have therefore constructed an approximate intertwining
of ((AffT*A;, [ - lasm), Gij«) and ((AFET*Bi, || - ||5m), Vije) 5

(AFTH AL | - [lam) — AT Ay || - laym) —————= -+

P T

(AffT+B1’ || : HBI-,ml) — (AffTJrBZ? || : ”Bz,mz) — =

e (AfTYA, || - [Jan)
o—1 1 [}
> (AfT*B,| - ||Bmo.)

The next step in Elliott’s isomorphism algorithm is to lift each of the maps at
finite stages between affine function spaces to maps between the building block alge-
bras. This will be accomplished by means of Theorem 3.1, the existence theorem. In
our setting we cannot apply the existence theorem immediately to the approximately
commuting diagram given above. In order to satisfy the hypothesis of the theorem we
need to pass to suitable subsequences. Furthermore, the conclusions of the existence
theorem do not, as given, preserve the approximate commutativity of the diagram of
affine function spaces; the estimate in the conclusion of the theorem is with respect
to a norm that is different than the norms given in the approximate intertwining.
Both of these difficulties can be surmounted by passing to suitable subsequences in
the approximate intertwining, as will be demonstrated in Section 2.2. The following
propositions are sufficient to carry out this procedure.

Proposition 2.6 At any finite stage A;, there exist real numbers i, M > 0 and a
positive integer N such that for any affine function s € AffT*A;, ||s]|la, < 1 and
inf(L(s)) > 1/2, and any map &§: A; — Bj composed of at least N horizontal steps
before a diagonal step, ||(s)||,n, < M and inf( %) > .

Proof The first step to proving the proposition is to find bounds for the norm and
infimum of the element ¢;o.(s) in the inductive limit affine function space using
the bounds at the finite stage Aff T*A; given in the hypothesis of the proposition. As
I - |la; and || - ||,,; are equivalent norms, there exists a positive real number M’ > 0
such that ||s]|,, < M’ (where i is fixed) for all s € Aff T*A; such that ||s]|4, < 1. As
the connecting maps ¢;;, are contractive, by the equivalence of the norms || - ||,
and || - ||, given by equation (9), there exists a positive constant M"’ > 0 such that

(11) ||¢)ogbzoo*(s)”mQC gM”
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for all s € Aff T*A; such that [|s]|5, < 1.
As [|milla, = [le(ni)lloe <1,

inf( L,,x.(s)) = inf <LL((;))>
> inf( L(S))
>1/2.

(12)

By Corollary 2.1, the maps ¢;;, are infimum non-decreasing with respect to the el-
ement n;, and therefore inf{®;oc.(s)(7) : 7 € X,._} > 1/2. Therefore by equa-
tion (10) there exists a positive constant m’ such that

(13) inf{¢ 0 Pioox(s)(T) : T € Xy} > m'.

As the diagram is approximately commuting, there exists a positive integer N’
such that
(14) ||¢O¢IOO*(S) _'l/)koo* O’ykoqsik*(s)”mm < m//4

for all k > N’. As the connecting maps 1;;, are continuous with respect to the
sequence of norms and infimums induced by the element m; (see equations (5) and
(6)), and the diagram commutes approximately, there exists a positive integer N >
N’ such that

(15) | ||7k o ¢ik*(5)”mk - ”wkoo* O Yk © ¢ik*(5)||moo| < ml/4
(16) |inf( Yk © Gikx(5)]5,, ) — If(Pkoos © Wk © Pike 5]z, ) | < m'/4
forall k > N.

From equation (11) and equation (14) it follows that
| Vkoos © Vi © ik (8)||mo, < M +m'/4.
The above equation together with the estimate in equation (15) yields
7k © Piksc ()|, < M" +m' /4 +m'a =M" +m’ /2.

Let M = M + m’/2, then
1€ [m, <M

where § = i 0 ¢jx, is any map from A; to B; composed of at least N horizontal steps
before a vertical step.

If we notice that equation (14) is equivalent to the statement

SUP{ P © Pioox (5)(T) — Ykoos © Yk © Piks ()(7) : 7 € By }
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then it is apparent that using the lower bound on the infimum of ¢ o ¢im*(s)|2mw
given in equation (13) yields a lower bound of m’ — m’ /4 for the infimum of 1304 ©

Vi © Gk (5)| 5

oo - | ,
lnf{wkoo* O Yk © ¢ik* (5)‘2,,,00 } > Zm/.

The above equation together with the estimate in equation (16) yields

i

3 m
"‘k) > Zm’ - T

inf(yx 0 Pik« ()]s

Let 4 = m’/2, then

- (€) .
mf( o) = inf( 0 0 G, ) >

The following proposition is a consequence of the so-called delta density condi-
tion for simple inductive limits.

Proposition 2.7  Let B = lim_, (B;(C;, D;, bi), ¢i;) be a simple inductive limit of
building block algebras. Let my € Aff T*By such that inf( L(ml)) > 0 and let m; =
¢1ix(my). Then for any real number M > 0, there exists a positive integer N such that
forall j > N, dim(Dj)(L(mj)(y)) > M forall y € [0,1] and dimb(]Dj) (L(mj)(O)) >
M.

Proof It is well known that simple approximately subhomogeneous algebras with
injective connecting maps satisfy the so-called delta density condition (see for exam-
ple [ElI3]): for any partition {d,}X of C[0, 1], there exists a positive integer N’ > 0
such that inf(L 0 Qrjx O L_l(én)) > 0forallnand j > N'.

From the structure theory of representations of building block algebras
Bi(C;, D;, b;), we know that for any homomorphism ¢; and y € [0, 1] there ex-
ist positive integers M; , and E; ,, and real numbers x; € (0,1),i = 1,...,M;j, such
that ¢, ;(y)(f) is unitarily equivalent to

M, Ejy Ziy
(17) P 1) e PestN) e Po
i=1 1 1

for all f € B,. Therefore for y € [0, 1],

(18)
(prjx(m)) (y) = trp, (P1j(m))(y))

Ej,

M
dim(D;) <& dim(C;)
- dim(D;) ;trf’l(ml(x")) dim(D;) Z t (eocrm))

M; E;,
_dim(D1) <A L, dim(C) &
= Gm(D)) ;L<m1><xl>+ Gim(D)) ;L(mo(l)
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where m{ € A, is any lift of m,, and trp, and tr¢, are the normalized matrix traces
on D; and C; respectively. For y = 0 we can make a stronger statement; recall that all
irreducible representations of A, have multiplicity b; at the left endpoint. Therefore
¢1;(0)(f) is unitarily equivalent to

bj

MJ{~0 Ej/.o Zj/ﬂ
D(D 1) DN EPo)
1 1 1 1

where b;M;, = M;,bjE}, = Ejo and b;Z}, = Zj,. Therefore, by an argument
similar to that given by equation (18),

M!

Cdi 70
(60 m0) 0 = - b dﬁ((g@zb(ml)(xi)
=1

(19)

dlm(Cl)
* Tm©) Z w(my)(1).

Let v = inf(L(ml)) . Then by equation (18),

dim(Dj)e( ¢1ju(m1)) (y) > M; o
and by equation (19),

dim(D;)

b] (¢1]* m1)) 0) = dlm(C )——— ] (¢1]*(m1 ) 0)

/
= Mj o

(we have used the fact that dim(C;) = (b; + 1) dim(D;)). It follows from the delta
density condition that as j tends to infinity, inf{M;, : y € [0, 1]} and M, tend to
infinity. As « is fixed this completes the proof of the proposition.

2.2 Isomorphism

In this section we will lift the approximate intertwining of the affine function spaces
to an approximate intertwining of the algebras. By Elliott’s approximate intertwining
theorem we can then conclude that the algebras A and B are isomorphic.

We have until now treated the norms || - ||4, and || - ||,;, on equal footing. The
conclusion of the existence theorem and the hypothesis of the uniqueness theorem
are, however, expressed with respect to a single norm. We will show in this section
that the ||-||,, norm is sufficient for both of these theorems. The || || 4, norm, however,
will not be discarded completely. It has an important property that the || - ||,, norm
does not, namely, all maps in the intertwining of affine function spaces that have been
constructed are contractive under this norm. We will use this fact (the hypothesis of
the existence theorem requires that maps be contractive under the || - || 4, norm) and
otherwise dispose of the || - || 4, norm for the remainder of the intertwining argument.
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Lemma 2.2 Let F be a finite subset of Aft T*A; and € > 0. There exists a positive
integer L such that for all j > L and any contractive map §; = v © ¢iju: (Aff TTA;,
|l - [la) — (AffT*Bj, || - [|;) there exists a homomorphism [3;: A; — Bj such that
6 () = Bix(f)llm; < € forall f €F.

Proof Lifting a map between affine function spaces to a map between building block
algebras approximately on finitely many elements is accomplished in three easy steps
using Propositions 2.6 and 2.7 and the existence theorem.

Step 1 By Proposition 2.6, there exists real numbers i, M; and a positive integer N;
such that for any affine function s € Aff T*A; such that [|s||4, < 1 and inf(c(s)) >

1/2,

(20) 1€ () [m; < My

and

(21) inf( L(Lff? ) >
]

forall j > Nj.

Step 2 We apply the existence theorem to the finite set F and epsilon value of /M,
to yield a positive integer N and an affine function v, ||v[|s, < 1 and inf(:(v)) >
1/2 (the affine function v is labeled as 7 in the statement of the existence theorem;
we have chosen the label v for reasons of clarity in the argument that follows). In
particular, for j > Ny, and for the affine function v, equations (20) and (21) take the

form:

(22) 1€ ][m; < M
and

(23) (&) (y) = p(m;)(y)

forall y € [0,1].

Step 3 By Proposition 2.7, for the real number N/, there is a positive integer N,
such that for all j > N,

(24) dim(Dj)(L(mj)(y)) > N/u forall y € [0,1]
and
dim(D;
(25) %(L(mj)m)) > N/p.
j
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Let L = max(Nj, N,). For j > L, by equations (23), (24) and (25),
dim(Dy)(1(&() (7)) = pdim(D;)(¢0m))(7))
N
>pu— =N
1

and

bj

(((&®) @) = g (¢0m1)(0)

J

N
> pu— = N.
I

By the above equations, for j > L the hypothesis of Theorem 3.1, the existence the-
orem, have been satisfied for the finite set F, £/M; and contractive positive map
& AfT*A; — Aff T*B;. Therefore, we may apply the theorem to conclude that
there exists a homomorphism 3;: A; — B; with induced map 3;,: AffT*A; —
Aff T*B; such that

(26) 1€;(f) = Bixs(Nle;0) < €/M

for f € F. Using equation (22) it easy to prove the following estimate on norms:
[ Ml < ML g3

we can argue as follows

151 = | 225
J o0
u(f) H (&) H
(&) ool elmy) I
< M| fllej)-
Therefore, by equation (26),
(27) 16;(f) = Bis(Ollm; <&

for f € F. This completes the proof of the lemma.

We can apply Lemma 2.2 repeatedly to generate a sequence of algebra homomor-

phisms 81, 35, 35, ... and B1, B4, B4, ... such that ||Bi.(f) — &(f)|] < /2" and
18].(g) — &/ (9|l < e/2' for f € Fiand g € G;, where F; and G; are finite sets. After
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relabeling the indices of the inductive limit systems we now have a (not necessarily
approximately commutative) diagram of algebra homomorphisms

o1 23
Al A2 . A
B/ By
B, B, e B
7/112 1»023

that induces an approximately commutative diagram of affine function space homo-
morphisms.

The final step of the proof of the isomorphism theorem is to modify the diagonal
maps by inner automorphisms in such a way as to ensure that the diagram is ap-
proximately commutative. Our strategy will be as follows: given arbitrary finite sets
F; C A; and G; C B; we will find increasing sequences of integers 1 = My < L; <
M, < L, < M, < --- and unitaries U; C Ay, Vi C By, such that for f € F; and
g€G,

e 0 i(f) = dag_ o (NI < €/2°
lair © (@) = Yrr,., (@ < &/2'
where
a; = Ady,_ (B, © ¢m,_ 1) Am,_, — B,
af = Adu,(By, © Yrm): Br, — A,

The integers L; and M; are chosen in such a way that the hypothesis of the uniqueness
theorem is satisfied for the finite sets F; and G;. In particular, we need to choose L;
large enough so that

1. 1nf( (51(41* o "L/)L,M,-*) © (ﬂL,-* © ¢Mi_1L,*)(5j)) > m, inf(¢M,_1Mi*(5j)) > m
2. [|(Bigx © Yrivgx) © (Bris © du_ x)(hj) — dng_ s () || < m

forall 1 < j < n (similar conditions hold for M;). It follows from the delta den-
sity property of simple inductive limit algebras with injective connecting maps (see
for example Proposition 2.7) that by choosing L; large enough we can satisfy Condi-
tion 1. Condition 2 is also satisfied if L; is large enough—this follows immediately
from the fact that the diagram of affine function maps is approximately commuta-
tive. The uniqueness theorem now yields the unitary V;_;. We can apply the above
arguments repeatedly to generate the maps «; and «/.

To summarize: we have constructed a diagram of algebra homomorphisms that
are approximately commutative over each triangle on an arbitrary finite set of ele-
ments. Let the finite subsets of A; and B; be chosen to be increasing (under inclusion)
and such that the union is dense in A and B respectively. The diagram constructed in
this way is an approximate intertwining of A and B (see for example [ElI2]). By El-
liott’s approximate intertwining theorem, the algebras A and B are isomorphic. This
completes the proof of Theorem 1.1, the isomorphism theorem.
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3 Existence

In her thesis L. Li [Li] improved K. Thomsen’s approximation theorem for Markov
operators by removing the dependence on the operator from the hypothesis of the
theorem. Recall that a Markov operator is a positive, affine, unital map between
normed spaces. In our setting the maps that arise are positive, affine and contractive.
We will build on Li’s existence theorem to show that such maps are induced approxi-
mately (in the topology of pointwise convergence) by averages of x-homomorphisms
between building blocks.

Theorem 3.1 (Existence) Let A = A(Cy, Dy, a) be a building block algebra. For any
finite set F C Aff T*A and 1/4 > € > 0, there is a natural number N and an affine
functionn € Aff T*A, ||n||a < 1andinf(u(n)) > 1/2 such that for any building block
algebra B = B(C,, D,,b) and contractive positive linear map &: (Aff T*A, || - ||a) —
(AffT*B, || - ||p) if dim(D,) > max(N/ infz,(f(n)) ,Nb/b(ﬁ(n)) (0)) then thereis a
x-homomorphism 1p: A — B (with induced map ..: Aff T*A — Aff T*B) such that
1€CF) = u(Dllew) < 74 forall f € F.

Proof We will prove the existence theorem in five steps using Lemma 3.1 and
Lemma 3.2.

Step 1 For F C AffT*A and ¢ > 0, use Lemma 3.2 to define the affine function
n € Aff T*A referred to in the existence theorem (note that # only depends on F and

).

Step 2 For F, e and n (as fixed in Step 1), apply Lemma 3.1 to themap £: Aff T*A —
Aff T*B to yield N’ homomorphisms ¢} : [0,1] — [0, 1]. We can now define the
integer N referred to in the conclusion of the existence theorem as follows:

__ N'(a+ 1)3
= . .

N

Step 3 Fix the affine function y referred to in the statement of Lemma 3.2 as follows:

v =&(n).

Fix the positive integer p referred to in the statement of Lemma 3.2 as follows: let
p be the largest integer greater than (a + 1) max( 1/(einf&(n)), b/ (£(n)(0)) ,4)
such that p(a + 1)>)N’ < dim(D,). Such a p always exists as

max( atl (a+l)b>(a+1)2N’:max< N Nb ) < dim(Dy).

einfé(n)’ e£(n)(0) inf¢(n)” €(n)(0)
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Furthermore, with this definition of p,
dim(D,) — p(a+1)2N’ _ (a+1)’N’
. eN
"~ (a+1)dim(D,)

(28)

< % min(inff(n)7 5(11;(0)) .

Step 4 Apply Lemma 3.2 with F, ¢, n, v and p fixed as above to each map ¢; to yield
a homomorphism 1;: A — B’ such that

§(n)

n

f o —ww(f)H < 72e.

Step5 Let
NI
Y =P
i=1
Since 1;: A — B’ and dim(Dj) = (a+ 1)?p, forall y € [0, 1],

dim(y(f)(»)) = N'(a+1)°p.

The positive integer p was defined such that N’(a + 1)?p is less than or equal to
dim(D,). Therefore the image of 1 is contained in the algebra D, ® C[0,1]. Fur-
thermore, as each ¢); maps into B’, and the endpoint multiplicity relations of B and
B’ are compatible, ¢ suitably conjugated by a unitary in D, ® C|[0, 1] defines a map
from A to B’.

Let trp, and tr ()2, denote the canonical normalized matrix traces on D, and
Mia41)2,(C) respectlvely Then

Pu()(y) = trp, (V(f)()

N/
(a+1) ,
- - zim—sz(tr(aH)zp Yi(fH()
_ (a+ 1)2p
= “&mD, Zzbz*(f)(y)
Let us compare (JW and L N weighted with a factor of -—— E(n > using equation (28):
L (latrp 1 1 e (. £m(0)
E(m)(y) ( dimD, ﬁ) S EmON <a+ 1 mln(mfﬁ(ﬂ), 5 ))

< €.
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It follows that
1 1 N’
W’w*(ﬁ—ﬁ;wm)’ <e

forall y € [0,1] and f € F. We also know that by Step 4,

N/
§(n)
(n)(y)’ Zi/h*(f)(y) ,; n(¢r)(y)f(y)’

1&g )
< I\T;W‘wi*(f)(y) n(07) (y)f(y)'

< 72

and

n(¢;)
forall y € [0,1] and f € F. Therefore

5<n><y> ‘ N7 Z )iy — e f)(y)‘ <.

