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This paper presents a peridynamics-based computational approach for modelling coupled
fluid flow and heat transfer problems. A new thermo-hydrodynamic peridynamics model
is formulated with the semi-Lagrangian scheme and non-local operators. To enhance
accuracy and numerical stability, a multi-horizon scheme is developed to introduce
distinct horizons for the flow field and thermal field. The multi-horizon scheme helps
to capture the convective zone and complex thermal flow pattern while effectively
mitigating possible oscillations in temperature. We validate the computational approach
using benchmarks and numerical examples including heat conduction, natural convection
in a closed cavity, and Rayleigh–Bénard convection cells. The results demonstrate that
the proposed method can accurately capture typical thermal flow behaviours and complex
convective patterns. This work offers a new foundation for future development of a unified
peridynamics framework for robust, comprehensive multi-physics analysis of thermal
fluid–solid interaction problems with complex evolving discontinuities in solids.
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1. Introduction
Coupled fluid flow with heat transfer is a complex and intriguing physical process found
in various natural and engineered systems. It involves simultaneous interactions between
fluid motion and thermal energy transfer. This coupling plays a crucial role in many
practical applications, from engineering processes to natural phenomena such as ocean
currents and atmospheric circulation. For example, in designing heat exchangers and solar
collectors (Du et al. 2024), accurate predictions of fluid flow and heat transfer rates
are vital for efficient heat exchange between different fluid streams and solid structures.
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Similarly, in aerospace engineering, understanding the interaction between fluid flow and
heat transfer is crucial for assessing the thermal loads on aircraft surfaces during flight (van
Heerden et al. 2022). Studying coupled fluid flow and heat transfer presents challenges
due to the complicated phenomena involved, including convective heat transfer, boundary
layer development, fluid mixing and thermal stratification. The convection processes to
be discussed in this paper can be categorized into two types, based on the driving forces
behind fluid motion. Natural convection arises from buoyancy force caused by temperature
variations, while forced convection results from pressure or viscous force applied on the
fluid boundary. Most convective problems in practice involve a combination of both types.

Various mesh-based numerical methods have been developed to better understand
the complex interplay between fluid dynamics, thermal energy transport and boundary
conditions for realistic modelling of coupled process. Gartling (1977) employed the
Galerkin finite element method (FEM) to solve the Navier–Stokes equation coupled
with the energy equation, assuming that the fluid to be incompressible and applying the
Boussinesq approximation. The work examined thermal flow near a heat exchanger and in
a cylindrical enclosure. Similar problems have been investigated using least squares FEM
(Bell & Surana 1995; Tang & Tsang 1997; Prabhakar & Reddy 2006; Wang & Qin 2018).
To accommodate the three-dimensional (3-D) complexity inherent in fluid dynamics,
Mallinson & Davis (1977) derived the solution of the 3-D Navier–Stokes equation within
a box by the finite difference method (FDM). The solution explored the 3-D fluid motion
generated by side heating from the box’s surface. Later, by using a second-order central
difference scheme and special extrapolation with variable discretization, De Vahl Davis
(1983) provided a benchmark solution for a two-dimensional (2-D) natural convection
problem, in which accurate predictions were achieved for fluid flow with Rayleigh number
up to 106. The FDM was also employed in more specific scenarios such as natural
convection in a shallow cavity (Cormack, Leal & Seinfeld 1974; Drummond & Korpela
1987) and turbulent convection (Paolucci 1990; Trias et al. 2007). The effects of an
enclosed circle on thermal flow in a rectangular cavity were studied by Angeli, Levoni &
Barozzi (2008) and Kim et al. (2008) using the finite volume method (FVM) and immersed
boundary method, which effectively capture the thermal flow field between the cooler
outer rectangular enclosure and the hotter inner circular boundary.

Recently, thermal flow coupling has been addressed using various particle-based
methods. These methods do not rely on a fixed mesh structure, which reduces the
computational costs associated with re-meshing, and are hence well-suited for modelling
complex geometries and free surface flow. Among these methods, smoothed particle
hydrodynamics (SPH) has gained popularity for coupled thermal flow modelling. Cleary &
Monaghan (1999) were the first to successfully implement thermal fields in SPH, although
their work focused solely on heat conduction. Szewc, Pozorski & Tanière (2011) and Danis,
Orhan & Ecder (2013) explored natural convection in a square enclosure using SPH, and
examined the effects of Rayleigh number, Prandtl number and Gay-Lussac number. Their
findings indicated that fluid flow transits gradually from laminar flow to turbulent flow as
the Rayleigh number increases up to 106. More recently, SPH has been applied effectively
to model natural convection in complex geometries, such as a square closure with an
inner circular hole (Aragón et al. 2021), concentric annuli (Yang & Kong 2019; Garoosi
& Shakibaeinia 2020; Zhang & Yang 2022) and reactor cores with internal channels
(Gui et al. 2022). More recently, Reece et al. (2024) extended the coupled SPH method
to multi-phase conditions by considering thermal stratification of different components.
In addition to SPH, other particle-based methods have emerged. For instance, Gao &
Oterkus (2019) leveraged the non-local operators proposed by Madenci, Barut & Dorduncu
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(2019) to simulate natural and mixed convection non-locally, achieving good agreement in
temperature and velocity with SPH results.

Peridynamics (PD), introduced by Silling (2000) and further developed by Silling
et al. (2007), is a relatively new Lagrangian method based on the concept of particle
interactions. It is widely recognized that PD offers advantages over other mesh-free or
mesh-based methods, particularly in its ability to model complex evolving discontinuities.
By employing integral-form governing equations instead of differentials, PD is inherently
well-suited for modelling fracturing processes in brittle materials. These include phenom-
ena such as grain crushing (Zhu & Zhao, 2019a,b; Shi, Zhu & Zhao 2022), thermally-
induced fracturing (Wang, Zhou & Kou 2018; Gao & Oterkus, 2019a; Bazazzadeh,
Mossaiby & Shojaei 2020; Chen et al. 2021; Zhang & Zhang 2022; Bie et al. 2024a,b; Hao
et al. 2024; Yang, Zhu & Zhao 2024a) and impact-induced fracturing (Yang, Li & Li 2020;
Zhu & Zhao 2021; Yao & Huang 2022; Yao et al. 2023). While PD has shown significant
capability in addressing discontinuities in solid mechanics, literature on its application to
fluid flow is limited. Recently, a new version of PD, named Eulerian PD (Silling et al.
2017) or semi-Lagrangian PD (Behzadinasab & Foster 2020), has emerged. This approach
uses the deformed body as the reference configuration rather than the undeformed one,
showing promise for modelling fluid flow and large deformation problems. The authors
have recently extended the PD framework to include fluid flow and fluid–solid interaction
modelling by coupling total- and semi-Lagrangian formulations of PD (Yang, Zhu & Zhao
2024b). However, to the best of the authors’ knowledge, there is currently no PD approach
available for modelling coupled flow and heat transfer processes, especially when thermal
fluid–solid interaction problems are involved with evolving discontinuities in solids.

