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Abstract. The solar wind is considered as a steady fully ionized hydrogen plasma flow, with
rotational symmetry. The Parker-spiral type magnetic field specifies the dependence of the flow
speed on the radial distance and meridional angle if the plasma is assumed to be quasi-neutral
and currentless. A two-particle kinetic model of the collisionless rotationally symmetrical plasma
flow in a magnetic field is formulated and applied to estimate the flux and density of the solar
wind. The obtained theoretical results are compared to the observational data.
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The kinetic model of the solar wind based on the Vlasov equations describes the
plasma flow in terms of particle velocity distribution functions and a self-consistent elec-
tromagnetic field. This nonlinear model can be approximately investigated under some
reasonable assumptions about the flow geometry and magnetic field (e.g. Parker 1958
and Pierrard, Issautier, Meyer-Vernet, et al. 2001). In this paper, the assumptions that
specified the Parker magnetic field are modified allowing us to obtain the velocity profile
of the solar wind. The two-particle kinetic approach to modeling a spherically symmetri-
cal plasma flow in a negligible magnetic field (Vasenin & Minkova 2003) is reformulated
for the considered problem and used to estimate the solar wind flux and density.

The solar wind is considered as a steady rotationally symmetric flow of collisionless fully
ionized hydrogen plasma. The approximation of quasi-neutral current-free plasma allows
us to apply the two-particle kinetic model of dynamic electron-proton pairs (Vasenin
& Minkova 2003). The collisionless kinetic equation yields a general solutions for the
two-particle velocity distribution function f = f (E. + Ep, Me, Mp, fte, ptp) in terms of an
arbitrary function of the first integrals corresponding to the conservation laws for the total
energy of electron and proton, E.+FE, = meuz/Q—&-mPug/Q—l—mnp—mu?)/Q = const, their
angular momenta M; = rsin@ (uj4 + uq + qjAs/cm;) = const and magnetic moments
i = cmjv?/qu 2 const in the co-rotating reference frame. Here, uq = Qrsinf, m =
Me + mp; 1,6, ¢ are the spherical coordinates; u; (u;e) is the magnitude of the particle
vector velocity (the azimuthal component); v; is the Larmor-rotation velocity; ¢ is the
gravitational potential of the Sun; 2 is its angular rotation rate; Ay is the azimuthal
component of the vector potential A of magnetic field (B = pH =V x A, = 1). Index
j refers to electrons (e) and protons (p). The assumed Maxwellian velocity distribution
at the solar corona exobase, located at r = rg, specifies the form of function f.

The Parker-type magnetic field is defined by assuming the frozen-in condition and
specifying the azimuthal velocity, U, = (r —r)Q2siné (in contrast to Parker’s approach,
the plasma outflow direction at r = rg is not prescribed). In this case the Maxwell
equations yield the relation for the radial velocity with an integration constant («):

U,(r,0) = a|Bo(0)|sin® 6 (1 — r/r¢) (1.1)
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Figure 1. Ulysses data (solid) and model results (dotted) for solar wind density and speed.

under the assumption that there are no radial and meridional electric currents (a com-
pletely current-free flow is followed by B,q = const). Equation (1.1), with « |Bo()| =
ap(l + 16 |cos70}) approximated according to the WSO magnetic field synoptic data
(Wang & Sheeley 1995), reproduces the profile similar to Ulysses “butterfly” diagram.
The analysis shows that the charge-particle drift cannot be neglected at high and low
helio-latitudes for the present model. Hence these regions are not considered. The drift is
also significant at r ~ 7¢, increasing deviation of the model results from the observational
data at the exobase. The drift equation yields the relation for the temperatures at r = rg:
mlpol 1 —udy/lpol
Teio +TpJ_0 6k 1— 0.5(B¢0/B())2 (12)
that agrees for isotropic temperatures (Tp~ m |@g|/8k) with the observational coronal
data for the slow and fast solar wind (Koehnlein 1996, Fisher & Guhathakurta 1995).
The flux of plasma particles F' is evaluated from the distribution function f for the non-
monotonic electron-proton potential IT = m(p —u3, / 2). The model profiles of the plasma
density N = F/U, and its speed U, (1.1) agree with the observational data (Koehnlein
1996) for the slow solar wind at r > 1.5r¢ within 35%. The meridional profiles of the
density and the radial speed at 1 AU (with U, = 7.5-10° m/s, N = 3.1-10% m=3 for the
latitude 60°) are qualitatively consistent with the corresponding Ulysses data (Fig.1).
The parameter values are following: 79 = 3R, Ty = 9.6 - 10° K according to (1.2). The
empirical terminal value of the in-ecliptic radial speed, 4.5-10% m/s (Koehnlein 1996), is
used for estimating «g. The parameter Ny is found from the density measured at 1 AU.
Thus the suggested kinetic model describes the solar wind in the Parker-type magnetic
field in terms of the electron-proton pairs statistics. This approach reproduces the radial-
angular profiles of the solar plasma density and speed consistent with the observations.
It is a pleasure to thank Prof. Y.M.Vasenin for initiating this research and discussions.
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