£ >< G DD = € < 740

forall y € [0,1] and f € F, or equivalently,

104 (f) = &()|leny < 74e

for all f € F. This completes the proof of the theorem.

3.1 The Desingularized Space

In this section we will define certain maps that will used in the proof of Lemma 3.2.
As a disclaimer we would like to note that a “desingularized space” X* is not con-
structed explicitly during the course of the proof. We have used the term by analogy
with the result given by Li’s theorem, namely that completely positive maps between
C(X) and C(Y) are approximate averages of x-homomorphisms induced by maps
¢i: Y — X. In our setting we will define maps p,(n,1)(e, ®) and r,(m, k)(e, e, ®) by
equations (31) and (32) respectively, where by analogy the parameter “e” is a coor-
dinate in the desingularized space X*. In Section 3.3 we will lift the finite set of maps
¢;i: Y — X (in our setting X = Y = T) to maps from Y to X*. We will use the lifted
maps together with p(n,[)(e, e) and r,(m, k)(e, @, @) to define maps from A to B.
Let X?, = [0, 2( (a+1)p — a) ] denote the “p-fold extended interval”. The desin-
gularized space X* is constructed by gluing together copies of X]E for various values of
k (picture Xlt, as the “backbone” of the desingularized space with different copies of
X£ for various values of k linking points along the backbone—this will be explained
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more clearly in Section 3.3). Define the map L': A — M1y (C(X?,)) up to uni-
tary equivalence in each fibre as follows:

1

f a+k/2+1 f(t _ k) fort € [k7 k+ 1], k even
—
511+1 £0) @ Ga(lkfl)/%l f(l — (- k)) fort € [k, k+ 1], k odd.

By conjugating by an appropriate (discontinuous) unitary path we can ensure that
the map L’ is continuous. Define L: AffT*A — C (Xf,) for f € Aff T*A as

L(f)(x) = trampp (L7(f)),

where tr (1)), is the normalized matrix trace on M1, (C) and f’ € A is any lift of
f e AffTA.
Given x; € [0, 1], define x;; € Xf, forl1<I<pas

x=2x+ (I —1)2(a+1).

Then

I(a+1)

9) L) =ty (€D F1w)) = 510,
1

An important consequence of equation (29) is that for x € Xln — Xg (we may
consider a copy of le = [0, 2( (a+ DI - a)] to be canonically included in X =
[0,2((a+ p — a” forl < p),

(30) IUﬁwS£WM

Remark 3.1.1 For the remainder of this proof the term linear path joining two points
Xt 1y Xy, € Xf, will denote the path

ps = (1 - S)xtl,h + Sxtz-,lz

fors € [0, 1].
Let! =n+mandrt € [0, 1]. Up to unitary equivalence,

I(a+1)

L(f ) = P f)
1

n(a+1) m(a+1

)
=P rome P o
1 1

= LI(f) ) © LICF) G m).-
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Inspired by the above calculation, we can consider the point x; ; to be “split” into two
components, (x: ., x:»). We will not keep track of the unitary that is used to split a
point since conjugating by a unitary does not change the hypothesis or conclusion of
the theorem. The importance of identifying x; ; with (x; ,,,, X; ») is that for the purpose
of this proof it is necessary to construct paths in which the first and second coordi-
nate are varied separately. There are two general classes of paths that are considered.
The first of these is constructed by joining x; ,+1 to x;; by splitting x; ,+1 into two
components and varying the second coordinate linearly inside X :

(31) Ps(m, D)z X nin = (X, x1) ~ (X Xem) = Xe

In more detail, let (x¢, 4, Xt,.m) € Xﬁ X XEH. Define

LD Gy Xty m) = L () G ) & L () 1y m).-

Let ps(n, 1), with I = n + m, be the path whose first component remains constant
with a value of x; , and whose second component joins x;; to x; , linearly inside an
(if n = 0 then the first coordinate is null; in this case p;(n, I) is defined to be the linear
path in X,ﬁn joining x; ; to x; ;). Then L(f)(x, ;) = L(f) (po(n, l)) and L(f)(x p41) =
L(f) (p1 (n, l)) . This path has the useful property that the value of the function L( f)
varies by at most m/p|| f||a over the course of the path; by equation (30) since the
non-constant part of the path lies entirely inside Xgn, for s;,s, € [0,1]:

LN (pa 1) = LN (po(n.D) |
g (LU= 50000+ s15) = L/ ((1 = 520500+ 5251 ) |

< m/pl|flla-

(We have used tr(441y2, to denote the normalized trace on M(g41)2,(C).)

The second class of general paths that are considered join (xgp_k, %) to
(X0,p—(ktm), X1,k+m)> where k + m < p, by splitting the first coordinate into two com-
ponents and varying the middle coordinate (if k = 0 then the second coordinate
is null: (xp,—k, x1k) = x0,p for k = 0). It should be noted that the non-negative
integers k and m completely determine the path. For s € [0, 1] let

(32) rs(m, k) = (%0,p—(ktmys (1 = )Xo + SX1m, X15) -

To see that this path does begin and end at the points specified above notice that

ro(m, k) = (xO,p—(ker)axO,rnaxl,k) = (xo,p—k;xlﬁk) and r(m, k) = (xo,p—(k+m)7xl,m7
Xi1%) = (X0,p—(ktm)> X1 k+m). This path also has the property that L(f) varies by a
small bounded amount over the course of the path. Let s;,s, € [0, 1], then

(33)
| L) (7 (m, k) = £() (re,(m, b)) |

= ‘tr(a+1)2p (L/(f/)((l - Sl)xO,m + Slxl,m) - L/(f/)((l - 52)x0,m + 52x1,m) ) ’

<m/p|fla-
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There is also a relation between the values of L( f)(xq, p—, x1x) for k < pand L(f)(0)
similar to the relation given in equation (29):

L(f)(%0p—k, x10) = 1/p((p — k) f(0) + kf (1))
(34) - 1/p((p—k)f(0)+k((a+1)/a) f(O))
= (1L +k/ap)f(0).

3.2 The Rescaled Map

In this section we will prove the following lemma:

Lemma 3.1 Let A and B be building block algebras. Given a finite set F C Aff T*A,
€ > 0andn € Aff T*A such that ||n||4 < 1 and infi(n) > 1/2 there exists a positive
integer N’ such that for any contractive positive linear map £: (AffT + A, || - ||a) —
(Aff T*B, || -||g) there exists N" homomorphisms ¢F: [0,1] — [0, 1] such that ¢} (0) =
@: (1) and forall y € [0, 1],

Hf(f)( ) - —Z (e (”)H <-
&(n)

Proof In Proposition 2.3 the isomorphism

tyt (AFETYA, || - 1) — (C(D), || - [loo)
fr—fin

(35)

was established for building block algebras A, where n € Aff T* A is an affine function
such that infn > 0 (in this section ¢(f) € C[0, 1], will be identified with f for all
affine functions f € Aff T*A—for the definition of ¢ see Proposition 2.1). Under the
identification given by equation (35), £ induces a Markov map &y from C(T) to itself
that can be concretely described as follows:

&r: C(T) — C(T)

(0 NI e 05
n &§(n)

for f € C[0,1],. By Theorem 2.1 of Li [Li] for any finite set G C C(T) and ¢ > 0
there exists an N > 0 such that for any Markov map &y there are N homomorphisms
¢i: C(T) — C(T) such that ||&r(g) — 1/N Zfil ¢i(g)|| < eforallg € G.

For our purposes we require maps ¢; that can be be lifted to C[0, 1]; in more
detail, let # denote a fixed inclusion from C(T) to C[0, 1] (given by identifying the
subalgebra of functions which agree at the endpoints of the interval with C(T)); we
require that there exist maps ¢, : C[0, 1] — C(T) such that ¢; = ¢/ o 6.
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Proposition 3.1  Let 6 denote a fixed inclusion from C(T) to C[0, 1] induced by iden-
tifying the endpoints of the unit interval. Given a finite set G C C(T) and € > 0 there
exists an N > 0 such that for any Markov map &y: C(T) — C(T) there are N homo-
morphisms ¢;: C[0,1] — C(T) such that ||&r(g) — 1/N Zil @i 00(g)]|o < 2¢ for
allg € G.

Proof The proof follows from a slight variation of an argument given by Nielsen

and Thomsen in Lemma 4.1 of [NT]. Let {t,, f,, ..., #} be a partition of [0, 1], and
{h;}*_, be a partition of unity of C(T) such that

<e€

k
(37) s =D om|
i=1
forall ¢ € G. Define maps ¢t: C[0,1] — R* and s: R — C(T) as follows:
t(f) — (f(t), f(t2),..., f(t)) for f € C[0,1]

k
s(x1,%0, 00y Xp) Zx,-hi for x; € R.
i=1

Let
&/F = g’“‘ osot.

Now we apply Li’s theorem to the set §(G) C CI0, 1]. By Theorem 2.1 of [Li] given
a finite subset (G) C C[0,1] and € > 0 there exists an N > 0 such that for any
Markov map & there are N homomorphism ¢;: C[0, 1] — C(T) such that

(38) |

N
G -1UNY o) <<
i=1

for all g € §(G). The partition of unity was chosen fine enough so that

lg —sotob(@lle <e/llérlloo

for all ¢ € G. Applying the map &,

(39) ||§'Jr(g) - 5’;{'(9(8)) H o <€

for g € G. It follows from the inequalities (38) and (39) that

BOE UNY 6 o) <2
i=1

for ¢ € G. This completes the proof of the proposition.
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For the remainder of this section we will identify the functions in C(T) with their
image in C[0, 1] under the map 6. Applying Proposition 3.1 to the finite set ¢, (F) C
C([0, 1]), we can conclude that there are N” *-homomorphisms ¢;: C[0,1] — C(T)
such that

Let ¢; denote the map from circle to the unit interval induced by ¢;. By the definition
of &y given in equation (36), the above inequality becomes

N/
& (10P) — UN'S au(ul) H <
i=1 oo

§f) 1 !
‘ @ e Z < €.
For y € [0, 1] this is equivalent to
1 B £(n)
(40) ) ’ §NY) Z ) FNF (7)) ’
or
£(n )
EN0) - H <e
o5 oo,

This completes the proof of the lemma.
In Subsection 3.3 it will be shown that given a map ¢;: [0, 1] — [0, 1] such that
@(0) = ¢(1) there exists a map Qﬁ?: [0,1] — X* such that

§(n)
n(o;)

1
En)(y)

WNf(eF () — L(f)(cé?)(y)’ < 72

forally € T.

3.3 Lifting to M,,1y2, (C(X?))

In this section, as in Section 3.2, we will identify affine functions f € Aff T*A and
g € Aff T*B’ with their images ¢(f) and «(g) in C[0, 1], and C[0, 1], respectively.
Let B’ = B'(C5, D5, b) be a building block algebra such that dim(Dj;) = (a + 1)?p
and dim(Cj) is the greatest integer less than dim(D})/(b + 1), where p is a positive
integer that will be fixed during the proof of the following lemma:

Lemma 3.2  Let F be a finite subset of Aff T + A and € > 0, then there exists n €
AffT*A, infn > 1/2, ||n||a < 1 such that for any v € C[0, 1], infy > 0, ||v]] < 1,
positive integer p > (a + 1) max( 1/(ginf7), h/(E’y(O)) ,4) , and map ¢: [0,1] —
[0, 1] such that ¢(0) = ¢(1) there exists a building block algebra B’ (as specified above)
and a homomorphism 1p: A — B’ such that

< 72¢.

fo¢—1h.

|
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Proof In the first part of this section we will define the affine function # given in the
statement of the lemma.
Find § > 0 such that if |x| < J then

(41) |f(x) = f0)] <e

forall f € F. Let N = (a+ 1)’N’/e. Define n € Aff T*A as follows:

n(x) = gt —-5)5 forx<d
1 for x > 4.

Since p is greater than (a + 1) max( 1/(einf~), b/(s’y(O)) ,4) ,

a+1 (a+1)b

42 ;
(42 pinfy : p(0)

We will use the above inequalities repeatedly during the proof of the lemma.
In the remainder of this section it will be shown that given a map ¢: [0,1] —
[0, 1] such that ¢(0) = ¢(1) there exists a map ¢*: [0, 1] — X* such that

_ i
(y) n(¢)(y)f(¢(y)) LNH(FW) | < 72¢

forall f € F, and such that L’(f')(¢*(y)) defines a map from A to B’. We will
define the map ¢ given in the conclusion of the lemma as

V() =L'(f)o

In order to see that L'(f)(¢*(y)) doesindeed define a map from A to B’ it is enough

to check that the right multiplicity of £'(f”)(¢*(y)) is divisible by b+ 1 and that the
left multiplicity is b/(b + 1) times the right multiplicity for all f* € A. The two
conditions can be expressed in more detail as follows; we require that:

L'(f1)(¢4(0)) EBfS(f)

L () @w

for all f € A, where ris divisible by b+ 1,1 = b/(b+ 1)rand §: A — M,(C) is a
representation of A such that rg < dim(D}).

Without loss of generality we may assume that || f|[4 < 1forall f € F. Find a
dp > O such that if [t; — ;| < §, then

Y
(43) T@(t 1) — ¢) —(t2)

https://doi.org/10.4153/CJM-2002-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-006-7

Simple Stably Projectionless C*-Algebras 165

Let {y1,...,yr} be a 6,-dense partition of [0 1] such that |¢(y) — ¢(0)] < § for
y € ly1, y2] andif 25 (yl) < 1+1/pthen ;5(y2) < 1+1/p. Asy(y) < land
n(¢(y)) > a/(a+1) it follows that

(44) a+ 1

—( )‘
ﬂ((b)

Let us construct a continuous path ¢* from Y = [0, 1] to the desingularized space X*
by constructing a sequence of paths on the intervals [y;, ;1] that agree at the end-
points. There are three different classes of paths that will be constructed depending
on the values of %(yj) and %(yﬂl).

Case 1 ﬁ(yj), ﬁb)(yjﬂ) <1+1/p.

Given an integer 3; > 1 we can find a positive integer /; < p such that
(45) (¢) —— (i) li/P‘ <Bi/p
fori = j, j + 1. Assume that [;;; > [; (if I;;; < [; then define the path as below, but
in the opposite direction). The path ¢* on the interval [y}, y;.1] is defined to begin
at xy(y,)1; and end at xg(y,.,)1;,,- 1t is constructed by splitting the left endpoint into
two components,

Xord; = Koy =15 %6(y;).0)
and then varying each component separately. The first component follows the path
given by ¢ for y € [y}, yju11:
Xp(y)li—1-

The second component follows the linear path p,(1,l;1; — I;) (described by equa-

tion (31)) inside Xj o=l from x;(,;)1 to X4y, ;; and then a linear path from

)ljs1—
Xp(yi) i —1; tO xv(y,+1), I,i—1;- Let g, denote the path followed by the second compo-
nent. For y € [yj, yj+1] define

¢ﬁ()’) (xo 1—17%/)

Let us compare £(f)(¢*(y)) and %@(y)f(dxy)) .Fory € [yj, yjnl:

Nf(e() = L) ‘

"o
e : v L 1.
! o L B i

< |25 0r(00) = (o) | +| Lr(e) ~ £ (50) |
Since

00 = Lo <| -2

< ﬂj—i—l
p
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it suffices to find an estimate for the second of the two terms in equation (46) con-
sidered above. As q, € Xltj_ﬂ e by the bound given in equation (30)

L)) < b f||f||A

< Bj"’ﬁjﬂ"’l'
p

The second term of equation (46) may now be estimated as follows:

%f(cﬁ(y)) — LN () ’ =

l.
L(00) =L Cssns-1.)

-

1
; (o)

+|L(f)(qy)]

l; B
;f(¢5()’))

< 6j+ﬂj+1+2.
p

Therefore on [y;, yj1],

Zﬁj + ﬁjﬂ +3

-0 i
NS (o) (f)(qﬁ(y))‘é i

1
v(y) ‘ n(¢)

Case 2 (yj) j(in) = 1+ 1/p. Assume that ;15(yjm) > w)(y]) As

ﬂ

%@ (y) < ”21 glven an integer 3; > 0 we can find a p051tlve integer k; < p such that
ap + k; ﬁ,
PEL ()

“7) ap n(¢)

fori=7j,j+1.

The path is constructed on the interval [y, y;;1] as follows: ¢ joins (X0,p—k;» X1.k;)
to (xo,p—k;, s X1.k;,,) and is given by ri(kj;; — kj, kj) in equation (32) with the pa-
rameter s rescaled so that the path begins at s = y; and ends at s = y;;. As
|kjs1 — kj| < a(B; + Bj1 + 1), by equation (33) for s;, 5, € [y}, yjs1l,

o L) = L)) < W‘

) (y) is within 1/p of ;5(y;) on (y;, yjr1) and since 1 + 1/p is a lower bound
for ( y;) it follows that

>

for y € [yj, yjr1]. (This is the crucial hypothesis needed for the proof of Case 2 of
the theorem; the argument from this point onwards will be used in Case 3 as well.)
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Proposition 3.2 Ifﬁ(y) > 1theny(y) > a/(a+1)and ¢(y) € [0,9).

Proof Recall that n(x) = 1 for x > ¢ and n(x) > a/(a + 1) for x € [0,0]. As { is
contractive, y(y) < 1 forall y € [0, 1]. The hypothesis of the proposition then yields
the following two inequalities:

V() > n(dy)) > ——

a+1

and
1> () > n(o(y)).

The result follows immediately.

The conclusions of Proposition 3.2 together with equation (41), give an estimate
for f(¢(y)) as follows:

(49) v(y)‘f(‘b(” AU %\f(vé(y)) — f(0)

<e.