This study presents a cutting-edge effort to establish a unified PD framework
that integrates both fluid dynamics and energy exchanges. A novel coupled thermo-
hydrodynamic PD model will be developed using a semi-Lagrangian formulation within
the state-based PD framework. The formulation accommodates non-isothermal conditions
by incorporating a non-local form energy equation. A multi-horizon scheme is introduced
for improving numerical accuracy and stability. The work presented here lays the
groundwork for future development of a fully coupled thermo-hydro-mechanical (THM)
PD framework, which will provide unique capabilities for modelling coupled THM
processes involving large deformation, fracturing in solids, and fluid flow in fractured
media. Typical examples include frost cracking and slope failure induced by freezing
and thawing (Chen, Huang & Huang 2024a; Chen, Huang & Liang 2024b; Yu et al.
2024a,b,c), cool water injection into hot rock formations for oil extraction (Xue et al.
2023), and magma-driven fracturing (Spence & Turcotte 1985; Taddeucci et al. 2021).

The structure of this paper is as follows. Section 2 introduces the fundamental concepts
of PD theory, discussing both total- and semi-Lagrangian formulations. Building upon
this foundation, Section 3 presents our proposed novel thermo-hydrodynamic PD model.
Section 4 details the integration scheme for the PD model to facilitate implementation
and computation. Sections 5 and 6 provide a comprehensive set of benchmark and
numerical examples, including investigations into heat conduction, natural convection and
Rayleigh–Bénard convection cells. Finally, Section 7 concludes the paper by summarizing
the key findings and implications of our study, along with a discussion of potential
limitations and outlook.

2. Peridynamics theory and non-local operators
The PD approach is based on the fundamental principle of modelling interactions among
individual material points. In this framework, a continuous medium is represented by
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discretizing it into a finite number of material points. During this discretization process, a
specific range known as the horizon is defined, which sets the extent of the interaction
forces between a master material point and its neighbouring points. The set of all
neighbouring points associated with a given master material point, denoted as Ωx , is
referred to as its family. Consequently, the equation of motion for each material point
x can be expressed by considering all interactions within its family, as follows:

ρ (x) ü (x, t)=
∫
Ωx

[T 〈x′ − x
〉− T

〈
x − x′〉] dVx ′ + b(x), (2.1)

where ρ, u and b represent the density, displacement and body force density of a master
material point, respectively, and Vx ′ represents the volume of a neighbouring point. Here,
T is defined as the force state, which operates on each bond and yields the interaction
forces between different material points. For example, T 〈x′ − x〉 denotes the force exerted
by point x′ on point x.

Force state T 〈x′ − x〉 can be quantified in different ways through constitutive models.
For brittle-elastic materials, a typical model is the linear PD solid model given as (Silling
et al. 2007)

T
〈
x′ − x

〉= t
Y

‖Y‖ , (2.2)

in which t is a scalar force state, and Y is the deformed bond vector between two material
points. Note that for the linear PD solid model given in (2.2), the magnitude of T 〈x′ − x〉
may not be the same as T 〈x − x′〉, and this formulation is commonly known as the state-
based PD. If the magnitudes of interaction forces between two material points are always
equal, then the state-based PD reduces to bond-based PD. State-based PD is adopted
throughout this paper as it frees many limitations of the bond-based PD (Silling et al.
2007).

As an alternative formulation to the classical solid mechanics, the original PD employed
the Lagrangian scheme, as illustrated in figure 1(b). In this scheme, neighbouring material
points for a specific master point stay fixed, while the shape and size of the family
evolve continually with deformation. The Lagrangian formulation is well-suited for solid
mechanics applications where the small deformation assumption usually remains valid.
However, it faces challenges when applied to fluid mechanics and problems involving
significant deformation, as the shape of the family can become highly distorted. Under
such circumstances, the derivatives in the governing equations are poorly evaluated by
integration over material points within a distorted family. Semi-Lagrangian PD serves as
a remedy to facilitate modelling of large deformation problems by PD. Also known as
Eulerian PD (Silling et al. 2017) or updated Lagrangian PD (Bergel & Li 2016; Tu &
Li 2017; Yan et al. 2019, 2021), it represents a relatively new variant of the traditional
PD approach that combines both Lagrangian material points and Eulerian grids. In the
semi-Lagrangian PD formulation, material points are still tracked using a Lagrangian
approach, meaning that their positions, velocities and accelerations are explicitly updated
at each time step. However, the interactions among the material points are computed
using a Eulerian framework, where a fixed family shape is maintained, as illustrated in
figure 1(c). This approach requires updating neighbouring material points in the presence
of significant deformation, and derivatives are approximated using non-local integral
operators. Two commonly used non-local operators are the non-local gradient operator
G and the non-local divergence operator D, which uses integrations over neighbouring
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(a)

(b) (c)
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Figure 1. Schematics of (a) basic concepts and initial configuration of PD, (b) the total-Lagrangian scheme,
and (c) the semi-Lagrangian scheme, taking a thermal expansion process as an example.

material points to approximate gradient and divergence at a specific material point. They
are expressed as (Bergel & Li 2016)

G (A)=
[∫

Bx

w 〈‖Y‖〉 (� · A)⊗ Y dVx ′
]

M−1
x

∼= ∇ A, (2.3)

D (A)=
∫

Bx

w 〈‖Y‖〉 (� · A) ·
(

M−1
x Y

)
dVx ′ ∼= ∇ · A, (2.4)

where A is a random vector. Here, � · represents a difference operator, e.g. � · A =
Ax ′ − Ax ; ∇ A and ∇ · A represents the local gradient and local divergence of vector A,
respectively; ⊗ is the dyadic product; and Mx is defined as the shape matrix, which is
calculated as

Mx =
∫

Bx

w 〈‖Y‖〉 Y ⊗ Y dVx ′, (2.5)

in which w〈‖Y‖〉 is the weight function that determines the influence of neighbouring
material points based on their distances to the master point. The weight function can
be chosen in various forms, such as unity, B-spline or Gaussian functions. In this study,
w〈‖Y‖〉 is specifically selected in the Gaussian form

w 〈‖Y‖〉 = exp

(
−
(‖Y‖
αδ

)2
)
, (2.6)

where the parameter α is selected to be 0.5. Note that all the integrations in (2.3)–(2.5) are
conducted over the updated family Bx .
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3. Coupled thermo-hydrodynamic PD model
In this section, the governing equations for fluid flow coupled with heat transfer are
reformulated into their non-local forms using the semi-Lagrangian PD method and non-
local operators. The fluid flow is assumed to be weakly compressible, inviscid and heat
conducting.

3.1. Continuity equation
The continuity equation required the conservation of mass within a fixed volume over
time, which is given by

∂ρ

∂t
+ ∇ · (ρv)= 0, (3.1)

where v is the velocity vector, and ∂/∂t is the Eulerian derivative with respect to time.
The term ∇ · (ρv) can be further expanded to

∂ρ

∂t
+ v · ∇ρ + ρ ∇ · v = 0. (3.2)

For isothermal flows, the density change, i.e. the second term on the left-hand side
of (3.2), can be neglected. However, for thermal flows, where temperature variations
occur, the density becomes a thermodynamic variable that is dependent on temperature.
Therefore, all three terms in (3.2) should be considered explicitly for thermal flow.

To bridge the Eulerian and Lagrangian descriptions (note that semi-Lagrangian PD still
adopts the Lagrangian description), the Lagrangian derivative (also known as the material
derivative) is introduced as

D
Dt

= ∂

∂t
+ v · ∇, (3.3)

therefore the continuity equation given in (3.2) can be alternatively written in Lagrangian
form as

Dρ
Dt

+ ρ∇ · v = 0. (3.4)

Note that (3.4) and (3.2) are fundamentally equivalent. The Lagrangian derivative
(or material derivative) explicitly incorporates both the local change present in the
Eulerian derivative and the convective change terms. This equivalence arises because
the material derivative accounts for the temporal variation at a fixed point (local change)
and the transport of the quantity due to fluid motion (convective change). Thus the two
formulations describe the same physical process but from different perspectives.

In the case of incompressible flows, directly implementing (3.4) in an explicit scheme
necessitates an extremely small time step, which is computationally prohibitive. To address
this issue, a weakly compressible method proposed by Monaghan (1994) in SPH is utilized
to model the incompressible fluid. In this approach, an equation of state is introduced to
describe the relationship between the pressure p and the density ρ of the fluid:

p = ρc2
0

n

[(
ρ

ρ0

)n

− 1
]
, (3.5)

where n is one fitting parameter, which can be interpreted from experiments, ρ0 is the
initial density, and c0 is the artificial sound speed. By using the weakly compressible
method, the density is updated according to (3.4), and the pressure is calculated explicitly
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from (3.5). Substituting the non-local divergence operator given in (2.4) into (3.4) gives
the non-local continuity equation as

Dρ
Dt

= −ρ
∫

Bx

ω 〈‖Y‖〉 v 〈Y 〉 ·
(

M−1
x Y

)
dVx ′ . (3.6)

3.2. Momentum equation
The classical local equation of motion is expressed mathematically as

∂ρv

∂t
+ ∇ · (ρv ⊗ v)= ∇ · σ + b, (3.7)

where σ is the Cauchy stress tensor, and b denotes the body force density. Equation (3.7)
governs the motion of a continuous medium and is more commonly known as the Navier
equation in fluid mechanics. For incompressible fluid, (3.7) can be further simplified by
expanding the two derivatives on the left-hand side,

ρ

(
∂v

∂t
+ v ∇ · v

)
= ∇ · σ + ρg, (3.8)

or expressed in the Lagrangian description with the material derivative,

ρ
Dv

Dt
= ∇ · σ + ρg. (3.9)

In the case of thermal flow, temperature variations can lead to changes in fluid properties
such as density and viscosity. The Boussinesq approximation is a commonly adopted
approach in which the variations of all fluid properties, except for density differences
multiplied by the acceleration due to gravity, i.e. ρg in (3.8)–(3.9), are neglected.
This approximation allows for a computationally efficient simulation while effectively
capturing the buoyancy force resulting from temperature changes. However, it is important
to note that the Boussinesq approximation requires small variations in both temperature
and density to be valid. In this study, instead of using the Boussinesq approximation, we
update the density in each step according to (3.4), then consider the thermal effect by
incorporating the expression

ρ = ρ′ +�ρ, (3.10)

where ρ′ denotes the initial density obtained directly from (3.4) at each step, and �ρ is
the variation of density induced by variation in temperature. Provided that the variation
in density is linearly related to the variation in temperature, �ρ can be expressed as a
function of thermal expansion coefficient β as

�ρ = −β �Θ ρ′, (3.11)

in which �Θ is the variation in temperature. Note that the density is assumed to
decrease monotonically as temperature increases. If the density–temperature relationship
is nonlinear and requires a more complex expression, then it is possible to introduce more
intricate equations to capture the behaviour accurately (Szewc et al. 2011).

The momentum equation can also be expressed in non-local form by substituting (2.4)
into (3.9):

ρ
Dv

Dt
=
∫

Bx

ω 〈‖Y‖〉
(
σ x M−1

x + σ x ′ M−1
x ′
)

Y dVx ′ + b. (3.12)
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3.3. Constitutive equation of fluid
For the Newtonian fluid considered in this paper, the stress tensor σ in (3.9) can be
decomposed into two parts:

σ = −p I + 2με̇, (3.13)

where the pressure p represents the hydrostatic part and can be calculated by the equation
of state defined in (3.5), μ is the dynamic viscosity, and ε̇ is the rate of deformation, the
product of these latter two denoting the viscous part. Here, ε̇ can be related to the gradient
of velocity as

ε̇ = 1
2

[∇v + (∇v)T
]
. (3.14)

3.4. Energy equation
When considering heat transfer, the fluid flow system is extended by incorporating the
energy equation, which states that the time rate of change of the total energy is