Let us compare L(f)((bj )/)) and —Ls )’)f( )

1

v(»)

n(¢)

altEe
<7
~ ()

T f(61) — LN ) ‘

——(»)f(0) - ]f(O)

(y)‘ (o)) — O] +

n(¢) (¢)

- K ) - £0h) (6) D

The first of the three terms above was estimated, essentially, in equation (49) (recall
that |5 ()| < “1 by equation (44)); in particular

1 +1

The middle term can be estimated as follows:

1 _ j ap+k
0|y © f<0>‘ < s - I £l
5]+1
Pv(y)
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To estimate the third term we use the bound on the wvariation of
L(f) ( ro(kj1—k;, k]-)) given by equation (48) and the identity given in equation (34):

ki
7(1” R L(f)(é”(y))‘ =(Ly)p;<f)(¢i<yj)) ()
(M Dy, )

() P
< WGt Bt 1)

Y(y)p '

Therefore
(s a2+ i +2)
W) n(¢> N (6() (f)(sb(y))‘ <2+ =R

Case 3 One of .5 (yj) and n((D 5(¥j+1) is greater than or equal to 1 + 1/p, and the
other is less than 1 + 1/p.

We can assume without loss of generality that .5 ( Vit1) > o ( Vi) As n( L ( y) is
within 1/p of - ) (y]H) it follows that

TR

By Proposition 3.2, ¥(y) > a/(a + 1) and ¢(y) € [0,0) for y € [yj, yj+1]. Asin
equations (45) and (47), given integers 3;, 311 > 0 choose integers /; and k; such

that
(50) ’L(y,) - l-/p‘ < Bi/p
n(¢) J ] ]
and
ap+kjn v 5j+1
(51) T n(@(}/m) I

Choose d; > 0 such that y; < §; < yj;;. On the interval [§;, yj;1] define & to be
the path r,(kj;;,0) (given by equation (32), rescaled to begin at s = 4, and end at
s = yj+1) that joins (x,) to (X p—k;,,, X1,k;,,)- The argument given in Case 2 then
proves that

j+17 j+1

a(Zﬂ] + ﬂ] + 2)

f
——Wf(e) = f(&F )| <2e+ Y(y)p

1
() (¢)

on this interval.
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There are two steps to defining ¢ on the interval [y i,01]. The first step is to join
Xo,1; t0 X0 p- The second step is to join Xy, 1; 10 Xo ;-

Choose 0, > 0 such that y; < d, < ;. Define (;Sﬁ(y) on [d,, 9] to be the path
ps(lj, p) defined as in equation (31), joining xo; to Xop, and rescaled to begin at
s =0 and end at s = §;. For y € [d;,01],

_ i
‘ 0 (60) L(f)((b(y))‘

J
’ o ¢>(”"f o(y)) — f(0)| + " ¢)(y)f(0) ~ £(0)
(52) —ff<o> —L(NH(F) ’
1 1 — I
at ﬁ’* I+ 221
<25+3ﬂj—+1.

On [y;,0;] define ¢*(y) to be the linear path joining Xp(y;).; O Xo; inside Xf,.
Then on this interval the same comparison made above holds, but with the sum of
the three terms in equation (52) bounded by

a+1 i+1
5+6]

6]‘-{-1

l.
|\f\\A+éa<3§+

As ;35(y) > 1 and n(x) > a/(a+ 1),

1 a+1
<

y(y) a

Therefore on the interval [y}, yj:1],

: (e 6 +2
v n(¢)<y>f(¢<y>) L (F() | < 6c+ ,

This completes the arguments for Case 3.

The map ¢*(y) is defined on [0, 1] by considering one of the three cases for each
of the intervals [y;, y;+1] and making an appropriate choice of 3;. For intervals [y,
y+j+1],j#1,R—1define ¢*(y) as in Cases 1, 2 or 3 (depending on the values of
ﬁ(}/]—) and %}5)(}/}41)) with 3; = 2. Then, using equation (42),

n(¢>)

—— ) f(o(») — L(f)((bt(y))’
(53) ()

( 9 8a 14 )
< max ,2e + ,6€ + < 20e
Py (y) Py (y) Py (y)
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on [yz, yr—1].
For the intervals [y;, y,] and yr_1, yr] there are three subcases that must be con-
sidered depending on the values of ;75 (y1) and ;75 (yr).

Subcase A %(yR) <1+1/p.

n(
As 5(n) = b+1 a7 (7R) it follows that ;Z5(y1) < 1+ 1/p as well. If we let

(1 = b then we can choose [; to be divisible by b in equation (45). Let [y = b“ L.

Then
I b+1 L
**7( r) **7(}’1)
(54) p  n(g) b |p  n(®
br1
p

Therefore Bz = b + 1 is consistent with this choice of Iz. Define the map ¢*(y) as
in Case 1 or Case 2 with the above values of 3, and g on the intervals [y1, y,, ] and
[¥r—1, yr]. Then, on the these intervals, by equation (42) and the estimates given in
Case 1 and Case 2,

2b+7 2b+6>
10

_0 £
—(f(8(») —L(NH (P () ‘ < maX( ) )

7(}/) n(¢)

Finally, let us check that the endpoint multiplicities of £'(f”) ( P ( y)) have been suit-
ably chosen to define elements of B for all f” € A. At the left endpoint

L'(f)(6H0) = L (f) (X0
I (a+1)

= P 1'(60)
1
and at the right endpoint

L'((F M) = L") X 10)

Ir(a+
@’(1)

69 "(6(0)) .
1

Since the left endpoint multiplicity is divisible by b and the right endpoint multiplic-
ity is (b + 1) /b times the left endpoint multiplicity, £’ ( &*( y)) satisfies the boundary
conditions necessary to define a map from A to B’.

Subcase B . 5(yr) = 1+ 1/pand [25(y1) > 1+1/p.
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With 3; = b we can find a positive integer k; < p such that ap + k; is divisible by
b in equation (47). Let kg = 2 - (ap + ki) — ap. A similar argument to that given in

equation (54) then proves that |%£ p+kR — n(w (yR)| < h” . It follows that B = b+ 1

is consistent with this choice of kR Define the map ngﬁ as in Case 2 or Case 3 with
the above values of k; and kg on the intervals [y;, y,] and [yr—1, yr]. Therefore, on
these, intervals by the estimates given in Cases 1 and 2 and equation (42),

2b+6 6b+8>
20

b
2 r(6) — F(#0) ’ : max<25+ LI o

v(y) n(¢)

The right endpoint multiplicity can be calculated as follows:

L' (D) = L ()Xo, p—kes X1.8)
(p—kg)(a+1) kr(a+1)

= 69 floye @ F'(1)

(55) (p—kr)(a+1)a kr(a+1)?

= P etfNe P e

1 1

(ap+kg)(a+1)

= P el

1
for f' € A. A similar calculation made for the left endpoint multiplicity yields

(ap+ky)(a+1)

L'FO) = P el

1

Therefore the left endpoint multiplicity is divisible by b and the right endpoint multi-
plicity is (b + 1) /b times the left endpoint multiplicity. Therefore L'(¢*(y)) satisfies
the necessary boundary conditions to define a map from A to B'.

Subcase C _L5(y1) <1+1/pand ;55(yr) 2 1+1/p.
With g = b+ 1 we can find a positive integer kg < p such that ap + kg is divisible

by a(b + 1) in equation (47). Let]; = (’;‘Z;f‘l‘)b Then

W . b ’(b+1)ll_ L
p (¢> WIT T p ) "
. b ap+kR
T b+l ap (qs)(yR)

b
< —.
p
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Therefore 5, = b is consistent with this choice of /;. On the interval [ygr_1, yr]
define ¢' as in Case 2 or Case 3 with the choice of k as above. On [y, y,] let
¢* be a path joining xo, to xy(;,) . There are two steps. Find §; > 0 such that
71 < 01 < y2. On [y1,01] we join x, to x4, as in equation (31) with the map
ps(h, L), then we join xg j, linearly to x4(,,) 1, on the interval [d;, y,]. Let us show that
v<_1;') ‘ L@)(y)f(qb(y)) — f(cbn(y)) ’ is small along these two paths

First let us find a upper bound for . As O) (1) = h+1 e (yR) >1 + -

L( 1
n(¢)” P
on the interval [y1, y2]. As n(¢)(y) > a/(a+ 1) and p > 4, it follows that

>

N

b 1
> -
b 2

As $(0) = ¢(1) € [0,9) and |¢p(y) — #(0)| < & for y € [y1, y2] it follows that, on
this interval,

lo(y) — $(0)| < 26.

Therefore, on the interval [y, y,],

’ (¢)(y)‘ | f(8(») — fO)] <2¢

and

Along the path from xq, to xo,,

ﬂz+ﬂ1+1 3+b
P p p

l
PO = LN(FR)| <
Along the linear path from xq, to X4, 5,

ﬁﬂm—ﬂmm+wﬂmp—quﬁw»

%ﬂm—zux&wn‘g

—25

§52+51+1
p

It follows from equation (52) that on the interval [y, y,]

b+3
+2e = —— + 2¢.
p

(d))()’)f(¢()’)) —LH(¢*) | <26+ % +max<T7T +25>

< 9e.
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Together with the upper bound on ’Y(L)’)) we can conclude that

_ :
v(y) n(¢)(y)f(¢(y)) LN ()| < 72¢

on the interval [y, y2].
Let us check that the endpoint multiplicities are consistent. The right endpoint
multiplicity can be calculated using equation (55):

L' (1) = L"(f) (Xo.p—ke» X1.4)
(ap+kg)(a+1)

= P elf)

1
The left endpoint multiplicity can be calculated as follows:
L'(f)(40)) = L'(f")xo)
I(at1)

P ro

(aptkg)b
agry @+

P (éew(ﬁ)

1

b+1 (ap+kg)(a+1)

= P elf)

1

Therefore the left endpoint multiplicity is b/(b + 1) times the right endpoint multi-
plicity and is divisible by b.

To summarize our results so far in Section 3.3: given a map ¢: [0,1] — [0, 1]
such that ¢(0) = ¢(1), we have defined a map ¢*: [0, 1] — X* such that

_ g
7()’) n(¢) wg N (e0) =L (¢ (y))’ < 72

for all y € [0, 1], or equivalently

< 72e.
.

Nf(6(n) = LNH(¢* )

I

(The value of 72¢ is the maximum of the epsilon values found in the three Subcases A,
B and C for intervals containing an endpoint, and the epsilon value given in equa-
tion (53) for intervals in the interior of [0, 1].) In Subcases A, B and C we checked
that the endpoint multiplicities of L'(f’) o ¢* are such that image is contained in B’
after possibly twisting by a unitary. Let us define the map v as

Y(f) =L (f") o ¢

This concludes the proof of the lemma.
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4 Uniqueness

Definition 4.0.1 The self-adjoint element

ht)=1@1d--- @1 &) ®Ide,
ﬁ_/

ay

will be referred to as the canonical self-adjoint element of A;.

Theorem 4.1 (Uniqueness) Let A} = A(Cy, Dy, ay) be a building block algebra and
let h be the canonical self-adjoint element of Ay. For any finite set F C A, and € >
0 there exists a natural number n and two families of functions {6;}"_,, {hi}!, C
Aff T* Ay such that for any two maps ¢, : Ay — A, (where A; = A(C,, Dy, ay) is also
a building block algebra) if for all non-zero T € T*A, there exists an m > 0 such that
G«(8)(7), Yu(8)(T) > m and |¢u(hi)(T) — Yu(hi)(7)| < mfori = 1,...,n, and
¢(h) and (h) have at least 3 distinct eigenvalues for all t € [0, 1], then there exists a
unitary U in the unitization of A, such that

lo(f) — Uw(fHU*|| < 1011e forall f € F.

The uniqueness theorem is proven by a straight forward application of the follow-
ing lemma and theorem.

Lemma 4.1 LetA; = A(Cy, Dy, ay) be a building block algebra. Let h be the canon-
ical self-adjoint element of A,. For any § > 0 there exists an n and two families of test
functions {6;}!=!, {h:}, C Aff T* A, such that for any two maps ¢,v: Aff T*A; —
AffT*A,, where Ay, = A(Cy,Dy,ay) is also a building block algebra, if for all
T € TYA, there exists a real number m such that ¢(6;)(7),¥(5;)(7) > m and
|p(hi) (1) — Y(h)(T)| < m for 1 < i < n then the eigenvalues of $(h)(s) and ¥ (h)(s)
can be paired within § for all s € [0, 1].

Proof The argument is essentially the same as that given in Theorem 6 of [ElI3]. Let
n be any positive integer greater than 3/§. We will define the two families of test
functions, {h; }7_,, {0;}/=! C Aff T*A, as follows:

ar/(ay +1) for0 <t <i/n
th)®) =S ar/(ar+ 1) +n@t —i)/(ay+1) fori/n<t<(i+1)/n
1 for(i+1)/n<t<1
and
0i = hj — hi.

We will define a family of characteristic functions, {k;}!—,' as follows:

(k)0 = ar/(a+1) for0<r<(i+1)/n
o )1 for(i+1)/n<t<1.

https://doi.org/10.4153/CJM-2002-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-006-7

Simple Stably Projectionless C*-Algebras 175

Let trp, and tr¢, denote the normalized matrix trace on D; and C; respectively for
i = 1,2. From the structure theory of representations of A;, we know that for any
homomorphism f;¢: Ay — D, and s € [0, 1] there exist positive integers M and E,
and real numbers x; € (0,1),i = 1,..., M such that f,¢(f) is unitarily equivalent to

M E VA
(56) P 1) e PestN) e Po
i=1 1 1

for all f € A;. The number of eigenvalues of f,¢(h) that are greater than or equal to
i/n can be expressed in terms of x; and E as

(a1 + D#{x; : x; > i/n} + a1#{x; : x; <i/n} +E.

The following calculation demonstrates that we can compute the above expression
using affine function data:

L(px (k) (5) = trp, ( fip(k)

_ E
_ dim(Dy) Zt o, (K, d-lm(C1) Ztrc1 (eso(k))

~ dim(D») dlm(Dz) p
(57) dim(D;) d (C
_ dim(D, e im(C)
= ) ;L(kz)(x,) Dy 2 Z (m)(1)
= diml(Dz) ((ar + D#{xi : x; > i/n} + a#{xi : x; <i/n} +E)

where k/ is any lift of k;. From the hypothesis of the lemma we know that for every
s € [0, 1] there exists an m’ > 0 such that

|1( () () = (s (h)) (5)| < m’
and
1(94(01)) (9), 1 (¥4(80)) (5) > m'.
From the above equations, as §; = h; — hj41,
L(Pu(h) () = t(Ds(his1)) () + (D4 (81)) ()
> 1(6ulhi)) () +m'
> 1(lhin)) (5)

and
(i (hi)) (5) = 1 Pulhirn)) (5).
As ki—l > hi > k,’,

U Duki=1)) (8) > ¢(@u(h)) (5) 2 ¢(Wu(iz) (5) > 1(Bulkin)) (5)
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and

U(Pukiz1)) () > e(u(hi)) (5) > e @uhinn)) (5) > ¢ (kinn)) ()

fori = 1,...,n—2. Therefore, by equation (57) there are at least as many eigenvalues
of ¢(h)(s) which are greater than or equal to (i — 1)/#n as there are eigenvalues of
1 (h)(s) which are greater than or equal to (i + 1)/nfori = 1,...,n — 2. The same
also relation holds with ¢(h)(s) and 1 (h)(s) interchanged. It follows that we can
match the eigenvalues in descending order within 3/#, and hence within 4.

Theorem 4.2  Let A} = A(Cy, Dy, ay) be building block algebra and h its canonical
self-adjoint element. For any finite set F C A; and € > 0 there exists a § > 0 such that
for any two maps ¢,0: Ay — A, (Where Ay = A(Cy, Dy, ay) is also a building block
algebra), if the eigenvalues of ¢p(h)(t) and 1p(h)(t) can be paired within d, and there
are at least 3 distinct eigenvalues for all t € [0, 1], then there exists a unitary U in the
unitization of A, such that

lo(f) — Up(fHU*| < 1009  forall f € F.

Proof Theargument proceeds in four steps. In Section 4.1 we construct certain stan-
dard maps ¢’ and ¢’ from A; to C[0, 1] ® D, that are approximately unitarily equiva-
lent to ¢ and 1) respectively by unitaries in C[0, 1] ® D,. (A notion of standard maps
between building blocks was introduced in [EGJS]. Our construction is completely
different from theirs, but the application—to proving a uniqueness theorem for ar-
bitrary maps between building blocks—is the same.) In Section 4.2 we show that ¢’
and ¢’ are sufficiently close on the given finite set of elements; for all f € F,

16" () =" (Pl < 7e.

In Section 4.3 unitaries U; and U, are constructed that are sufficiently close to each
other with respect to the finite set F, and twist the standard maps ¢’, ¢’ into Aj:

14(:1[]1 ¢/,AdU2 wl: Al — Az.

Finally, in Section 4.4 we apply Jiang and Su’s argument (essentially an application
of Lemma 5.1 of [JS]) to show that the given maps ¢ and v are approximately uni-
tarily equivalent to Ady, ¢’ and Ady, ¢’, where the unitary equivalence is given by
unitaries in the unitization of A,.

Remark 4.0.1 By twisting by a unitary if necessary we can assume that the maps
L,R: C — D given in the definition of a building block have the form

a dim(C)
L(c) = @c @ 0
1 1

atl

R(c) = @c
1
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where ¢ € C. Furthermore, as A(C, D, a) = A(C, D, a) ® C, we can reduce to the case
that A, = A((C, Dy, 611).

Remark 4.0.2 Since the standard maps are constructed fibrewise, the term standard
map, or map in standard form, will also be used for maps from A, to D;.

4.1 Constructing the Standard Maps

The standard maps are constructed fibrewise and in two steps. The first step is to
associate a sequence of real numbers, and a pair of positive integers (satisfying certain
compatibility conditions) to a a finite dimensional representation of a building block
algebra. This is accomplished by Lemma 4.2. The second step, in some sense, undoes
the first; given a finite sequence of real numbers and a pair of positive integers we
construct a representation Std of the building block algebra A;.