ρ

(
∂e

∂t
+ v ∇ · e

)
= −∇ · q + ϕ + ρΘb, (3.15)

whereΘb is the internal volumetric heat generation per unit mass, the dissipation function
ϕ = 2με̇ : ε̇ is adopted according to Reddy & Gartling (2010), and the heat flux q is defined
as

q = −kh ∇Θ, (3.16)

in which kh is the thermal conductivity. For the internal energy function e, one of the most
common expressions is as a function of temperature and density, i.e. e = e(Θ, ρ). The
derivative of e with respect to time can be expanded according to the chain rule as

∂e

∂t
= ∂e

∂Θ

DΘ
Dt

+ ∂e

∂ρ

Dρ
Dt
, (3.17)

where ∂e/∂Θ is defined as the specific heat capacity c, and Dρ can be regarded as
zero for incompressible fluid considered in this paper. Therefore, substituting (3.17) into
(3.15)–(3.16) yields the non-local energy equation and non-local Fourier law:

ρc
DΘ
Dt

=
∫

Bx

ω 〈‖Y‖〉
(

qx M−1
x + qx ′ M−1

x ′
)

Y dVx ′ + ϕ + ρΘb, (3.18)

qx = −kh

[∫
Bx

ω 〈‖Y‖〉 (� ·Θ) Y dVx ′
]

M−1
x . (3.19)

4. Multi-horizon scheme and numerical implementation
Section 3 provides a detailed formulation of the coupled thermo-hydrodynamic PD model,
which can be readily used to model convection problems. However, our previous research
on the dispersion relation and error analysis of the PD heat equation (Yang et al. 2024a)
has highlighted the significant impact of non-locality on the accuracy of thermal field
modelling. Specifically, as the horizon size increases, the ratio of heat conduction slows
down, and there is a potential for oscillations in the temperature field. This phenomenon
occurs because the non-local PD formulation allows particles to bypass heat flux, which is
inconsistent with the fundamental nature of heat conduction, a process that is inherently
local and relies on direct contact. It is worth noting that the previous investigation was
based on a total-Lagrangian scheme, and the situation may be even more challenging with
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a semi-Lagrangian scheme due to the additional errors arising from irregularly distributed
material points. With these considerations, it is favourable to use a small horizon for the
thermal field, since a small horizon helps to mitigate the potential issues associated with
non-local effects as mentioned above.

On the other hand, the convection process in thermal flow can exhibit highly non-
local behaviour. In fluid flow systems, convection can induce changes in density and
velocity profiles throughout the fluid domain. While these changes originate from local
heat conduction, they can occur over a larger spatial extent, especially in extreme cases
such as Earth’s atmosphere and mantle, spanning hundreds of kilometres (Huang 2024).
Since density and velocity are crucial factors in determining flow behaviours of fluids,
it is essential to select a horizon size for fluid flow modelling that is large enough to
capture the convective characteristics. According to the numerical experiments conducted
by Reece et al. (2024), a kernel smoothing length of four times the particle size is
required to accurately capture the steady-state thermal flow in SPH. Similarly, based on our
experience, it is recommended that the horizon for fluid flow modelling in PD should be at
least three times the material point size, with four or five times acceptable, to effectively
capture the complex convective pattern. However, this poses a dilemma when it comes to
modelling thermal flow, as a smaller horizon is preferable to the heat conduction process.

To address the challenge of maintaining accuracy and stability for both fluid and
thermal field modelling, a multi-horizon scheme has been employed in this study. This
approach, first proposed by Yang et al. (2024a) in coupled thermo-mechanical problems,
involves using a larger horizon for solid fracturing modelling, and a smaller horizon for
heat transfer modelling. In the context of coupled flow and heat transfer processes, a
larger horizon is adopted for modelling fluid motion, while a smaller one, termed the
thermal horizon, is used for heat conduction. The larger fluid horizon captures convective
behaviour and changes in density and velocity profiles over a larger spatial extent, while
the smaller thermal horizon focuses on localized heat conduction and mitigates dispersive
issues in thermal modelling. This approach allows us to achieve optimized accuracy in
both fluid and thermal aspects by considering their distinct characteristics. The multi-
horizon scheme also serves as a way to save computational cost as fewer neighbouring
material points are involved in the thermal field model. A schematic diagram illustrating
the methodology is presented in figure 2.

4.1. Spatial discretization
To solve the integral governing equations, the entire simulation domain must be discretized
into subdomains. Typically, line segments, squares and cubes are used as subdomains for
one-dimensional (1-D), 2-D and 3-D problems, respectively. After discretization, material
points are placed at the centroids of these subdomains. All calculations are performed
at these material points, which are analogous to Gaussian points in the FEM. However,
these material points carry all material properties as well as the volume (or area/length
for 2-D/1-D problems) of their respective subdomains. For clarity, figure 3 illustrates the
discretization of a 2-D problem with uniform spacing �x between material points. Using
this meshless discretization scheme, (3.6), (3.12), (3.18) and (3.19) can be expressed in the
discretized form as

Dρi

Dt
= −ρi

Ni∑
j=1

ω
〈∥∥Y i j

∥∥〉 (v j − vi
) · (M−1

i Y i j

)
Vjψ j , (4.1)

ρi
Dvi

Dt
=

Ni∑
j=1

ω
〈∥∥Y i j

∥∥〉 (σ i M−1
i + σ j M−1

j

)
Y i j V jψ j + bi , (4.2)
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MP after heat transfer

j

jj

j
i

ii

i
MP after deformation
Horizon

Thermal horizon
Deformed horizon

Deformed thermal horizon

Deformation

Heat conduction

Neighbour

searching

Reference configuration

ΩiΩi Ω′
j

B ′
j

Bi

Ω′
j

Figure 2. Schematics of the semi-Lagrangian multi-horizon thermo-hydrodynamic PD model: family of
material point (MP) i (initial Ωi and updated Bi ), and thermal horizon of material point j (initial Ω ′

j and
updated B ′

j ).

Master MP

Neighbouring MPs fully enclosed

Neighbouring MPs partially enclosed

Non-Neighbouring MPs

δ

�x

xj

xi

Figure 3. Discretization, material points and volume correction in a 2-D problem.

ρi ci
DΘi

Dt
=

N ′
i∑

j=1

ω
〈∥∥Y i j

∥∥〉 (qi M−1
i + q j M−1

j

)
Y i j V jψ j + ϕi + ρΘbi , (4.3)

qi = −kh

⎡
⎣ N ′

i∑
j=1

ω
〈∥∥Y i j

∥∥〉 (Θ j −Θi
)

Y i j V jψ j

⎤
⎦ M−1

i , (4.4)

where the subscripts i and j are associated with master material point i and neighbouring
material point j, respectively. Here, N represents family number within the fluid horizon,
while N ′ represents family number within the thermal horizon. The deformed bond vector
between i and j , Y i j , is calculated by x j − xi . Also, ψ j is a volume correction coefficient
since the outer neighbouring material points within the range δ −�x/2< ‖Y i j‖< δ
are only partially enclosed within the horizon, as illustrated in figure 3. The correction
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Start with input files

Neighbour searching: set up neighbour lists

based on horizon and thermal horizon
Calculate half-step velocity by Eq. (4.8)

and apply velocity boundary

Fluid f low part within horizon

Thermal part within thermal horizon

Update position of material points by Eq. (4.9)

and apply displacement boundary

Calculate acceleration

by equation of motion Eq. (4.10)

Calculate velocity by Eq. (4.11)

and apply velocity boundary

End with output files

No

Yes
t ≤ tF

Calculate heat flux by Eq. (4.4)

and apply flux boundary

Calculate temperature by Eq. (4.6)

and apply temperature boundary

Solve continuity equation by Eq. (4.7)

and update density by Eq. (3.11)

Figure 4. Flow chart of the time integration of the multi-horizon scheme.

coefficient ψ j is defined according to the distance between two material points as (Silling
& Askari 2005)

ψ j =
⎧⎨
⎩
δ −�x/2 − ∥∥Y i j

∥∥
�x

, δ −�x/2<
∥∥Y i j

∥∥< δ,
1,

∥∥Y i j
∥∥≤ δ −�x/2.

(4.5)

4.2. Time integration
To numerically obtain the solution to the coupled thermo-hydrodynamic system, the
coupled PD equations are partitioned naturally according to fluid flow field and thermal
field, and each field is solved sequentially by a forward difference scheme. The procedure
involves a series of steps as illustrated in the flow chart in figure 4. In each time step,
the heat equation is initially solved within the thermal horizon using a forward difference
scheme:

ρn
i ci

Θn+1
i −Θn

i

�t
=

N ′
i∑

j=1

ω
〈∥∥∥Y n

i j

∥∥∥〉 (qn
i M−1

i + qn
j M−1

j

)
Y n

i j V n
j ψ

n
j + ϕn

i + ρn
i Θ

n
bi , (4.6)

where the superscript n denotes the values at the n th step, and �t is the time step. This
computation enables the update of temperatures for material points within the thermal
horizon while keeping the positions of all material points unchanged.

Subsequently, the continuity and momentum equations are solved within the fluid
horizon also by a forward difference scheme:

ρn+1
i − ρn

i

�t
= −ρn

i

Ni∑
j=1

ω
〈∥∥Y n

i j

∥∥〉 (vn
j − vn

i

)
·
(

M−1
i Y n

i j

)
V n

j ψ
n
j . (4.7)
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In this step, the new temperatures obtained from the heat equation solution are used.
The position, velocity and acceleration of the material points are then updated accordingly
by the velocity Verlet scheme:

v
n+(1/2)
i = vn

i + 1
2

an
i �t, (4.8)

xn+1
i = xn

i + v
n+(1/2)
i �t, (4.9)

an+1
i = 1

ρn+1
i

N∑
j=1

ω
〈∥∥Y n+1

i j

∥∥〉 (σ n
i M−1

i + σ n
i M−1

j

)
Y n+1

i j V n
j ψ

n
j + bn

i , (4.10)

vn+1
i = v

n+(1/2)
i + 1

2
an+1

i �t. (4.11)

In scenarios involving large deformation problems, such as fluid flow, it is important to
note that both the fluid horizon and thermal horizon can become significantly distorted
after updating the positions of the material points. As a result, an additional neighbour
searching process is necessary in the semi-Lagrangian scheme. During this process, the
neighbouring material points of a given master point are updated while preserving the
circular shape of both the fluid horizon and the thermal horizon. For a visual representation
of the described methodology, see figure 2. Since neighbour searching must be performed
at each time step due to the continuous motion of material points, selecting an efficient
neighbour-searching algorithm is critical for minimizing computational costs. In this
study, we adopt the region partition search algorithm, as elaborated in Madenci &
Oterkus (2014) and Diyaroglu (2016). The primary concept of the region partition search
algorithm is to divide the entire domain into equally sized cells that are larger than the
horizon. When searching for neighbouring material points, it is only necessary to examine
the neighbouring cells, while deactivating all the material points in non-neighbouring
cells. The region partition search algorithm has been proven to outperform several other
searching algorithms with different tree structures (Vazic et al. 2020). While there may
be more advanced searching algorithms that offer superior computational efficiency,
optimizing the searching algorithm is beyond the scope of this paper.

4.3. Implementation of boundary conditions
In numerical simulations, displacement, velocity and temperature boundary conditions
can be implemented directly by introducing additional material points as non-local
Dirichlet boundary conditions. For non-isothermal problems, adiabatic or flux boundary
conditions are also commonly required. Flux boundary conditions are typically treated
as Neumann boundary conditions. Madenci & Oterkus (2014) proposed a method for
implementing non-local flux boundary conditions by adding extra material points and
prescribing their temperatures at each time step; however, this approach significantly
increases computational costs.

In this study, we adopt a two-field formulation of the energy equation, as shown in (3.18)
and (3.19), which explicitly expresses the governing equation for flux. This formulation
allows flux boundary conditions to be imposed directly by prescribing the flux (Dirichlet
boundary) rather than indirectly through temperature (Neumann boundary). Macek &
Silling (2007) recommended that the extent of additional material points should match
the horizon size δ to ensure that boundary conditions are adequately reflected within
the simulation domain. In the multi-horizon scheme used in this work, displacement and
velocity boundaries are applied using three layers of material points, while only one layer
of material points is sufficient for thermal boundaries.