Since F is a finite set of functions, there exists a 6’ > 0 such that if |ty — ;]| < ¢’
then || f(tp) — f(#1)|| < e/2forall f € F. Let

(58) § = min(¢’,e/7)

Definition 4.1.1 Let e; and f; denote evaluation at s, 0 < s < 1 for the algebras
Ap and A; respectively. Let e, and fo, denote evaluation at the irreducible fibre at
infinity for A; and A, respectively. Then e;: Ay — Dy, ea0: A1 — Cy, fi: Ay — D,
and foo: Az — Cz.

The following equations are a consequence of the mapping torus construction
given to define the building blocks:

(59) 60:@600@0
1

a;+1

(60) e = @eoo.
1

(Similar relations hold for f; and f;, but with a, replacing a, in the above equations.)
The first step to defining a standard map is the following lemma about decomposing
finite dimensional representations of building block algebras.

Lemma 4.2  Given a finite dimensional representation a: Ay — M, (C), where A, is
a building block, there is a unique sequence 1 > s, > s, > --- > sp > 0, and unique
positive integers E and Z such that:

(l) E<a;+1
(i) E<ayands; <l1foralli=1,...,FifZ>0
(iii) « is unitarily equivalentto e, e, B -+ - D e, @f oo @lz 0.
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Proof Every irreducible representation of A; is unitarily equivalent to e, or e, for
some s € (0,1). Therefore, for any representation « of A; there exists a decreasing
sequence 1 > s > s > -+ > s, > 0, and positive integers E’ and Z’ such that « is
unitarily equivalent to

E’ z’
e Dey @---@65;, @@ew@@o
i=1 i=1

We can find a decomposition for « that satisfies conditions (i), (ii) and (iii) of the
lemma by grouping evaluations at infinity together with zeros as in equation (59),
and then grouping suitably many leftover evaluations at infinity together as in equa-
tion (60). A more detailed description is as follows. Let E' = ajqp/ + 15/, 0 < rpr <
ay. There are two cases.

Casel 7' < q.

Let Z = 0. Group together Z’ zeros with a;Z’ evaluations at infinity as in (59) to
form Z’ evaluations at zero. Let a;(ggr — Z') +rg = (a1 + 1)qg» +E, 0 < E < a; + 1.
Group together (a; + 1)gg/+ evaluations at infinity as in (60) to form qg/+ evaluations
at one. Then « is unitarily equivalent to

qgrt

z' E
@606965(@---@65;/ @@el@@em.
1 1 1

Case2 7' > qg.
Let E = rgs and Z = Z' — qp/. Group together qgs zeros with a;qg: evaluations at
infinity as in (59) to form g evaluations at zero. Then « is unitarily equivalent to

qE’ E z
Peace o e, &Pexa@o.
1 1 1

By the arguments given in Case 1 and Case 2, 0 < E < gy, and if Z > 0 then
E < ajands; < 1foralli = 1,...,F; this determines a sequence 1 > s; > s, >
-+ > sp > 0 such that « is unitarily equivalent to

E 4
e Be, @ De, ©Pew ®PO.
i=1 i=1

To prove uniqueness, let 1 > s; > s; > ...sf, > 0 be a sequence of real numbers,
E’ and Z’ positive integers satisfying conditions (i), (i) and (iii) of the lemma. The
evaluation map, ¢ is irreducible except for t = 0, 1. Assuming that ¢t # 0, 1, then by
condition (iii), s; € (s/)f "and s; € (s;)f. This proves that the sequences are identical,
except possibly differing in the number of ones and zeros; we can therefore reduce to
the case that s; and s, are equal to zero or one for all values of i.
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Suppose thats; = Ofori = 1,...,qands; = 1 fori = g+ 1,...,F. Then
ey ® - @ ey DY ea ® @Y 0is unitarily equivalent to
ayq+(a+1)(F—q)+E q+Z
B oo
1

1

Similarly, suppose thats/ = 0 fori = 1,...,q'ands; = 1fori = ¢’ +1,...,F.
Theney & @ ey & @Jf eo P @f 0 is unitarily equivalent to
arq’ +(a+1)(F' —q')+E’ q'+z'
S oo
1

1

Noting that e is irreducible, and comparing the two representations,

(61) aq+(@+1)(F-q+E=aq +@@+1)(F —q' +E)
(62) qg+Z=4q +2'.

Casel Z=0andZ' > 0.
By condition (ii) of the lemma, if Z’ > 0, then g’ = F’ and E’ < a;. Then the
two equations, above, reduce to:
aq+(a+1)(F—q +E=aF +F
q=F +27'.
Isolating F’ in the second equation and substituting into the first,

(m+1)F-q+E+aZ' =E.

Since Z’ > 0 and E’ < a; the above equation contradicts our assumption that Z = 0
and Z’ > 0.

Case2 Z=0andZ’ =0.
Then, equation (62) reduces to g = q’. Substituting into equation (61),

(y + VF+E=(ay+ 1)F' +E'.
Since E,E’ <a;+1,F=F andE=E'.
Case3 Z>0andZ' > 0.
Then by condition (ii) of the lemma, ¢ = F', q = F, E < a; and E’ < a;.

Equation (61) reduces to
aF' +E' = a;F + E.
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It follows that F = F’ and E = E’. This concludes the proof of the lemma.

The remainder of this section will be devoted to constructing maps Std(s;, sz, . . .,

sg, E, Z): Ay — M, (C) given a sequence of real numbers1 > sy > 5, > -+ > s > 0

and positive integers E and Z. There are three cases.

Case 1 Z = 0. Define the map as follows:

E
Std(s1,s2,...,58,E, Z) = e, P e, @~~®65F@@eoo.
1

Case2 0 < Z < a; — E. The following parameterized family of unitaries will be
used repeatedly in Cases 2, 3, and 4:

(63) U(S],Sz, R ,Sz;E) = Uy 5, EU25,E---UZs, E where E+ Z = a;
and
(64) U'(s1,82,- -, 53E) = uy g gty -y, p Where E+Z <ay.

The set of unitaries u; g fori = 1,...,Z are defined on the Hilbert space J{; with
basis {&; }* to act as the unitary

)

on the subspace with basis {&+(a,+1)i» Em+z(a+1)+E+i } @and as the identity on the rest
of Hy, where m = k — (Z(m +1)+E+Z+ 1) . In more detail,

ui,l,E(§m+(a1+l)i) = §m+Z(a1+1)+E+i
ui717E(§m+Z(a1+l)+E+i) = £m+(a1+1)i
uip§) =¢ forj#m+(ay+1)i,m+Z(a; +1)+E+1i.

Let u;; p be a unitary path joining u;or = Id to u;; g in the subspace spanned by
Em(ar+i and Eniz(a,+1)E+i such that

(66) e b — thig ]| < w(th — 12).

The family of unitaries, u{, ;,i = 1,...,Zandt € [0, 1] are defined in a similar way.
The unitary u/, ; is defined by the matrix given in equation (65) on the subspace
with basis {Em;{(alﬂ)i, Emr+z(a+1)+E+2 ; and as the identity on the rest of 3, where
m' =k — (Z(ay + 1) + E+ Z) . We can define u/, ; to be any unitary path satisfying
equation (66) joining the identity to u/, ;.

Remark 4.1.1 The unitary U(sy, sy, .. ., Sz; E) acts as the identity except on the sub-

space
z z k
SP{&m+(@+1)i Fie1 U SPL&meziar+1)+E+i fimr C SP{fi}i:k—(alﬂ)z-
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This observation will prove to be important for making estimates later in the proof
of the uniqueness theorem.

Remark 4.1.2 The unitary U(sy,s,, . ..,sz; E) is completely determined by the se-
quence of real numbers sy, s,, ..., sz and the positive integer E once the dimension
of the Hilbert space on which it is acting is specified. For the remainder of the proof
of this theorem the dimension of the Hilbert space will not be explicitly specified,
but U(sy, sz, - - .,5z; E) will only arise in the context of its adjoint action on a finite
dimensional representation of a building block algebra; the dimension of the Hilbert
space on which it acts will then be assumed to be the same as the dimension of the
space on which the building block algebra is represented. The above comments also
apply to U’ (s, 52, - - - , 523 E).

Let

E A
R= AdU’(S],Sz....,Sz;E) (351 De,D---De, D @ o D @ 0) .
1 1

Define the map as follows:

Std(517527 oo 35F7E>Z) = €5, @ sz ©--- D Csp ®R.

Case3 Z > a; — E. Define two representations of A; as follows:

a+1—E

E
R= AdU(sl,sz.,.“,s,lI _g3E) (esl S¥ €, &b esﬂl_E @& @ s D @ 0)
1 1

and
L=es, ,, De, ;, D De, BR.

Define a unitary shift V,, on a finite dimensional Hilbert space, 3{,, of dimension at
least a; + 1 as follows:

V(&) = Sm—(ar+1)+i f0r1: =1,2,...,a; +1
Eiz(a+1) fori > a; + 1.

(By assumption the are at least 3 distinct eigenvalues for ¢(h)(s) and in particular at
least one eigenvalue that is neither 0 nor 1. Therefore F > 1 and hence L is repre-
sented on a Hilbert space of dimension at least a; +1.) For the remainder of the proof
of this theorem, the Hilbert space on which V,, acts will not be explicitly specified
(the subscript will be dropped), however in all cases V will act by an adjoint action
on a representation of a building block; the dimension of the space on which V acts
will be the same as the dimension of the space on which the algebra is represented.
(The same is true for the unitary U (s, . .., sz; E)—see Remark 4.1.2.)
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Given M: A; — M,(C), where
M=e¢, e, D -De, &M’

for some finite dimensional representation M’ of A;, define two maps &
(A = Mo(Q) — (A1 = Mesgn1(Q)) and ¢/,: (A1 — Mo(Q)) — (A —
Ma.r(€)) as follows:

a;+1
(M) = Ady py....1,.0.....00) (Ad(v*)fn (M) @ 0) T < a
%,—/ 1

ay
and

r/
1o (M) = Adu 000 Ad ey M) DO r <7 < an.
N— — 1

r

By positive integer division, let
Z—(m+1—E)=kzla;+1)+ry, 0<rz<a1+1, kz;>0

and
F—(ai—E)=k(a))+r, 0<r<a, k>0

There are three subcases for defining Std (s, s, . . . , 55, E, Z).
Subcase 3.1 Ifk; < k,and r; < rif kz = k then define the map as follows:

Std(s1, 2, ..., 5p, B, Z2) = 1], (ta))¥ (D).

Subcase 3.2 1f k; = kand rz > r then define the map as follows:

Std(s1, s, ..., 5p, E, Z2) = 1], (1a)(L).

Subcase 3.3 If k; > k then define the map as follows:

Std(517527 U 7SF7E7 Z) = L(;,rZ(LO)kZ_k_lLr(Lal)k(L)'

Remark 4.1.3 1t’s possible to give a more explicit construction for (¢4, )™ (L) for m <

k:

m—1

(ta)"(L) = €,y @ B e, @RDEDS;

j=0
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where

a+1

Sj = AdU(SI—E+u1(j+])y----,5—E+u1(j+2);0) (esl—E+u1(j+]) G- €s_ray (j+2) 2] @ O) .
1

ar+1

(The notation 8(s1, . ..,5;,) = Ady(s,..s, (e, ® - De, © D] 0) will also be
used in the sequel.)

The standard maps ¢’,¢': A; — C[0, 1] ® D, associated with the maps ¢ and
between the building block algebras A; and A, are constructed fibrewise, in two steps.
By Lemma 4.2, for any s € [0, 1] we can find a unique sequence of real numbers
1>s >--- > sp > 0and a pair of positive integers E;, Z; satisfying conditions (i)
and (ii) of the lemma, such that f;¢ is unitarily equivalent to e, & - -@ey,, @@fl oo ®
@121 0. Similarly we can find a positive sequence 1 > #; > - -+ > t5, > 0 and a pair of
positive integers E,, Z, for f;1). The second step is to define the standard map at the
fibre s as the representation given by evaluating the map Std on the data given above:

f;(vb/ == Std(S], oo ,SFHEl’Zl)
fﬂ// = Std(th ceey tFNEZ’ZZ)'

This completes the construction of the standard maps associated with the homomor-
phisms ¢ and 1.

The next Proposition proves that unitaries U(ty, ... ,t; E) and U(s1, Sz, ..., 5 E)
are close if their indices are sufficiently close.

Proposition4.1 Letl >t >t >--->t,>0andl > s >s>--->s,>0be
two sequences of real numbers such that |t; — s;| < 0, and E be a positive integer. Then

||U(t1,t2, ‘e 7tr;E) - U(Sl,Sz, . 7Sr;E)” < 0.

Proof As |t; —s;| <0, |tis5— tis |l < 75 since u; ;. p and u;,, g act on orthogonal
Hilbert spaces for i # j, the conclusion follows immediately.

Proposition 4.2 Let o« = Std(sy,...,sp, E,Z) and = Std(t1, . .., tr, E, Z) be rep-
resented on the same Hilbert space. Let p; and q; denote the support projections of e;; and
e, of o and [3 respectively. If s; = t; then p; = q;. Furthermore, there exists a unitary U
such that Up;U* = q; foralli € {1,...,F} and || 1d —U|| < 7 max{|s; — t;| }}.

Proof We believe that the proof of the proposition is clear from the construction of
standard maps, but will nevertheless try and provide further explanation. There are

three cases.

Casel Z <a —E.
By Case 2 of the construction given for maps in Section 4.1 standard form,

Oé:ffsm@“'@@sF@Rl
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and
B=ey,, & De, DRy

where R; and R, are defined as follows:

E zZ
Rl = AdU/(sl,...,sz;E) <esl S---D €, S @ eso D @0)
1 1

E A
R, = AdU’(tl,...,tz;E) (en D---De, @ oo D EBO) .
1 1

Fori > Z + 1 it is clear from the above description of the maps that the support
projection of e, is e, are the same.

For i < Z + 1 we need to examine the structure of the unitaries U(e, ..., o)
used to define the maps R;. The unitaries U’ (s, ...,sz; E) and U'(t1, ... ,tz; E) are
defined as a product of “elementary unitaries”, 4], ; and u;, ; by equation (64). Each
of the elementary unitaries u;, ; act as the identity except on the subspace spanned
by {Emt(ay+1)is Em+z(a+1)+E+i} where m + Z(ay + 1) + E4+ Z = dimR; = dimR,.
As the dimension of the subspace on which R; is canonically represented is equal to
Z(ay+1)+E+Z, m = 0. Therefore, the unitary u; , ; acts (non-trivially) only on the
subrepresentation e, and the i-th zero of the direct summand @12 0,forl1 <i<Z.
If s; = t; then the unitaries ] ; and u/, ; will by definition be equal, and hence the
support projections of e, and e, will also be equal. In general, we know that

4556 = i gl < 7lsi — tal-

Let U = U'(ty,... ,tZ;E)(U'(tl, .. .,tZ;E)) *. Then Up;U* = g;, where p; and
qi are the support projections of the subrepresentations e;, and e, respectively, for
1 < i < Z. As the unitary U can be written as a product of elementary matrices,
IU = 1d || < 7 max{]s; — t;[}7.,.

Case2 Z > a; — E.
There are two subcases.

Subcase 2.1 k; < k.

If k; < k,and r; < rif kz = k then by Subcase 3.1 of Section 4.1, the maps
are defined as follows: o = L;Z_’rZ(Lal)kZ(Ll) and 8 = L,’ZJZ(LQI)"Z(LZ). Ifk; = kand
rz > r then by Subcase 3.2 of Section 4.1, the maps are defined as o« = L,’n (Lay Yz (L)
and 0 = L,’,rz(ba1 Yz (L,). In both cases, as k; < k, by Remark 4.1.3 we can give an
explicit construction for (¢, Yoz (L)

ky—1

([’”l)kz(Ll) = eSﬂ]-E+kz(u1)+l @ T @ eSF @ Rl @ @ 81]
j=0
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and
ky—1
(Lal)kz (LZ) = eta1—b+kz(a1)+l @ e @ etF @ R2 @ @ 82’]'
=0
where

E Z
R, = AdU’(sl ..... sZ;E)(esl S @ €s, D @600 ® @O)
1 1

E V4
Ry = Adu,...tz58) (% © e, P e @ P 0)
1 1

ap+1

81’]' = AdU(S]—E+tl1(]+1)y"'vS—E+a1(]+2);0) <eSI—E+a1(]+1) @ U EB eS—E+u|(]‘+2) @ @ 0)
1

a;+1

SZA,J' = AdU(tl7E+u1(j+1)7~-,1‘75+a1(j+z);0) (etl—EMl(jH) DD €t_pray i) D @ 0) :
1

From the construction given above, it is clear that for i > a; — E + kza; + 1 the
support projection of e;, and e;,, viewed as subrepresentations of L];]Z (Ly) and ij]Z (Ly)
respectively, are equal. The arguments given in Case 1 for R, and R, apply equally well
to Ry, Ry, 81 jand 8, ;. For each subrepresentation e;; and e;, of R; and R; (or 8; ; and
8,,;) if s; = t; then their respective support projections are equal. As in Case 1 we can
find a unitary U such that U p;U* = g; and ||U — Id || < 7 max{|s; — t;|} 2. EFa],
forl1 <i<a, —E+kza +1.

The action of ¢/, or ¢/, on 1¥2(Ly) and 7 (L,) is implemented by a unitary
shift (V*)'Z and a unitary twist of the form U’(e, ..., ). The unitary U’(e, ... )
can be decomposed into a product of elementary unitaries. As argued in Case 1, the
elementary unitaries agree if their indices are equal, and are otherwise supported on a
subrepresentation of the corresponding index. Furthermore, the difference between

two elementary unitaries is bounded by the difference between their indices.