1010 A66-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.367


Journal of Fluid Mechanics

4.4. Numerical stabilization
Due to the discretized nature of material points in semi-Lagrangian PD, they can
sometimes become unevenly distributed or cluster together, leading to inaccurate results
or program errors. To mitigate this issue, the particle shifting technique is employed.
It involves adjusting the positions of material points during the simulation to alleviate
clustering and improve the overall distribution. The shifting process typically includes
two main steps. First, the density of each particle is estimated based on its neighbouring
material points as

ρ =
∫

Bx
ω 〈‖Y‖〉 dmx ′∫

Bx
ω 〈‖Y‖〉 dVx ′

, (4.12)

where mx ′ and Vx ′ represent the mass and volume of a neighbouring material point,
respectively. Particles that are too close to each other or have higher densities are shifted
or moved slightly to achieve a more uniform distribution. The shifting is performed by
applying corrective displacements to each material points as (Yang et al. 2024a)

�xi = CP ST vmax dt
Ni∑

j=1

⎛
⎝ 1

Ni

Ni∑
j=1

‖Y‖
⎞
⎠

2

‖Y‖2 N〈Y 〉 , (4.13)

where CP ST is a shifting coefficient, vmax represents the maximum expected velocity of
fluid material points throughout the computational domain, and N〈Y 〉 denotes the unit
vector of the deformed bond.

5. Benchmarks

5.1. Pure heat conduction of fluid in a square cavity
The natural convection within a closed square cavity serves as a typical case for modelling
convective processes. To validate the proposed multi-horizon thermo-hydrodynamic PD
model and semi-Lagrangian scheme for heat transfer, we first simulate pure heat conduc-
tion in the same square cavity before attempting to capture convective characteristics.

The schematic illustration of the square cavity is shown in figure 5 with both the width
and length l equal to 1 m. The initial temperature of the whole cavity is set as 0 ◦C. The
temperatures of the left and right boundaries are fixed at 1 ◦C and 0 ◦C, respectively.
The upper and lower boundaries are assumed to be adiabatic. All four surfaces are fixed
by setting the velocity in both x and y directions to zero. These non-local boundary
conditions are applied by adding additional material points outside the modelling domain
as shown in figure 5(b). Following the multi-horizon scheme, the horizon for fluid flow
is adopted to be three times the material point size, while the thermal horizon for heat
transfer is chosen as 1.5 times the material point size. Note that for thermal flow modelling,
the thermal horizon cannot be adopted as only one time material point size as used
in thermo-mechanical problems of solids by Yang et al. (2024a). Owing to the large
deformation nature of fluid flow, the material points can be randomly distributed within
the domain. If the thermal horizon is set as only one time point size, then there might be
no neighbouring material points in a certain direction, and an instability problem may be
induced. The whole model is consequently discretized into 86 × 86 Lagrangian material
points, each of size 0.0125 m.
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y

x
l

∂Θ/∂y = 0

∂Θ/∂y = 0

(a)
(b)

Θ0 Θ1

Fluid

Fluid material points

Boundary layers vx = vy = 0

g

Figure 5. Natural convection in a closed square cavity: (a) thermal boundary conditions and body force;
(b) discretized PD model and velocity boundary conditions.

The fluid is assumed to be dry air, which has the following properties: density
ρ = 1.3082 kg m−3, viscosity μ= 1.7 × 10−5 Pa s, thermal conductivity kh = 0.024
W m−1 ◦C−1, specific heat cv = 1005 J kg−1 ◦C−1, and thermal expansion coefficient
β = 0.00343 ◦C−1 (McQuillan, Culham & Yovanovich 1984). For thermal flow, there are
two relevant dimensionless quantities. One is the Prandtl number, defined as

Pr = ν

α
, (5.1)

which describes the ratio of momentum diffusivity ν =μ/ρ to thermal diffusivity
α = kh/ρc. The properties of dry air adopted here give Prandtl number 0.71, which implies
that the heat diffuses faster than momentum, leading to a more rapid temperature variation
within fluid flow. Another important dimensionless quantity is the Rayleigh number, given
by

Ra = gβ(Θ0 −Θ1)l3

να
, (5.2)

where g is gravity, Θ0 −Θ1 represents the temperature difference across the cavity, and l
is a characteristic length of the fluid domain. The Rayleigh number quantifies the tendency
of a fluid to undergo convective motion due to thermal gradients. A larger Rayleigh
number indicates more significant convection driven by buoyancy forces. In a zero-gravity
environment, the fluid is free from external forces, resulting in Rayleigh number zero.
Consequently, the combined conduction–convection process simplifies to pure conduction
under this circumstance. In this subsection, g is set to be zero in the numerical model to
simulate pure heat conduction in fluid.

The transient heat distribution in a rectangular plate with such boundary conditions is
given analytically by Crank (1975):

Θ =Θ0 + (Θ1 −Θ0)
x

l
+ 2
π

∞∑
n=1

Θ1 cos nπ −Θ0

n
sin

nπx

l
exp

(
− kh

ρc

n2π2t

l2

)
. (5.3)

By setting Θ0 = 1 ◦C and Θ1 = 0 ◦C, the analytical results along with the PD results
at the central horizontal line, i.e. from point (0.0, 0.5) to point (1.0, 0.5), are shown
in figure 6(a). The proposed coupled thermo-hydrodynamic PD method consistently
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Analytical solution (Crank, 1975)
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Figure 6. (a) Comparison between PD results and analytical solution (Crank 1975). (b) Temperature contour
of simulation results after reaching steady state.

matches well with the analytical solution until reaching the steady state. Figure 6(b)
plots the temperature and position at each discretized material point, along with the
temperature contour. It can be observed that nearly all the material points remain at
their initial positions since there is no external force, and the thermal expansion is not
apparent. The temperatures of material points with the same x position are the same as
expected, resulting in a uniformly distributed vertical temperature contour. This example
benchmarks the capability of the coupled thermo-hydrodynamic PD model in modelling
the heat conduction process.

5.2. Natural convection in a closure
In this subsection, the same problem as in § 5.1 is reconsidered by adding the gravity
force, which is the driving force of the natural convection phenomenon. De Vahl Davis
(1983) indicates that the thermal flow becomes turbulent when Ra reaches approximately
106. Therefore, three different Ra values, 103, 104 and 105, are simulated to investigate
different patterns of convection. All the other set-ups are the same as adopted in § 5.1.

Figure 7 depicts the temperature field for three different cases after reaching the steady
state. Different from the results in figure 6(b), the isotherms are all distorted due to the
convection process. Owing to the temperature variation, the density at the left-hand and
top sides of the cavity would be smaller than the density at the right-hand and bottom sides.
Therefore, the density variation further induces a buoyancy force that drives a clockwise
circulation within the square cavity. As the Rayleigh number increases, the isotherms
become more distorted. This phenomenon indicates that a higher speed flow is generated
for higher Ra, as validated by figure 8, in which the velocity distribution in the x and y
directions at steady state is shown. For convection with lower Ra, the thermal flow involves
a larger part of the material points, while the velocity remains low. As a contrast, with a
higher Ra, the velocity of the thermal flow increases significantly, while only the material
points near the boundaries participate in the flow. These flow patterns and convective
characters are consistent with the literature (Szewc et al. 2011; Danis et al. 2013; Gao &
Oterkus 2019b). Note that there are oscillations in the velocity field. This is due mainly
to the explicit scheme and weakly compressible assumption adopted. The divergence of
velocity in (3.4) cannot be guaranteed to be exactly zero in the current scheme. The error
may be mitigated by an implicit scheme or explicit incompressible scheme.
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Figure 7. Temperature distribution at each material point and temperature contour in the cavity for
(a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.
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Figure 8. Velocity distribution at each material point for (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.

Quantitative comparisons between the proposed PD method and the SPH results along
the central horizontal line of the square cavity, i.e. from point (0.0,0.5) to point (1.0,0.5),
are shown in figures 9(a,b). When the Rayleigh number is relatively small, the convection
is not significant, and the temperature approximately decreases linearly with the x position.
As the Rayleigh number increases, the temperature distribution becomes a curve affected
by the velocity of material points that boost or hinder the heat transfer. For all Rayleigh
numbers, the temperature obtained from the proposed PD method matches well with SPH
results. To facilitate a comparison of velocity with Danis et al. (2013), we normalize the
velocity in the same manner as

v∗ = v

α
= vρc

kh
. (5.4)

1010 A66-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.367


Journal of Fluid Mechanics

SPH (Danis et al. 2013)
PD

1.0

0.8

0.6

0.4

0.2

0 0.2

Θ
 (

°C
)

V
* y

0.4 0.6

x position, m

(a) (b)

0.8

Ra = 103

Ra = 103

Ra = 105

Ra = 105

Ra = 104

1.0 0
–80

–60

–40

–20

0

20

40

60

80

0.2 0.4 0.6

x position, m

0.8 1.0

Ra = 104

SPH (Danis et al. 2013)
PD

Figure 9. Comparisons of (a) temperature and (b) normalized velocity in the y direction along the central
horizontal line for different Rayleigh numbers.

As shown in figure 9(b), the peak velocity increases significantly as the Rayleigh number
increases, which drives the convection process and makes the temperature contour more
distorted. Again, both the trend and value of velocity are consistent with Danis et al.
(2013).

In heat transfer analysis, the Nusselt number is another dimensionless parameter that is
widely used to characterize the convective heat transfer between fluid and a solid surface.
The local Nusselt number is defined as

Nu(x)= ∂Θ

∂x
. (5.5)

Note that although the boundaries are also modelled by fluid material points herein, it
does not affect the validity of the Nusselt number and its definition. The solid boundary can
be applied by further developing a coupled THM PD model, which serves as an interesting
topic for future research. Figure 10 plots the Nusselt number at the right-hand wall, i.e.
from point (1.0,0.0) to point (1.0,1.0), along with SPH results, where good agreements
between the two methods are observed for all Rayleigh numbers.

6. Numerical example and discussions
Another typical natural convection is Rayleigh–Bénard convection, which occurs in a
planar horizontal layer of fluid heated from below, as shown in figure 11(a). Different from
the cases investigated in §§ 5.1 and 5.2, the gravity force in Rayleigh–Bénard convection is
in line with the initial temperature gradient. The Rayleigh–Bénard convection can develop
a regular pattern of fluid flow known as a Rayleigh–Bénard cell. The formation of such
a convection cell is still attributed to the density difference due to temperature variation
and hence buoyancy. The initial movement is the upwelling of less-dense fluid from the
warmer bottom layer. The Rayleigh–Bénard convection holds significant importance in
various fields. For instance, it is utilized to explain intricate patterns of frost damage in
turfgrass (Ackerson, Beier & Martin 2015). In the realm of biochemistry, the Rayleigh–
Bénard convection cell is employed for polymerase chain reaction (PCR) processes
(Krishnan, Ugaz & Burns 2002; Yao, Chen & Ju 2007), where a steady roll-type convective
flow is required to duplicate DNA. In such cases, the temperature gradient between the
bottom and top plates plays a crucial role in governing the convection. The Rayleigh
number, which is associated with the temperature gradient, must be sufficiently large
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Figure 11. Rayleigh–Bénard convection cell: (a) schematic (side view) of an experimental device by Krishnan
et al. (2002); (b) sketch map and boundary conditions of PD model.

to initiate convection while avoiding excessive values that could cause turbulent flow.
Additionally, without proper cell size design, the possibility of generating multi-roll flows
emerges. Consequently, the utilization of numerical simulations offers significant benefits
in exploring and understanding these phenomena in greater detail.

6.1. The PD simulation of Rayleigh–Bénard convection

6.1.1. Roll pattern
Herein, the proposed thermo-hydrodynamic PD model is used to model a Rayleigh–
Bénard convection cell as shown in figure 11(b). The right- and left-hand walls of the cell
are assumed to be adiabatic. The bottom wall is maintained at a higher temperature denoted
as Θ1, while the top wall is subjected to a lower one, Θ0. All four surfaces are fixed by
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Figure 12. Temperature distribution at steady state in the cell for: (a) Θ0 = 61 ◦C and Θ1 = 70 ◦C;
(b) Θ0 = 61 ◦C and Θ1 = 79 ◦C; and (c) Θ0 = 61 ◦C and Θ1 = 97 ◦C.

setting the velocity in both x and y directions to zero. The properties of the fluid in this case
are summarized as follows: density ρ = 975 kg m−3, viscosity μ= 0.000377 Pa s, thermal
conductivity kh = 6.71 W m−1 ◦C−1, specific heat cv = 4.176 J kg−1 ◦C−1, and thermal
expansion coefficient β = 0.0005 ◦C−1. Note that the properties are selected based on
water given in Yao et al. (2007), with the specific heat capacity minimized, and the thermal
conductivity magnified to obtain a more regular convective pattern. Different temperature
differences between the top and bottom walls, and different cell sizes, are used to produce
different convective patterns and showcase the capability of the proposed PD method.