Subcase 2.2 k; > k.
By Subcase 3.3 of Section 4.1,

o= Lé,fz(LO)kZ7kilLr(Lal )k(Ll)

and
B = 14,,(t0)" (1) (La).

We can apply Subcase 2.1 to the maps ¢, (¢, Y¥(Ly) and (g, Y¥(L,) to conclude that the
support projections of the subrepresentations e, and e;, are equal when s; = ¢;, and
can in general be conjugated to each other by a unitary whose distance to the identity
is bounded by the maximum of the difference of s; and ¢; fori = 1,...,F. As the
map L(/)’,Z(Lo)kz_k_l has the same unitary action on Lr(Lal)k(Ll) and Lr(Lal)k(Lz), the
conclusions outlined above also hold true for the maps a and 3. This completes the
proof of the proposition.
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4.2 Comparing Maps in Standard Form

This section will be devoted entirely to proving the following theorem about standard
maps.

Lemma 4.3 Let A, and A, be building blocks and h be the canonical self-adjoint ele-
ment of A;. Let 0 be a real number such that € /2w > § > 0. Let F be a subset of A, such
that if [tg — t1| < 0 then || f(to) — f(t1)|| < € forall f € F. Let ¢ and 1) be maps from
Ay to A, such that the eigenvalues of ¢(h)(t) and 1p(h)(t) can be matched to within 6,
and such that there are at least a; + 1 distinct such values, for eacht € [0, 1]. Then

16" (f) —¥'(f)|| < 7¢ forall f € F.

Proof As ¢’(f) and ¢’(f) are matrix valued functions over the unit interval, it is
sufficient to show that ¢'(f)(s) and ¥’(f)(s) are within ¢ for all s € [0,1] and f € F.
Let s be any point in the interval [0, 1], then after grouping representations together
by applying Lemma 4.2, there exists unique sequences 1 > s > s, > -+ > s > 0
and1 >t >t, > --- > tp, > 0, unique positive integers E;, E, Z;, and Z, satisfying
conditions (i) and (ii) of the lemma such that f,¢ and f,¢ are unitarily equivalent to
€s, 69652@.”@65[-‘1 @69115] eoo@@fl Oandetl Der, 69"'@61‘}72 @691152600@@?0
respectively.
Define integers k;, ri, kz, and r, for i = 1,2 as follows:

F; — (a1 — Ej) = kiay + 1
Z,' — ((Ill +1 _Ei) = kzl(al + 1) + Tz,

(67)

where 0 < r; < a5,0 < rz < a; +1and k;, kz, are positive. There are four cases.
The strategy is the same in all four cases; we begin with f;1)’(f) and then compare
it with a sequence of similar expressions (where terms in the sequence are within
of neighbouring terms in the sequence on the finite set F), until we arrive at the last
term in the sequence, f;¢’(f).

Casel Zi<ay+1—EandZ, <a; +1—E,.
Without loss of generality it is possible to assume that Z, < Z,. Let Z = Z, — Z;.
By counting the dimensions of the representations,

dim(D;) =(a;+1)Fi+E 1+ Z, = (a1 + 1), + E, + Z,.
AsE;+7Z; <ay+1fori=1,2,
(68) Ei+Z=E+2, and F, =F,.

LetF =F, = F,and Z = Z, — Z, = E; — E,. The eigenvalues at s of ¢(h) and v (h)
in ascending order, with multiplicity are:

Z z
R — —
evssd(h): 0,...,0,8p, ... SE_z41,SF—7,-++581,1,...,1,1,...,1
evssy(h): 0,...,0,0,...,0,tp, ... tz41,02, - t1,1,..., 1.
—— ——
Z z
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As the eigenvalues can be matched to within d, comparing the above two lists the
following relations are evident:

|si—0|<d§ fori=FF—1,...,F—Z+1
(69) |t —1]<d fori=1,2,...,Z
lsicz —ti|<d fori=Z+1,Z+2,...,F.
In terms of evaluation maps,
le, (f) —e(f)|<d fori=FF—1,....,F—Z+1
le,(f) —ei(f)] <d fori=1,2,...,Z
les_,(f) —e,(f)] <6 fori=Z+1,Z+2,...,F

for f € F. The above relations will be used repeatedly to make the following esti-

mates:
fab'(f)
F
- P e arl)
i=Zy+1
F E, Z,
= P e ©Adu..nim (etl D De, O e @ @0) ()
i=Zy+1 1 1
F
~2omd @ et,’
i=Z)+1
V4 Z E, VA Z
5] AdU’(l ..... 1,51,...,521;152) (@e[i 2] @ € D @ew & @O & @0) (f)
=~ i=1 i=Z+1 1 1 Z+1
F
- D
i=Zy+1
z Z E Z Z
O A1, 1 (D e © D 0 Pew o Poa @0) ()
i=1 =1 1 1 1
F

&

V4 Z) E, VA Z
S AdU (0,051,057, 32) (@ ey D @ e, P @ oo P @ oo D @ 0) (f)
i=1 i=1 1 1 1

F z Z Z+E, Z
= @ e; © @eo O Ady (s,,....57,35) (@ e, @ @ oo @0) (f)
i=Zy+1 1 i=1 1 1
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F z
= @ eti@@eo@Rl(]{)

i=Z,+1 1
F—Z F
~e @ es; D @ eS,’@Rl(f)
i=Z1+1 F—Z+1
F
= P e o R
i=Z1+1
= f0'(f)

forall f € F. By the above calculation, and noting that 276 < ¢,

16"(f) =" (Pl < 3e.

Case 2 Z] <a + 1 —E1 andZ2 Z a; + 1 —Ez.
To simplify the argument it is necessary to perturb f;¢’ if s; = 1 for some value

of i. The conclusion of Lemma 4.2 ensures that s; = 1 for some value of i, only if
Z, = 0. Suppose thes; = 1fori = 1,...,k, then define ¢"’: A} — M,,(C) as
follows:

E;
1
o' =y Deg @ Dey S(P e
1

where

l
i

_)max(1 = d,s5¢41) fori=1,...,k
S; otherwise.

From the construction of ¢’/ it is clear that s/ # 1 for all i. As |s; — s/| < 6,
les;(f) — e/ (f)|| < e for f € F. It follows from the construction of ¢’ that

o' (f)—¢"" ()l <e forfeF

Therefore we can assume that s; # 1 for all i, provided that an extra ¢ is accounted
for in the final degree of comparability for this case of the proof.
As in case one, by counting the dimensions of representations,

(a1 + 1)Fy + Z1 + E; = dim(D,)
=m+1E+24,+E
=m+DFE+1)+2Z, — (a1 +1—E,)
= (g +1)(Fy+ 1) +kz(ay +1) + 1z

=@+ 1D)(Fa+kz +1)+714.
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(Recall that the positive integers kz, and rz, were defined by the pair of equa-
tions (67).) Let Z = Z, — Z;. It follows from the above calculation and the as-
sumption Z; + E; < a; + 1 that
rz, = Zl + E1
(70) Fi=F +kz+1
Z = E1 - E2 + (kZz + 1)(&1 + 1)

Since kz, > 0 and |E; — E;| < a; the last equation, above, guarantees that Z > 0. The
number of eigenvalues of ¢’ (h)(s) with eigenvalue one is a; F; + E; since e/ # 1forall

i. Similarly, the number of eigenvalues of 1’ (h)(s) with eigenvalue one is a; F, + E,.
Their difference is

(71) Ll](Fl *Fz)"r‘E] *Ez :al(kzz+1)+E1 *Ez.

The eigenvalues at s of ¢’(h) and v’ (h) in ascending order, with multiplicity are:

Z -1
> !/
evis @' (h): 0,...,0,8F, .., SF—z+1,SF—Zs--,S1, L, ..., 1,1, ... 1
evst'(h): 0,...,0,0,...,0,t5, . ..ot ti—1,-eo b, 10,1
—_—
z z

where | — 1 = a;(kz, + 1) + E; — E,. Comparing the above two lists, the following
relations are evident and will be used repeatedly:
|5i—0|<6 fOI'l.:Fl,Fl—l,...,Fl—Z‘l'l
i —1|<d fori=1,2,...,1—1
(72)
[t—14i —si| < fori=1,2,....Fb—(1—-1)
F,—l=F —-Z-1.

As in case one, the above relations guarantee corresponding relations between the
evaluation maps on a finite set of elements F.

Proposition 4.3 k, > kz,.

Proof Since |t; — 1| < 6 for aj(kz, + 1) + E; — E, distinct values of i, F, >
al(kzz +1)+E, — E,. Thenajk +r, = F, — (a; — E;) > alkzz + E;, which
can be rearranged as

ay(k; —kz,) > E; — 1.

Since r, < a4y, it follows from the above inequality that k;, > kz,. (The positive
integers k, and r, were defined in (67).)

https://doi.org/10.4153/CJM-2002-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-006-7

190 Shaloub Razak

Following the arguments given in Remark 4.1.3,as kz, < k, and Z, > a; +1 — E;,

kz,—1
D Dey, DR O P 8.
j=0

kz
2 _
tay (L2) = etal—E2+kZZ(ul)+l

From the second equation in (72), |t; — 1| < § for the first [ — 1 values of 7; using this
inequality we can make the following estimate for R,(f):

a;+1—E,

E;
RZ(f) = AdU(tlealeZ;Ez) (eﬁ S D €, _k, D @ e D @ 0) (f)
1

1

a+1—E;

E,
~ars Aduq,.. . ;E) (et] D Dey, _,, D @ oo P @ 0) ()
(73) 1 1

a+1—E,

E,
~: Adyq,..., 1;5)(6169'-'@6169@600@ @ 0>(f)
1

1

a+1—E,

= P el

1

forall f € F. For j <ky, —landi <a; +1,

a1—E2+ja1+i§a1—E2+(kzz—1)a1+(a1+l)

<Il-1

Therefore, by the second equation of (72), |ta1—Ez+ja1+i -1 <dfor1 <i<ag +1
and j < kz, — 1. Using this inequality a similar estimate can be found for §;(f) as
was found for Ry (f):

(74)

a;+1

Sj(f) = AdU(tul —Ey+jag+lseela; —Ez+ja1+(a1+l))(etal—l:‘2+]a1+l DD etﬂ]*Ez*f"‘l*(“l“) ® @ 0) (f)
1

a;+1
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forall f € F. Using the above approximations to R; and 8; and noting that 276 < ¢,

a+1—F, kz,—1  g,+1
kz

L)~ s, g @B, @ D 0o D (De) )
1 j=0 1

(a1+1)(kz,+1)—E»

=6, © - De De,® e, © P elf)
1

(a1+1)(kz,+1)—E,

B,
~Peave s v, 0 P el
1

1
Therefore,

(a1+1)(kz,+1)—E;
kz

E,
75) L))~ Peave @, o P elf)
1

1

There are two subcases.

Subcase 2.1 ky, < ky,andry, <rifky, = k.
Under these assumptions, and using the first of the three equations in (70) for the
last step,

F2—l+1:(a1—E2)+a1k2+r2— (al(kzz+l)+E1—E2)

=ai(ky —kz) +1r —E
(76)
>1z7, — E

-7,

We will use the above calculation and equations (70) and (72) to simplify the expres-
sion given by applying ¢, to equation (75);

272y

kz

) = il L, @)
E, (a1+1)(kz,+1)—E,

~3e LB 2 E, (@ e e S - Dey, © @ eo) (f)
1

1
(a1+1)(kz,+1)—E;

3¢ €t D---D err, ©® @ [

1

E\+Z,

E,
® Ado(1,. et (D1 G e @ @ e, & D 0) ()
v 1 1

Ey
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(a1+1)(kz,+1)—E; E

e, & De, ® P ao@Pe

1 1

& Ay, 0 (@ Be, @ Pew s @0) (D

1 1
(a1+1)(kz, +1)—Ex+E;

~2e €574 S D €sr_z D @ €o
1

E; Z)
b AdU’(sl,m,szl;El) (esl DD eSZ] D @eoo ©® @0) (f)
1 1

(a1+1)(kz,+1)—E»+E;

e, B Do, 0 P eoR(f)

1

Since |s; — 0| < ¢ for the Z values of the index, i = F; — Z + 1,..., F;, and noting
that Z = (kz, + 1)(a; + 1) + E; — E,, the above expression is approximately within ¢
of

€5z DD Cspy—2 D Espy 201 DD Esp, & Rl(f) = ﬁ¢/(f)

on the finite set F. Therefore, from the above estimates, for f € F,

| £ (f) — fid' ()| < 6e.

Subcase 2.2 ky, =k, andrz, > 1.
Under these assumptions, and noting the similar calculation made in (76),

Fz—l+1:a1(k2—kzz)+1’2—E1

=n—FE
<rz —E
= Zl .
Then applying Lf/z-,fzz to equation (75),
k
F'(F) = b, 087 (L))
E, (a1+1)(kz,+1)—E,
e thonszes (D G @ a0 D «) )

1 1

(a1+1)(kz, +1) —Ey—(Z1 —(F, —+1))
~3e @ €0 ®Ady (1,1 0,tr,, 0.0 )
—~—

1 >
£ Fy—h1 21— (=1
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E, Zy—(Fa—1+1) E\+Z,
(Guvar oo & e B
1 1 1
(m1+1)(kz, +1)—E, —(Z — (F,—1+1)) E

= @ e D @ 0 D Ady-(a,...5, 0,... 0:E))
1

1

Z
(a0 oae @

Z—(Z,—(F,—1+1))
~2e @ €0 B Ady(s....55381)

1

(e @e, @éew@éo) (f)
1 1

k-2

= @ eo ® Ri(f)
1

1 —(F,—1+1)
1

E; Z
eo@@eoo@@o) (f)
1 1

~e €741 D--- D Esp, ¥ Rl(f)
= f¢'(f).

From the above estimates, for f € F,

£ (f) = fid (P < 6e.

By Proposition 4.3, Subcases 2.1 and 2.2 are exhaustive for Subcase 2. By the
estimates made in the two subcases, for all f € F,

1" (f) = " (DI < 6e.

Case 3 Z] =a +1—E and22 >a;+1—E,.
Without loss of generality assume that if Z, = a; + 1 — E, then E; > E,. By
counting the dimensions of the representations at s,

(m+1DF+Z+E = (a1 +1)(F; + 1)
=(m+1)FR+2Z,+E,
=(m+1)(F+kz +1)+71.

Let Z = Z, — Z;. It follows from the above calculation that
rz, =0
Fi =F, + kg,
Z =kz, (a1 +1)+E —E,.
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Z > 0 since by assumption either kz, > 0, or if kz, = 0 then E; > E,. Ats, ¢’(h) has

a1Fy + E; — (a1 F, + E;) = ajkz, + E; — E; more eigenvalues equal to one than ¢’ (h).
The eigenvalues at s of ¢’(h) and ¢’ (h) listed in ascending order, with multiplicity

are:
Z -1
> —N— ——
(77) evis¢'(h): 0,...,0,8p,...,55—z41,5F-2Z5---,51,1,...,1,1,...,1
(78) evisap'(h): 0,...,0,0,...,0,tp,, ... bt 1,5t 1,...,1
N——— N——
Z z

where | — 1 = ajkz, + E; — E;. (The two lists of eigenvalues, above are the same as in
Case 2, only the value of I differs by a constant.) As in Case 2, comparing the above
two lists, it’s possible to derive the same set of equations as in (72), but with the new
value of ] defined above.

Proposition 4.4k, > kz, — 1.

Proof The argument that follows is very similar to that given in the proof of Propo-
sition 4.3. As |t; — 1| < ¢ for at least a,kz, + E; — E; values of i, by examining the list
of eigenvalues it is clear that F, > akz, + E; — E;. Thenajk, +r, = F, — (a; — E;) >
a;(kz, — 1) + E;, which can be rearranged as

al(kz _kZz + 1) > E1 — 1.

Since r, < ay, it follows from the above inequality that k, > kz, — 1.
As calculated in Case 2, by equation (73),

(79) Ry(f) ~ae @7 Peg(f).
For j<kz —2and1 <i<a +1,
ay —Ey + jar +i<a; —Ey + (kz, —2)a; + (a; + 1)
<.
Therefore, by equation (74) of Case 2,

(80) 8i(f) ~ae B eg(f) for j < kg — 2.

Subcase 3.1 k, > kyz,.
Noting that r, = 0, and using the calculation given in Remark 4.1.3 to simplify
the expression for fi)':

k,
fsw/ = [fafz (Ly)
kzz —1

= etulezﬂfzzalﬂ @@ e, SR D @ 8j~
j=0
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For j =kz, — 1,

a;+1

€ @ tte @ € @ 0
ay —Ey+ — + —Ey+ — +
( t] Ey (kZ2 Daj+1 t2u1 Ey (kz2 Day+1 (f)
1

= Ady

t—Ey seeesti—15tlyeestira) — ;)

a;+1

(etl—El S Pey DD, D De,, , D @0) ()
1

~2e AdU(1, 1810050018,
~—

Ey

E; a;+1
(Q}e1 De, O De,, _, D @) (f)
1 1

E;

= @ e D AdU(Sly-n;Salﬂ—El;El)
1

a+1—E;

SR S
1

1

E;
=@ e @ Ri(f).
1

Then

L a+1—E, kz, =2 a+1 E

e L)) ~ae € @ B, @ D 0@ D (Per) @@ eo @ Rulf)
1 j=0 1 1

kz, (a1+1)—Ey+E,

—ey ., e, D GRS
1

Z
~e esa1+1751 DD eSFl—Z S3] @ ey D Rl(f)
1

~e eSa1+1—L1 S RN eSFl—Z S eSl-'l—z+1 G- D esfl 2] Rl(f)
= Li(f) = fio'(f).

Therefore, for f € F,
10" (f) — fd' (O] < 4e.

Subcase 3.2 k, = kz, — 1.
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Using the estimates for R, and §; given in equations (79) and (80) respectively,

kz, —2
kz,—1
o (L)) = €y gy, e @ e, @RS P (/)
j=0
k2272
=, ® - Bey, DR D P 8i(f)
j=0

Z—a)—E;

E
e, o @e, & P e
1

Z—a,—E;
:eth—rz @...@etpz D @ €.
1

The last line follows from the line above it using the following calculation:

Fz—(l—El):Fz‘FEz—akZZ—l
:F2+E2—6ll(k2+l)—l
=F — (a1 —E) —atky — 1

=1 — 1.
Therefore,

£ (F) = 1 (L) (f)
Z—a—E —(a;j—n)

~2e &b e ® Adu(y_y, .. t5,,0,..0)
1 ~—

“1772
ay—rn a;+1
(et,fEl @ Dey, ® @ € @@0) ()
1 1

Z—2a,—E |+,

~oe @ €0 D Adu(1,...1,1,...t5,,0,...0)
N

1 P

ay—r; a+1

E
(Beeas eae@azdo)0
1 1 1

Z—2a,—E|+n,

E;
~oe @ e D @ ey D AdU(sl,Msﬂl,E1 iEp)
1

1
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a+1—E;

(esl D De, @éem@ @ )(f)
1

1

Z—2a1+1r;

= P wor).
1

The second last line follows from the line above it due to the following calculation
and the relations |t;_14+; — s;| < d and |s; — 0] < ¢ in equation (72),

(Fz—l)+1+(6l1—72):F2—72—1+1+611
:(a17E2)+a1k27a1(k2+1)7E1+E2+a1

= (a; — E).

Notice that by the following calculation Z — 2a, + r, = F; — (a; — E;):

Z=2am+nr=(+1)ks,)+E —E—a1+n,
=aky, +E —E,+kz, —a+n,
=a(ky+1) —E+r,+kz, — (a; — Ey)
= (a1 — B)) + atky + 1y + kz, — (a1 — Ey)
= F, + kz, — (a1 — E1)
=F — (a1 — E1).
By equation (72), |s; — 0| < ¢ fori = Fy,...,F; — Z + 1. We can find an equivalent
expression for F| — Z + 1 which will be helpful for the calculation that follows;
FIL—Z+1=F, —1+2
=F — (atky + Ey — E)) + 1
(81) =F—a(ky+1)—E +E +1
=F —(ay—E) —ak, —E +1

=r—E +1.
Asry—Ei+1<a; —E +1,|s; — 0| < d fori > a; — E; + 1, and therefore:
Z—2a,+n, Fy—(a;—E;)

P awackiiHN= P asRi()
1

1

~e s, g D Dey D Ri(f)
= fo'(f).
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It follows that for all f € F,

| f'(f) = fid' ()| < 7e.

By Proposition 4.4, Subcases 3.1 and 3.2 are exhaustive for Subcase 3. By the
estimates made in the two subcases, for all f € F,

| f'(f) = fid' ()| < 7e.

Cased Z,>a +1—E andZ, > a; +1— E,.

Without loss of generality it is possible to assume that Z, + E, > Z; + E;, and if
equality holds in the preceding inequality then E; > E,. From the identity
dlm(Dz) = (a1 + I)Fl +Z1 +E] = (a1 + 1)F2 +Z2 +E2 it is clear that Zz +E2 - (Zl +E1 ) =
Zy—(a1+1—E,)) — (Zl — (g +1— El)) is divisible by a; + 1. Let

Z,—(a;+1—E)) — (21 —(a; +1 —El)) = ks(a; +1).
Then
(82) Fy = F, +ky.
AsZy—(a+1—E) =kz(a+1)+rz,and Z, — (a1 +1 — E) = kg, (a) + 1) + 12,
(83) kz, = kz, + k¢

and

Yz, = 1z,.

We have assumed that Z, + E; > Z, + E; and if equality holds then E; > E,. As
Zy+E, — (Z1 + Ey) = (kg, —kz)(a1 + 1) + 12, — 1z, = (kz, — kz,)(a; + 1), another
way to rephrase our assumption is that if kz, = kz, then E; > E,. The difference in
the number of eigenvalues of ¢'(h)(s) with eigenvalue equal to one and the number
of eigenvalues of 1)’ (h)(s) with eigenvalue equal to one is a,F, + E; — (a1 F, + E;) =
alkf + E, — E,. Let

(84) I-1 :alkf+E1—E2.

As in Cases 2 and 3, comparing the eigenvalues of ¢’(h)(s) and 1’ (h)(s) it is possible
to derive the set of equations (72) with the value of I given above. The following
proposition will be important for the extensive subcase analysis that is necessary for

this case of the proof.

PrOPOSition 4.5 Assume that Z2 + E2 Z Zl + El and E1 Z E2 IfZZ + E2 = Z] + El.
Then kl Z k2 — 1 and k1 Z k2 iszz = kZp
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Proof The proof is given by a simple counting argument; as dim(D,) = (a; + 1)F; +
Z;+E fori=1,2,

(a+1D)((a —E)+arky+r1) + (a1 +1—E) +kz(ay+1) +rz +E
=(a+1)((a1 — E) +aiky +12) + (a1 +1— E3) + kz,(ay + 1) + 17, + Es.
We can simplify the above expression to:
ai(ki — k) = (kz, — kz) + (E1 — E2) + (r, — 12).
As kz, > kz,, the right-hand side of the above expression is bounded below (strictly)

by —2a,. Therefore, ki > k, — 1. If kz, = kz, then E; > E, and the right-hand side
will be strictly bounded below by —ay; it follows that k; > k; in this case.

The proof of the following proposition is similar to that given for Proposition 4.4.
Proposition 4.6k, > kr — 1.
Proof Theargument is as follows: ats, ¢’(h) has a, (F) —F,)+E, —E, = a\kf+E, —E,
more eigenvalues equal to one than v¢’(h). Let s; and #; denote the eigenvalues of
@' (h) and ¢’ (h) that are not equal to zero or one. Then |f; — 1| < 4 for at least
arks + E; — E, values of i, and hence F, > ajk; + E; — E;. Then ajk, + 1, =
F, — (ay — E;) > a(ky — 1) + E;, and hence

alk, —kp+1) > E; — 1, > —ay.

It follows from the above inequality that k, > k¢ — 1.

Subcase 4.1 ky, < k; and ifkz, = k, thenr,, < r,.
By equation (83), and the assumption that k, < k;,

kf < k.

Therefore, by the construction for standard maps given in Section 4.1, Subcase 3.1,

r_ )
fﬂ/’ = by oy ta L,
kz, k
— 21 N f
Ly iy b Lay L,
kf*l
k
7 7 )
= erz,rzz bay (etlfﬁlﬂxl - €, DR, @ @ 8])
j=0

and
r_ kz,
f5¢ - erz,rzz lay L.
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Both LE{FLZ and L; are representations of A in standard form. In fact from the defini-
tion of L; given in Section 4.1, Subcase 3.1, it follows that

Ly =Std(ty,...,tr, E1, Z))

with Z] = a; + 1 — E;. Furthermore, from the assumption that Z, + E, > Z; + Ej, it
follows that
Lale = Std(Sz, e ,SFZ, Ez,ZZI)

with Z; = ky(a, + 1) + a; + 1 — E;. Therefore, by Case 3

k
(85) Li(f) ~e: tai La(f)
forall f € F.
From the argument given above 1t suffices to show that the maps ¢,, and Lr[ 1z, ACt

approximately the same on L; and La1 /L,. The maps act by powers of the unitary shift
V, and a unitary twist U (e, ..., e):

k
o (thy ' L2) = Adug_y, i (Adqy-y (b Ly) @91 0)

seensl— Ey+(p+2)a; — 1)

aj+1
Lﬂl(bgll‘l) = AdU(Sl—E1+(p+l)u17'-~:51—L1+(p+2)u1 1) (Ad ) (Lp Ll) @ ' )

(86)

for p < kz, —1,and

!

ks
brg, 1z, (L“ 2) = Adyrg_ By kg, +0ay seeestl— By (kg +1)a b1z, —1) (Ad *)'2 (Lal Lz))

(Ll) - AdU/(Sl—El+(kZl +1)a; ~---a51—E1+(kZI +1)al+rzz —1) (Ad(V*)722 (Ll )) .

T7 Tz,

As |ti—14i — si| < ¢ (as noted in (72)),

NU(ti—E, +(ptays - - - 5 =Byt (pa2)ai—1) — US1—Eyt(pDars - - s S1—Ey+(pr2)a—1) || < €/2
and
37) U (61— Bt thy, 41015 - - - 5 E— Byt (g, 4Dz, —1)

— U (S1— Byt kg, +Dars - - - S1—Er 4k #Dartrz, —1) || < €/2.

For p < kz, — 1, let U, denote the unitary twist given by the action of ¢, on

b Ly or L,,l ks L,, then because of the factor of a unitary shift V' in the definition of the
standard maps, U, acts as the identity except on the (a; + 1)* dimensional subspace

m—kz, (ay)(a1+1)—rz (a1 +1)+p(a;+1)*

H, *SP{fz}z m—kz, (a)(@+1) =1z (@ +D)+(p—1)(a+1)2

where m is the dimension of the Hilbert space on which f;1)’ or f;¢’ is represented.
For p # q, 3, 1 J{,, hence from equations (85) and (86),

H p+1+ka2(f) pHLl(f)” < 7¢

https://doi.org/10.4153/CJM-2002-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-006-7

Simple Stably Projectionless C*-Algebras 201

for 0 < p < kz, — 1. In particular for p = k,,

(88) 2™ L () = i L) < 7e.

It should be noted that to prove the above estimate the only hypothesis that was used
is that kz, < k,. Equation (88) will be used repeatedly in the remaining subcases.

kz,
As the unitaries implementing the action of ¢/, on i4' ey L, and Lul 'L, are also

sufficiently close (by equation (87)) and act on a ’suzbspace orthogonal to }, for 0 <
q < kZl -1,

k7, +k
! e Ly(f) — WAL < 7e

725512, tay sz,fzz a
forall f € F. This completes the proof of Subcase 4.1.

The following proposition and corollary will be used in Subcases 4.2 and 4.3:
Proposition 4.7  Ifky, = k) and kz, = k; (orifkz, = ki + 1 and kz, = ky + 1) then
kZZZkZ”klzkz and El—Ezzﬁ—Tz

or
kzy,=kz +1,ki =k, —1 and E,—E=nrn—n+a+1.

Proof Recall that
(a1+1)F1+(a1+1)+(Zl—(a1+1—E1)) :(a1+1)F2+(a1+1)+(Zz—(a1+1—E2))

and hence (kz, — kz,)(a; +1) = (a1 + 1)(F, — Fy),0rkz, —kz, =Ey —Ey+1r,— 1 +
(ky — ky)ay. Substituting k; = kz, and k, = kg, (orkz, = k; + 1 and kz, = k, + 1),

(89) (kz, —kz)(a1+1) =E —Ey+n—n
(90) (kl *kz)(ﬂl'f‘l):El *Ez‘f’fz*fl.

AsE;, 1 < ay, Ey —E,+r,—r > —2a;. By equation (83), kz, > ky,. Using the lower
bound for E; — E, + r, — 1 and equation (89) we can conclude that either

kz, =kz, or kg =kz +1.
In the former case, by equation (90),
ki=k and E —E,=r —r.
In the latter case,
ki=k -1 and E,—E,=r —r,+a; +1.

Corollary 4.1  With the same assumptions as in Proposition 4.7, Z = 1 — 1, and
l =1 — 1n.
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Proof

Z:Zz—(a1+1—E2)— (Zl—(a1+1—E1)) +E1—E2
= (kZZ —kzz)(al + 1)+E1 —Ez.

Asky, =kz andE, —E; =1 —r,orky, =kz +landE, —E, = —np+a; +1
the result follows.

Subcase 4.2 kz, =k, and rz, > 1.
There are three subcases:

Subcase 4.2.1 kz, =k, andrz, > 1.
From the standard map construction, as given in Section 4.1, Subcase 3.3,

k,
fi8' = 1l 0L,

kZI +l<f

fS’lpl = Lr/z,rzz La, L2'

As kz, < k,, by equation (88), HLEIZI +ka2(f) - L];IZILl(f)H < 7¢, and therefore it suf-

fices to prove that the unitaries implementing the action of ¢/, s, and Lr’z_,zz , namely,

!/
U (5F1—r1+17"'a$F1a05'"ao)

12,

and
U/(tF27r2+17 <oy IRy, 07 sy 0)

Tz,

on Lﬁf‘ L; and L];fl +ka2 respectively, are sufficiently close.

In Corollary 4.1 we found that Z = | = r; — r,. Therefore, by equation (72),
|si—0] < dfori =F,F —1,....,Ff — (rp — ) + 1 and |t,,_,,+; — si| < & for
i=1,2,...,Ff — (r; — ;). Then

’
U (SF1—71+17~ e 75F1a07' e 50)
’
=U (SF]—r]+1, e s SE—(r1—=12) s SFi—(ri—12)+15 + - - ,SFI,O, . ,0)

~e/2 U/(thfrZH; SR thvoa SR 0)

Subcase 4.2.2 kz, <k, andifk; = kz, thenrz, <r;.

The unitary implementing the action of ¢/

kZl .
2,17, O Lay L;is

i
U (S1=Ey (kg +D)ays - - - s SI—Ey kg, + Dy bz, —1)-
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We can use equation (72) for comparing eigenvalues and equation (86) for the com-
puting the indices of the unitary:

U/(S17E1+(kzl+l)u17 s 7517E1+(kzl+1)d1+rzzfl)
= U/(SI—E1+(kzl+1)ﬂl 3o e oy SI=Eyt(kzy +D)ay+r1— 15 SI=E+(kz, + Day+r 5« -+ 5
51751+(kzl+l)u1+722*1)
~e/2 U/(tl—Eﬁ(kzﬁl)alv s BBtk +Dartn — 1 0,...,0)

= U/(thferrh R tha 07 LR O)

(The last line follows from the line above it using the fact that k7, + k¢ = k7, and

kz, = ky.) AsU’(tg,— 1415 - - - » 15, 0, . . ., 0) is the unitary implementing the action of
L;NZZ on Ll,jf‘ +ka2, and L]Zl (L) (f) ~7e L’Z‘ ke L,(f) by equation (88), it follows that

f' () = 1], ta Li(f)
~re thy e La(f)
= fb'(f).

We will show that the following subcase never occurs.

Subcase 4.2.3 k) = kz, — 1.
Under the assumption k, = kz,, by Proposition 4.5 and equation (83),

(91) ki >k —1=ky —1>ky — 1.

Under our assumption k; = kz, — 1 and therefore we must have equality everywhere
in the above inequality:

(92) ki=ky—1=ks, —1=kz; — 1.
By assumption, if kz, = kz, then E; — E; > 0. By Proposition 4.5, k; > k,, contra-
dicting equation (92).

To complete Subcase 4.2 we need to argue that Subcases 4.2.1, 4.2.2 and 4.2.3 are

exhaustive. By equation (91), k; > kz — 1. It follows that the three subcases are
exhaustive for Subcase 4.2. Therefore, for f € F,

10" (f) = f" (D < 7e.
Subcase 4.3 k;, =k, + landry, = 0.
There are three subcases depending on the value of k.

Subcase 4.3.1 kz < k.
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By the construction given in Subcases 3.1 and 3.3 of Section 4.1,
kz, —1+k
A = L

and ;
fs¢l = Lufl L

respectively. As kz, — 1 + ks = kz, — 1 < k;, by equation (88),

kz, —1+k ky —1

HLafl fLZ(f) - Lafl Ll(f)H < 7e.

Therefore it suffices to shown that the unitary implementing the action of ¢,, on
ky —Ltkp . . . ) ) ) P

L) "ML, is close to the unitary implementing the action of ¢, on ¢, L;. The

oo . . S
unitary implementing the action of ¢,, on ¢,' L is

U(Si—Bytkzars - - - S1—=Ey+kz, a1—1)
= U(51—151+kzla17 ooy SI=Eytkz ai+ry—15 SI—Ey+kz ai+ry5 - - - 751—E1+kzl+1a1—1)
~e/2 U(tl/fE1+kZlu1 Y tl/fE1+kZlu1+rzflv 0,... 70)

= U(t}:‘z_r2+], .. .,tpz,o, C ,0).

(The last line follows from the line above it using the fact that ky, + ky = kz,, k;, =
k, + 1 and the comparison of eigenvalues given in (72).) The unitary implementing

the action of ¢,, on L];fl _kaLz isU(tp,—r,+15 - - - s 15, 0, ..., 0). Therefore, for f € F,
kz, —1+k kz —1
(93) a7 La(f) = tayta, Li(f)] < 7e.

Subcase 4.3.2 kz, =k + 1.
The argument in this subcase is very similar to that given in Subcase 4.2.1. From
the standard map construction in Section 4.1, Subcase 3.3,

ke —1
¢ = trta Ly
. kzl—1+kf kzl —1
By equation (88),as kz, —1+kf = kz, —1 < ky, ||ta, Ly(f)—w" Li(H| < 7e,
hence it suffices to prove that the unitaries implementing the action of ¢,, and ¢,,,
namely,
U(SF]—f|+17 s 7SF170a s 70)

a

and
U(th—errla AR thv 07 s 70)

aj
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on 1 'Ly and 1 """ L, respectively, are sufficiently close. By equation (72) and
Corollary 4.1, |s;—0| < d fori = F;,F;—1,...,Fi—(r;—ry)+1and |t; _,+i —si| <9
fori =1,2,...,F — (r; — ry). Therefore
U(SF]—r]+17 AR 7SF[70’ AR 70)
- U(SF17V1+17 .. 75F17(r17r2)7 SFlf(nfrz)-Hv .. 75F1707 ceey O)

~e/2 U(thfrz+l7 (R 7tF27 07 o 70)

Therefore,
(94) tnted Li(f) ~re et I LL(f)
forall f € F.

We will show that the following subcase never occurs. (The argument is identical
to that given in Subcase 4.2.3.)

Subcase 4.3.3 ky = kz, — 2.
Under the assumption k; = kz, — 1, by Proposition 4.5 and equation (83),

(95) >k —1=ky —2>ky — 2.

Under our assumption k; = kz, — 2; therefore we must have equality everywhere in
the above inequality:

(96) ki =k, —1=ky, —2=ky —2.

By assumption, if k;, = kz, then E; — E; > 0. By Proposition 4.5, k; > k,, contra-
dicting equation (96).

To complete Subcase 4.3 we need to argue that Subcases 4.3.1, 4.3.2 and 4.3.3 are
exhaustive. By equation (95), k; > kz — 2. It follows that the three subcases are
exhaustive for Subcase 4.3. Therefore, for f € F,

10" () = f" (N < 7e.

Subcase 4.4 ky, > k, andifkz, =k, + 1 thenrz, > 0.
By the results of Section 4.1, Subcase 3.3,

’ ’ kz, —(ka—kp)—1 ko—ks kg
(97) fsw = [’O,t'z2 LO ! erlfm Lﬂl LZ-

Subcase 4.4.1 k;, > k.
There are three further subcases.
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Subcase 4.4.1.1 k, =k, — ky. Then

/ / kz, —(ka—ks)—1 ka—ks
f5¢ = LO,rZZ o ' brybay L.

By equation (94), for f € F,

ko—k; k fo—k
ltrta  tal La(f) — trta, " Li(f)] < 7e.

The actions of g, and ¢ on Wi, WML, and Wi, WML for p > 0 are the
same—they are given by shifting by V, and conjugating by the trivial unitary
U(0,...,0). It follows that, for f € F,

1" () = " (D < 7e.

Subcase 4.4.1.2 k; >k, — ky.
By the construction given in Section 4.1, Subcase 3.3,

' / kz, — (ki —kp)—1 ki—ky
f5¢ = LO,rZZ by ] brybay Ly
kz, —(ki—ks)—1 ki —(+ka—ks) 1+ky—k
7 Z) 1—ky 1 2 —kf f
- LO,rZZ 0 brylay la Ly.

By equation (93),

1+ky —k¢ ky—k¢ k
e TLi(f) = tryta td Lo(f)] < 7e.

Comparing with equation (97), to find an estimate for the difference between f;1)'(f)

and f,¢'(f) it is sufficient to prove that the unitary implementing the action of ¢,

Tk, —k . . . . ki—k
on La;r AL Ly, for p > 0 and the unitary implementing the action of ¢,, on ¢, 'Ly

are close to being trivial. By Remark 4.1.3, the unitary implementing the action of ¢,,

I+ky—ks+ —
on e "PLy is given by

U(517E1+(2+k27kf+p)a17 - ooy S—Ei+(3+ky—kptp)ay )-

As|si—0| < dfori=F;,Fy—1,...,F —Z+1 (by equation 72), it suffices to show
that for p = 0 the first subscript of s; appearing in unitary above is at least as large as
F, — Z + 1. This follows from the calculation below:

1 —E +@2+k —kf)ay =1—E; +2a) + kya) — kray
=1— (aky + Ey — E;) — E; + 2a; + ark,
=1—-(-1)+(a—E)+atky+r,—nrn+a
=F—-I1+2+(a —n)
>F —1+2

=F —-Z+1.
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The unitary implementing the action of ¢,, on Lﬁi_kf L, is given by
U(SFI—TI+17 s 7SF170a s 70)
AsFi—r+1=1—E +(2+k, — ks + p)a, for p = k; — k; — 1, it follows that the
above unitary is also close to being trivial.
We will show that the following subcase never occurs.
Subcase 4.4.1.3 ky < ky — ky.

Ask; > k,—1, from the assumption made above, ky = 0. Ifky = 0 then k;, = k,,
and it follows from Proposition 4.5 that k; > k;,, contradicting our hypothesis.

Subcase 4.4.2 k, < ky.

We can reduce to the case where ky = k; + 1 by the following argument which is
very similar to the argument given in Proposition 4.4. By equation (72), |t; — 1| < ¢
for at least a;ks + E; — E, values of i, and therefore F, > ajk; + E; — E,. Then
arky + 1, = F, — (a1 — E;) > ay(kg — 1) + E,, and therefore

al(kz — (kf — 1)) 2 E1 — 1.

Since r; < ay, ky > ky — 1 as required.
By Subcase 3.2,
Lyt Ly (f) ~70 Li(f)

for all f € F. We need to show that the unitary implementing the action of ¢,, on
(b Ly for p > 0, and the unitary implementing the action of ¢,, on L’;‘lLl are close to
being trivial. As |s; — 0| < é fori = F;,F; — 1,...,F; — Z + 1 (by equation (72)), it
suffices to show that for p = 0 the first subscript of s; appearing in the unitary above
is at least as large as F; — Z + 1:
FL—Z+1=F —1+2

:F2 - (611kf+E1 —E2)+1

:Fz—al(k2+1)—E1+E2+1

=F — (a1 —E)—ak,—E +1

=1 — E1 + 1.
As1 —E; +a; > 1— E; + r, it follow from the above calculation that the unitaries

are close to being trivial. This completes the proof of Case 4.

Therefore, by Cases 1, 2, 3 and 4 we can conclude that

(98) £ (f) = fid (DIl < 7e

forall f € F. This completes the proof of Lemma 4.3.
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4.3 Endpoint Considerations

In this section we will find unitaries U;,U, € C[0,1] ® D, that are close to each
other (with respect to the finite set F) and twist the standard maps ¢’ and v’ into A,.

By Lemma 4.2, there are unique sequences 1 > Es; > Es; > -+ > Esgp, > 0 and
1 > Et; > Et; > --- > Etgp, > 0, and unique pairs of positive integers EE,, EZ; and
EE,, EZ, satisfying the conditions (i), (ii) and (iii) of the lemma for the maps f,.¢
and foo1) respectively. Applying the same lemma to the maps fi¢ and f,1, we can
find unique sequences 1 > s; > s, > -+ >sp, > 0and1 >t >t > -+ >t > 0,
and unique pairs of positive integers E;, Z;, and E,, Z, that together with the maps
satisfy the conditions of the lemma.

There are two cases.

Casel EZ, = EZ,.
By divisibility arguments if EZ, = EZ, then

EE1 = EEZ and EF] = EF2
Lemma 4.4 IfEZ, = EZ, then Z; = Z,.

Proof Consider the map 7: A; — M,,(C) defined as

(a;+1)EE, (ay+1)EZ,

m(f) = EB eco © QB 0(f).

Applying Lemma 4.2 to the map 7, we find a unique sequence 1 > Ts; > Ts, >
- > Ts; > 0 and unique positive integers TE and TZ such that, together with the
map 7, they satisfy conditions (i), (ii) and (iii) of the lemma.
It is clear from the definition of the map 7, that Ts; € {0,1} foralli = 1,...,q.
Find a positive integer g’ such that Ts; = 1 fori = 1,...,q" and Ts; = 0 for
i=¢q +1,...,q. We claim that

Zy,=TZ and E; =TE.

The argument relies essentially on the uniqueness property of Lemma 4.2. Since f;¢
is unitarily equivalent to @“2+ foo®, it is also unitarily equivalent to the map

EF, a+1

@ ers @@(@e&) @@en @@em @@o

i=q’+1

Condition (i) of Lemma 4.2 applied to the map 7 ensures that TE < a; + 1. If
TZ > 0 then by condition (ii) of the same lemma, applied to map 7, g’ = 0. If
TZ > 0 then EZ; > 0, so by condition (ii) of Lemma 4.2 applied to the map f.¢,
Es; < 1 for all i. Hence, all three conditions of Lemma 4.2 are satisfied. By the
uniqueness property of the lemma it follows that E; = TE and Z; = TZ. The same
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argument then proves that E;, = TE and Z, = TZ. This completes the proof of
Lemma 4.4.

Lety: A} — C, be a map in standard form defined by perturbing the eigenvalues
of foo¢ so that they are distinct:

v = Std(Esy, ..., Esgp, EE,EZ)
where 1 > Es{ > .-+ > Esgp > 0, EF = EF, = EF,, EZ = EZ; = EZ,, and
(99) |Es! — Es;| < 4.

Let (foo®)', (foo®)': A; — C; denote the maps f, ¢ and f,,1, respectively, in stan-
dard form. To complete the proof of Case 1 it is sufficient to find unitaries U and
U,r that are close to each other such that the following relations hold at the right
endpoint

a+1

Adys, fie' = P (fod)’
1

a+1

Adys, it = P (forth)-
1

(A similar pair of unitaries must also be found for the left endpoint.) Let Ep;;, Eq; ;
and Ep ]’1 denote the support projections of the subrepresentations eg;, eg;; and exs! in
the i-th direct summand of @ (faod)’s T (faorh)” and @™ 4, respectively.
By Proposition 4.2 as |Es; — Es!| < ¢ and |Et; — Es;| < |Et; — Es;| + |Es; — Es!| < 20,
there are unitaries EUy; € C,, k = 1,2 such that

Adgy,, Epji = Ep};

(100) /
Adpu,, Eqji = Epj;

and

(101) HEU}(J' —1d H <2 < €.

Let 3 be a map in standard form unitarily equivalent to a, + 1 copies of y:

a+1

9= (D)

1

!’

(where (@7 )’ denotes the map @7**" ~ in standard form). By Lemma 4.2 there
exists a unique sequence 1 > s > --- > s; > 0 and positive integers E, Z that
together with the map (3 satisfy the conditions of the lemma. Recall from Section 4.2
that fi¢’ and fi1’ denote the maps ¢ and v in standard form at the right endpoint.
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In particular, fi¢’ and fi3)’ are unitarily equivalent to @T"" f.o¢ and @ foor)
respectively. Let V' be any unitary such that

ax+1

Adv(@’)’) =0

Let p;, gi, p; denote the support projections of the subrepresentations e, e, and e/
of fi¢', fiy)’ and f3 respectively. Then Ady (Ep;;) = pj; ;) for some bijection f. By
Lemma4.4,as EZ) = EZ, = EZ,Z = Z, = Z,. As 3, fi¢ and fi1) are all represented
on the same Hilbert space, a simple counting argument then proves that F; = F, = F
and E; = E, = E. By equation (99) it follows that |s; — s/| < § fori = 1,...,F. By
Proposition 4.2 as |s; — s/| < ¢ and |t; — 5| < 20 there exists a pair of unitaries U/,
k = 1,2 such that

Ady; pi = p;
(102) )
Ady; q; = p;
and
(103) Ui —1d| <276 < e.
Let
a+1

U = UV & @D EUL;, k=12

i=1

where @fjl Uk € D, by the embedding @?ZH C, < D,. Then by equations (100)
and (102),

AdUlR Epj,i = pf(ji)? AdUZR Eq]l = q4f(j,i)
and by equations (101) and (103),

(104) [Uir — Uarl| < 4e.

By the above computations,

a+1

Ady s fi9' = @D (o)’
1

a+1

AdUZR* fldjl = @(foow)/
1

(By a similar argument we can find unitaries Uy, and Uy, for the left endpoint of A,.)
Finally, define unitaries U; and U, by joining U} to U, and Ujy to U;; by unitary
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paths over the unit interval that are at least as close at every intermediate point as at
the endpoints. Therefore by equations (98) and (104), for f € F,

(105)
[ Ady, ¢'(f) — Ady, ¥" (N < [ Aduzu, ¢'(f) = ¢" (DI + 16" (f) — " (Nl

< 8 +7e = 15¢.

This completes the proof of Case 1.

Case2 EZ, < EZ,.
The following two propositions are well known and will be used in the proof of
Lemma 4.5 (a proof of Proposition 4.8 is given in [Dav]):

Proposition 4.8  If P and Q are projections in a matrix algebra such that |[P — Q|| <
d < 1/2 then there exists a unitary U such that |[U — Id || < 3§ and UPU* = Q.

Proposition 4.9  Let o and [3 be two finite dimensional representations of M,,(C) such
that o(p;) = B(p;), where {p;}! are a complete set of orthogonal minimal projections.
Then there exists a unitary path to the identity, U, € M,(C) such that Ady, o = ( and
Ady, a(d) = B(d) for all diagonal elements d € M, (C) (diagonal with respect to the

set of projections {p; }}).

Lemma 4.5 Let F C A be a finite set containing the canonical self-adjoint element
h, € > 0 and § be defined as in (58). Given any sequence of positive real numbers
1> >85> ->sp>0suchthat|s; — 0| < dor|s; — 1| <dforalli=1,...,F,
positive integers E,Z > 0, and two maps «, 3: Ay — M, (C) unitarily equivalent to

e, B Des, @@f oo EB@IZOSMCI’I that ||a(f) — B(f)|| < &/2 for f € F, there exists
a unitary path U, to the identity such that Ady, o = Band || Ady, a(f)—B(f)| < 19

for f € F.

Proof Let

E V4
a=Te, & @e, &PewdPOT]

1 1

E Z
B=Te, @ ®e, ®Pew ®@OT;

1 1

E zZ
’y:esl@---@esp@@eoo@@o
1 1

for some pair of unitaries T} and T,. Suppose that |s; — 1| < d fori = 1,...,gand
|si— 0| <dfori=qg+1,...,F. Let

o 1 fori<g
' 0 fori>q.
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Then define maps &’ and 3’ as follows
E z
o' =Tiey @ Dey @@eoo @@OT;‘
1 1

E z
5/:Tzeslf@“'@esé@@eoo@@OT;.
1 1

Let P = ’(h) and Q = (3/(h), then P and Q are projections such that

IP = Q| < [IP = a)] + la(h) = SW)| + [ 6(h) — Q]
< 3¢/2.

By Proposition 4.8 there is a unitary path U, such that
(106) U/ —1d| < 9
forallt € [0,1] and

Ady, P=Q.

As e (he(f) = e(flei(h) = e(f), forall s € [0,1] and f € A, the subrepresenta-
tions Te; T} and Tiex T} of afor i < gare supported on P. Therefore, their unitary
conjugates by Uj—Ady; Tie, Ty and Ady, Tiex Ty —are supported on Q. Similarly,
for i > g the cut-down (of the subrepresentation e;,) AdU{ Treo(h)ese,(h) Ty is sup-
ported on Q as well. The subrepresentations of 3, Tye;, Ty and Trex T3, fori < gand
the cut-down (of the subrepresentation e;,) Toeo(h)es e,(h) T fori > qare supported
on Q. Therefore there is a unitary S; supported on Q such that

(107) Ads, Tre, T; = Ady; Thes Ty fori<g
(108) Adsl Tzeoo TZ* = AdUl’ Tleoc Tik
(109) Ads, Treg(h)ese,(h)T5 = Ady/ Tieo(h)ese,(h) Ty fori > q.

The cut-downs Ady, Tieo(h) ege,(h)L T and Taeo(h)“ese,(h)-T5 for i > q are
supported on Q*, so there is a unitary Si- such that for i > g,

(110) Ady; Tieg(h)Feqe,(W) =T = Adgs Tyeo(h)Lege,(W) L T

As the unitaries S; and S;- are supported on orthogonal projections we may rewrite
equations (107)—(110) as

111 Ad L 1265 ] - A(lU’ 1 16s: 1

( ) Sl M i T2 1 i1
112 Iid L ’126001 Ikdiljleoo’l

( ) Sl M 2 1 1
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fori < gand
(113) Adgrg Treo(h)ese,(h) T3 = Ady; Tieo(h)es e () TT
(114) Adgi s, Taeo(h)"egeo(B) " T5 = Ady; Treo(h) " ege,(h) = T}

for i > q. In the argument that follows we will identify M, ;(C) with the range
of the subrepresentation e, of the map . We will view ey(h) and ey(h)~* as rank a;
and rank 1 projections inside M,,+1(C). By equation (113), for every subprojection

p < e(h),

(115) Adgrg TopTy = Ady; TipTy  fori > g.

By equation (114), for the rank 1 projection ey(h)* a similar relation holds,
(116) Adgis, Taeo(h) " T; = Ady; Tieg(h)* Ty fori > q.

Let {p1,..., pa, } be a complete set of orthogonal minimal subprojections of ey(h),
and let p, +1 = eo(h)™. Then by equations (115) and (116),

Ade'Sl szjTgK :AdU{ TlpijK fori >qand1 S] <a;+1.

Therefore, by Proposition 4.9 there is a unitary path V; to the identity, supported on
Ad sis, T,(1d)T5 (where Id is the identity element of M, +;(C)) such that

Ady, Ady; TigT} = Adgug TogTs
for all g € M, +1(C). In particular,
(117) Ady, Ady; The, Ti = Adgig, Toe, T;  fori > gq.
Proposition 4.9 also ensures that
Ady, Ady; TigT] = Adgr, TogTs, t € [0,1]

forall g € M,,1(C) which are diagonal with respect to the set of projections { p; }¢*1,

and in particular Ady, Ady, Tie,()TY = Adslisl Treo(f)T5 fort € [0,1] and f €
F.For f € Fandi > q, |le;(f) — eo(f)|| < &. Therefore, for f € Fandi > g,
| Adv, Ady; Tiey (f)TF — Adgs, Toe, ()T
(118) S H Ade AdUl’ Tlesi(f)TT — Ath AdUl’ Tle()(f)Tik”
+ || Ady, Ady; Tieo( /)Ty — AdSlLSl Toe,(N)T5]|

< 2e.
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It is immediate from the definition of o’ and 3’ that
o' (f) = exs ()P
B'(f) = exc(/)Q

forall f € A; (as ex(f) € C, the expression on the right-hand side of both equa-
tions should be interpreted as the scalar multiple of a projection). Therefore

18(f) — e (f)Q|l < e forall f € F,and since Adg: e (f)Q = e (f)Q,
(119) [ Adses, B() = BN < 2¢

forall f € F, where S, and S;- are unitary paths to the identity in the commutator of
Q' M,(C)Q* and QM,,(C)Q respectively.
Let U, be the unitary path formed by concatenating the paths U/, V; and (S S;)*;

Uj, forr € [0,1/3]
Ut = V3(t_1/3)Ull for ¢ S [1/3,2/3]
(Sit—2/3)s3(t—2/3))*V1U{ fort € [2/3, 1]

Let us check that U, satisfies the conclusions of the lemma. By equation (106), as

[l f) = BN <&
| Ady; a(f) = B < [[Ady; alf) = (O] + lalf) = B

< 18 +¢e =19.

(120)

By equations (111), (112) and (117),
Ady, Ady; The, T7 = Adgig, Toe T3
fori =1,...,Fandi = oo, or equivalently,
Ady,y; o = Adgrg, B
and therefore,
(121) Ady, a = 4.
By equation (118), for f € F,
(122) | Adv, (Ady; a(f)) — Adgeg, B(f)]| < 2.
By equations (122) and (119), for f € F,and t € [0, 1],
| Ay, Ady; a(f) = B(AI| < || Ady, Ady; af) — Adgss, B
(123) + ]| Adgss, B — Bl

< 4e.
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Evaluating the above equation at t = 1, and by equation (119), for f € Fand t €
(0, 1],

| Ad (55, Ady, Ady, a(f) — BN = || Ady, Ady; a(f) — Adgss, B
< || Ady, Ady; a(f) — B()]
+118) — Adgeg, B

< 4e + 2¢ = 6e.

(124)

Therefore, by equations (121), (120), (123) and (124) U, satisfies the conclusions of
the lemma. This completes the proof of Lemma 4.5.

Lemma 4.6 Let o = Std(sy,...,sp, E,Z) wherel > sy > --- > sg > 0, Eand Z
together with « satisfy the conclusions of Lemma 4.2. Let p be the support projection for
the subrepresentation ey, @ --- @ ey, of o If § = Std(s{,..., s}, Sk15- ..., E, Z) is
any other map in standard form wheres] = 1fori =1,..., k(1 > s > --- > s/ >
Skt1 > -+ > sp > 0, E and Z together with 3 may no longer satisfy the conclusions of
Lemma 4.2) then pap = pSp.

Proof Supposethats; =1fori=1,...,gqands; < 1fori=gqg+1,... k Let

) max(l —e,s¢11) forl+g<i<k
S =
s; otherwise.

Let (3. be the map in standard form,
Be = Std(s\,...,sp., E, 2).

Then, fore > 0,1 > s{fg > 0> sé'g, E and Z together with the map (. satisfy
the conditions of Lemma 4.2. By Proposition 4.2, pap = pfB.p for ¢ > 0. The
standard maps are continuous, and therefore pap = pfGop. As 5, = (3 it follows that

pap = pBp.

Proposition 4.10 Let1 > sy > --- > sp, > 0and1 > t; > --- > tp, > 0 be
sequences of real numbers and E,, Z, and E,, Z, (with Z, > Z,) be pairs of positive in-
tegers satisfying the conclusions of Lemma 4.2 for the maps o = Std(sy, . . ., sp,, E1, Z1)
and 3 = Std(t, ..., tg,, E2, Z;) respectively. If the eigenvalues of a(h) and B(h) can be
matched within § then there is an integer d > 0 and a small perturbation t{ > -+ >
tg, > Osuch thatt] = 1, |t; —t/| < dfori =1,...,dandt] = t; fori > d. We
can choose d such that applying Lemma 4.2 to the map v = Std(t{, ..., t5,E, Z5)

yields a sequence s{ > --- > sp > 0 such that |s; — sj| < 20 fori = 1,...,F
and y = Std(sy,...,sp,, E1, Z1). Furthermore, the sequences; > --- > sp > 0 and
the pair of positive integers E;, Z,, together with the map ~y satisfies the conclusions of
Lemma 4.2.
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Proof The proof proceeds in two steps. First we will define the integer d and demon-
strate that the perturbation of the sequence t; yields (under the application of
Lemma 4.2) a sequence s/ that is close to the given sequence s;. The second step
is to show that Std(t{, ..., t5 , By, Zy) = Std(s{, ..., s, E1, Z1).

The first step has three cases.

Casel Z, <ay+1—E andZ, <a; +1—E,.
By equation (68), Z, — Z; = E; — E, and by equation (69), |t; — 1] < § for
i=1,...,Z. Letd = Z. Define t/ and s/ as follows:

. =
! t; otherwise

, {1 fori <Z

and
o 0 forF>i>F—-Z+1
"ty forF—Z>i>1.

We need to check that Lemma 4.2 applied to the map Std(t{, . .., t;. , E;, Z,) yields the
sequence of real numbers {s/}f*  and pair of positive integers E;, Z;. As E; < a; + 1
and E; < a; when Z; > 0 (by the hypothesis of the proposition), conditions (i) and
(ii) of Lemma 4.2 are satisfied. To verify condition (iii), it is enough to check that
Std(t{,...,tf,, B2, Zy) is unitarily equivalent to ey @ --- @ e, @ @f‘ oo D EB{‘ 0.
This is an easy calculation (a similar, more difficult calculation will be performed in
Case 2).

Case2 Z, <a+1—E andZ, >a; +1—E,.
Letd = | — 1. Define #/ and s/ as follows:

) {1 for1 <i<I-—1

t; otherwise

where /| — 1 =ay(kz, + 1) + E; — E; and
; 0 fOI‘Flzl‘ZF]—Z'l'l
"\ th_pezei forFy—Z>i>1.

We need to check that the sequence of real numbers {s/}}", and pair of positive in-
tegers E;, Z; satisfies conditions (i), (ii) and (iii) of Lemma 4.2 applied to the map
Std(t{,...,tf,, Ey, Z,). It is clear from the hypothesis of the proposition that condi-
tions (i) and (ii) are satisfied. We will show that Std(t/,. ..tz , E;, Z;) is unitarily
equivalent to ey @ --- S ey D B e @ @121 0 as follows (~ will denote unitary
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equivalence in the following calculation; all variables are defined as in Case 2 of Sec-

tion 4.2):
E, Z>
St(t], .ty B2, Z2) ~ ey @ - Dey ®P e o
1 1

-1 E; Z z
N@el@etl/@...@eté @@em@@oea@o
1 1 1 1

al(kzz+1)+E17E2

E,
~ @ el@et/@"'@e[é@@ew
1

1

(a1+1)(kz, +1)+E1 —E;

Z
oPoe &b 0
1

1

kZZJrl a a)+1 E\—E,
(D) e Besoss
1 1 1 1
E, Z
©® @etgz@@eOo@@O
1 1
(kz,+1)(ar+1) E\—E,
~ @ ey @ e D ey
1 1
E E1—E, Z
@ dey DPex® @ e @O
1 1 1
z £ 2
N@eo@et’® @gté@@eo@@@o
1 ! !
E; Z)
~ ey @ 6965;1@@600@@0
1 1

Case3 Z, > a,+E andZ, > a; +1 — E,.

The argument is very similar to that given in Case 2. All variables are defined
as in Case 4 of Section 4.2. In particular, define ¢/ and s/ as in Case 2, but with
I = a k¢ +E, — E,. We need only check condition (iii) of Lemma 4.2, as conditions (i)
and (ii) are clearly satisfied. Condition (iii) follows from the following calculation:

Std(ty, ..., tp, B2, Z5)

E Z
~ e P @642@@600@9@0
1 1
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I—1 E Z z
N@el@etl,@...@e%@@em@@oea@o
1 1 1 1

arks+E, —E; (a1 +1)ks+E —E,
~ P avq ooy @em@@oee d o
1 1

ay a;+1

E. Z
N@(@el@0>@@(m@0)@ew '@eté@éeoo@@o
1 1
ky(ar+1)

E, E| —E; A
~ @ eo@@eo@etf ---@eté@@ew@@em@@o
1 1 1
z E Z
N@eo@e,/@---@et;z@@em@@o
1 1 1
E Z
Nesl,@...@esl_l @@em@@o.
1 1

This completes the first step of the proof.

The second step of the proof is to show that Std(t,...,t5,E,Z) =
Std(s{, ..., sg,, E1, Z1). We will prove this using the continuity of standard maps and
the map Std.

Define ] as follows:

, Jmax(ty,1—¢) forl1 <i<d
t! otherwise.

Then the eigenvalues of Std(t{”, ..., t7! _,E;, Z;)(h) and Std(t{, ..., 5, By, Z;)(h)
can be matched within €. From step one we know that the eigenvalues of
Std(t{,...,tf,, Es, Z,)(h) and Std(sy, . .., sg , E1, Z1)(h) are the same. Therefore the

elgenvalues of Std (¢’ e s1f o> B2, Z3)(h) can be matched within & with the eigen-
values of Std(sy, ..., s, , E1, Z1)(h). We can now apply Lemma 4.3 to conclude that
ase — 0,

St .. th o Ba, Zo)(f) — Std(s], ., sk, Er, Z0(f)

for all f € A;. From the construction of the map Std(e, ... e E, Z), it is clearly
continuous in the parameters represented by a “e” when E and Z are held fixed.
Therefore ase — 0,

Std(t, ... tp ., B2, Z5)(f) — Std(t], ..., tg, By, Z5)(f)
forall f € A;. From the above argument it follows that

Std(tl', . 7tP/*2,E2,Z2)(f) = Std(S{, . 751/?|7E1;21)(f)
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forall f € A;.

We can now proceed with the proof of Case 2.

Applying Proposition 4.10 to the maps (foo @)’ and (foot))’ (where (foo )’ and
(footh) denote the maps foo¢ and foo %) in standard form, respectively) yields a map
~ and an integer k > 0 such that

v = Std(Ety, ..., Etgp , EEy, EZ;)
= Std.(ES{7 . ?ESI/EFI y EEl, EZl)

and Et] = 1, |Et/ — Et;| < dfori=1,...,k Et/ = Et; fori >k,
(125) |Es! — Es;| < 26

fori = 1,...,EFyand 1 > Es{ > --- > Esg > 0, EE|,EZ; and 7 satisfy the
conclusions of Lemma 4.2.

By Case 1, there exists unitaries V; and V; such that Ady, fi¢’ = ?ZH (fo®)'s
Advz(EB‘fzJr1 v = ‘f”l v and |V] — V3| < 4¢, where (EB?Z“ )’ denotes the map
a+1

. 7 in standard form.
Let K = max(k,min{i : Et; < 1}). By Lemma 4.6, pyp = p(foot))’p, where
p € C, is the support projection of the subrepresentation e, @® - - - @ €gr, . Again,

by Lemma 4.6, q(Q}‘fZJrl 7)'q = qfivb'q, where g = Ady; (Q}Tz+1 p) is the support

ar+1

projection of the subrepresentation @‘fﬁl(egtm © - D egry, ). Let P= (D" p)-
Then

PAdy,(fiv")P = Ady, qfiv'q

ax+1 ’
= Adv, g ( . 7) q
1

a+1

= P Ady, (@’y)

1

/

e

ar+1
=PEPyP
1
a+1
=P
1

ar+1

=P rft)p
1

a+1

=P® P (focth)'P.
1
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The above calculation demonstrates that the unitary V, conjugates the map f11)’ to

‘;ZH (footh)'—at least restricted to the projection P. We will now consider the part

supported on P~.
By equations (98) and (125), for all f € F,

[7(F) = (foot) ()| < 14e

and
ax+1

() - fwn| < 1ae
1

It follows that

ap+1

HpL Ady, fiv' ()P = P ED(fouth) ()P lH
1

a+1

< [ Adv, i’ () = P ft)) ()
1

ax+1 ar+1 ax+1
< |[Adv, fv'(H = Adv; D0 + | D1 - D))
1 1 1
a+1 ap+1 a+1
< || adv, fiv'(5) - adv; @0 + || advs () - Adv: Prir)
1 1 1

+ 14¢

< 14¢ + 8¢ + 14¢ = 36¢

forall f € F. As ||V; — V3|| < 4¢, by the above calculation

a+1
(126) H Pt Ady, fiv'(f)PL — Pt @(fmz/;)’(f)PLH < d4e
1
forall f € F. As |Et;—1| < dfori = 1,...,k, for every irreducible subrepresentation

¢ of P- Ady, fi9h'PL and PX @ (foor)'PL,
(127) t=o00, [t—0/<d, or [t—1]<6.

We may now apply Lemma 4.5 to find a unitary path V,/ supported on P such that

ax+1

Ady; Pt Ady, fit'PH = PH P (foct)) P*
1

and

a+1

H Ady, PEAdy, i ()P — PE @D (fth) ()P H < 19 44 < 10002
1
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fort € [0,1] and f € F. Then Adyyv, it = @™ (faut)', || Adyv, it (f) —

T foot) (N < 1000, Ady, fi¢' = B (fro@) and [[Vy — V| < 4.
For the right endpoint, the above arguments yield unitaries Vig = Vi, Vor = V)
and a unitary path Vy , = V/ such that

ar+1

Ade fl¢l = @(fm¢)/

1

ay+1

Advy vy it = @D (fct))',
1
||V1R — V2RH < 4e

and
ar+1

HAC‘VR'.MR A9 () = @D footh) ( f)H < 1000e.
1

Similarly, at the left endpoint we can find unitaries Vy;, V5, and a unitary path V;,
satisfying a similar set of equations. Let U, and Uj , be any path joining V1 to Vix
and V,; to Vo respectively such that |U;, — UJ,|| < 4¢ forall £ € [0,1] and locally
constant at the endpoints; '

Uip fort € [0,(5]
Uiy = '
U1’1 fort € [1—5,1]

and

Ul = Uy, fort € [0,]
MUy, forre[1—6,1].

Finally, define U, as follows:

VLll—t/(SUZ/,t fort € [0, 4]
Use = q Uy, fort € [0,1 — 4]
VR,(I+6—1)/5U2/,t fort € [1 —6,1].

Then fort € [§,1 — ] and f € F, by equation (98) and the above definition for U, ;
and U, 4,

I Ady,, ¢"(£)(t) = Adu,, " ()@
< [[Adu;,u,, ' (NE) = " (HO] + [lo"(HE) =" (H)

< 8+ 7 = 15e.
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Fort € [1—4,1]and f € F,
| Adu,, ¢'(f)(£) — Adu,, ¥ (@)
= [|Adv, ¢"(N)(®) = Ady, .y v ¥ (N
< [[Adv, 16" (f) — Advy,s v AV (] + 26

a+1 a+1

Pd) ()~ P ()|

<]

ax+1

DUocth) (1) = Advyry v it (D) +2
1

+

< 7¢ + 1000€ + 2 = 1009¢.

A similar calculation holds for the t € [0, §].

4.4 Jiang and Su’s Argument

We will use Lemma 5.1 of [JS] and the application of the lemma as described in
Theorem 5.2 of [JS], to construct unitaries V; and V, in the unitization of A, such
that

| Adv, ¢(f) — Adu, ¢" (]| < ¢

and
| Adv, 1(f) — Adu, ' (f)] < e

for f € F. The conclusion of the uniqueness theorem will then follow from an
elementary argument involving the unitaries V; and V, and the results of Section 4.3.

The following lemma is Lemma 5.1 of [JS]:

Lemma 4.7 Let m be a positive integer, let D C M,,(C) be a unital sub-C*-algebra,
and let F C D be a finite subset which contains a set of generators of D. For any 1/9 >
€ > 0, there exists § > 0 such that if R, S € M,,(C) are two unitaries satisfying

IRfR" —SfS*|| <4, fekF

then there exists a unitary path {X(¢) | t € [0,1]} in M, (C) with X(0) = R and
X(1) = S satisfying

IX() fX(1)* — SfS*|| <e, feF

In our application of the lemma the subalgebra D (referred to in the statement
above) may be non-unital; in this case we will consider instead its unitization.

We will construct the unitary V,(¢), t € [0, 1] piecewise as follows. Given § > 0
as in the conclusion of the above lemma, we can find a 6’ > 0 such that

(128) [ Ady, ¢'()(x) = Ady, ¢"(NH() < /2
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and

(129) [6(f)(x) = d(HH (W < 6/2

forall f € Fif |x — y| < d’. Let {t;}), be a partition of [0, 1] such that |t; — t;4,| <
" andt; = 0,ty = 1. Let Vi(t;) for i # 1,N be any unitary in D, such that
Ady, ) () (5) = Ady, ¢'(f)(#;). For i = 1 we can choose V(o) to be contained
in the image of the inclusion @} C; < D, as both ¢(f)(#;) and Ady, ¢'(f)(11)
are contained in this subalgebra. Similarly for i = N we can choose V;(ty) to be
contained in the image of the inclusion @TZH C, — D,. By equations (128) and
(129),
| Adv, ) () (&) — Adv, (1) P()(E)] < &

for all f € F. Therefore, by Lemma 5.1 of [JS], there exists a unitary path joining
Vi(#;) to Vi(tiy1) such that || Ady, ) () — Ady, . ¢(@)|| < e forall f €
F,t € [t;,tis1]. We have constructed a unitary path on each sub-interval [#;, tiy;].
Furthermore, it can be easily checked that || Ady, ¢(f) —Ady, ¢'(f)|| < eforall f €
F. Similarly, we can construct a unitary V; such that || Ady, ¥(f) —Ady, ¥'(f)]| < e.

Finally, we can construct the unitary U referred to in the conclusion of the unique-
ness theorem. Let U = V'V, then for f € F,

6(f) = Ub(HU™]|
= || Ady, ¢(f) — Ady, ¥(f)||
< | Adv, ¢(f) — Ady, ¢" (Il + [ Adu, ¢"(f) — Ady, &' ()
+[|Ady, ¥'(f) — Adv, ¥ ()|
< e+ 1009 +¢ = 1011e.
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