We first investigate a horizontally layered fluid cell with width-to-height ratio 2, as
shown in figure 12. If the variation of temperature between the top and bottom plates
is minor, then the Rayleigh number is below the critical threshold that would trigger the
convection, and the heat transport remains purely conductive. The temperature distributes
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Figure 13. Velocity field at steady state in the cell for: (a) Θ0 = 61 ◦C and Θ1 = 79 ◦C; (b) Θ0 = 61 ◦C
and Θ1 = 97◦C. The direction and magnitude of an arrow align with the direction and magnitude of velocity,
respectively. The arrows are coloured by density.

linearly along the height after reaching the steady state. As the Rayleigh number increases,
the pure conductive phase is broken up due to the tendency of upward movement of the
heated fluid with lower density. These thermals have a mushroom-like appearance, as
indicated by the temperature fronts shown in figures 12(b) and 12(c), which is consistent
with the phenomenological model proposed by Howard (1966) and the experiment
conducted by Sparrow, Husar & Goldstein (1970). Finally, steady double-roll and triple-
roll flows are formed for lower and higher Rayleigh number cases, respectively. The
velocity of each material point is represented in figure 13 using arrows. The colour map
represents the density of corresponding material point and saturates at higher and lower
densities (a linear blue–white–red scale represents values from low to high).
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It can be observed that the thermal flow initiates from hot fluid with lower densities
towards cold regions with higher densities, which once again demonstrates the crucial role
of the buoyancy force in natural convection. Such eruption moves colder fluid close to
the bottom wall to replace the hot fluid. As the cold fluid is heated through conduction
from the wall, it eventually triggers another such eruption. This cyclical process repeats,
giving rise to a roll-type flow pattern. The rotation of the flows alternates horizontally
between clockwise and anticlockwise. The rolls in figure 13(a) are approximately circular
in shape, while those in figure 13(b) appear to be more oval-shaped. This observation
suggests a correlation between the Rayleigh number and the shape of the rolls. A higher
Rayleigh number corresponds to thermals with increased velocity, which results in a more
significant upward movement of the temperature front. Consequently, the rolls tend to take
on an elliptical shape, with a longer axis in the vertical direction. In other words, the
higher the Rayleigh number, the more elongated or stretched the rolls become vertically.
This also explains why three rolls are formed in figures 12(b) and 13(b). The eruption
is initiated around the position at x = 0.65 to form the second and third rolls (from
right to left) in figure 13(b). Since both the second and third rolls are elliptical, and
there is still enough room in the right-hand side of the cell for the formation of another
complete roll, the first roll later is triggered and formed by the downward movement
at the right edge of the second roll. Further increase in the temperature applied on the
bottom wall results in a turbulent and chaotic flow, which will be explored in detail in
later cases. Note that although the geometries of model and boundary conditions are
completely symmetric, the steady flow pattern is not. This phenomenon holds true in
experiments where spatially random-distributed upward thermals are observed (Sparrow
et al. 1970; Tritton 2012), and the Rayleigh–Bénard convection is known as one of the
typical spontaneous symmetry breaking processes. In terms of numerical modelling,
the symmetry of the material points is disrupted after displacements induced by heat
conduction and convection. On the other hand, small numerical perturbations may be
amplified owing to the non-local nature of the PD theory. To some extent, these simulation
results reflect the reality lying in the symmetry breaking process of Rayleigh-Bénard
convection.

With the temperature of the top and bottom plates kept at 61 ◦C and 97 ◦C, respectively,
different cell dimensions are adopted to investigate the effects of cell size. The results
for width-to-height ratios 1, 2 and 3 are shown in figures 14(a–c). For these three cases,
the Rayleigh numbers are the same, and the only differences lie in the width of the cell.
The flow at steady state recovers from multi-roll type to single-roll type as the width-to-
height ratio decreases, which is in line with the experimental finding by Krishnan et al.
(2002). Such a presence of a single steady roll, as depicted in figure 14(a), is advantageous
for processes such as PCR. When the width-to-height ratio of the cell is set to 0.5 by
doubling the height, the Rayleigh number of the cell in figure 14(d) is eight times of that
in the other cases in figures 14(a–c). Consequently, the flow pattern becomes irregular
and cannot reach a stable state. The temperature distribution and streamlines at different
times are shown in figure 15. The initial thermal flux wanders upwards instead of moving
vertically as seen in figures 14(a–c). Subsequently, another new thermal flux emerges and
disrupts the original flow. As a result, small-scale disorganized motions coexist alongside
the larger-scale circulatory flow, leading to continuous interactions between them. The cell
finally forms one single distorted thermal as shown in figures 15(d–f ). Although the
general shape of the thermal remains similar, this thermal flux still moves continuously
with a certain period, akin to the swaying of seaweed in water. This behaviour is more
clearly elucidated in figures 15(k,l), where the evolution of streamlines highlights the
ongoing movement within the system.
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(a) Steady single roll (b) Steady triple roll

(c) Steady quadruple roll

(d ) Unsteady flow
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Figure 14. Temperature distribution and roll type within the cell for different width-to-height ratios: (a) 1,
(b) 2, (c) 3 and (d) 0.5.

(a) (b) (c) (e) ( f )(d )

(g) (h) (i) (k) (l)( j)

Figure 15. Temperature distribution at (a) 5 s, (b) 6 s, (c) 10 s, (d) 16 s, (e) 20 s and (f ) 50 s; and streamlines
at (g) 5 s, (h) 6 s,(i) 10 s, (j) 16 s, (k) 20 s and (l) 50 s for the case in figure 14(d). Refer to the legend in
figure 14.
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Figure 16. Schematic of experimental set-up in Sparrow et al. (1970) and numerical model.

6.1.2. Turbulent thermal flow
To further validate the proposed PD computational method and demonstrate its capability
in modelling turbulent thermal flows at high Rayleigh numbers, we numerically reproduce
the Rayleigh–Bénard convection experiment conducted by Sparrow et al. (1970), as shown
in figure 16. In the experiment, a heating plate of width 9 cm was positioned 8 cm above the
bottom of a tank. The dimensions of the tank are width 58 cm and height 40 cm. The tank
was filled with water at initial temperature Θ0 = 23.6 ◦C. The plate was gradually heated
to Θ1 = 43.1 ◦C, and maintained at this temperature. The experimental set-up results
in a Rayleigh number up to 1010. For the simulation, we used the actual specific heat
capacity and thermal conductivity of water. The experimental observations indicated that
the fluid motions and temperature variations on the two sides and below the heating plate
were minimal shortly after the heating commenced. Therefore, to optimize computational
efficiency, we focus on the region above the heating plate by selecting a simulation domain
of width 12 cm and height 30 cm, as illustrated in figure 16. The material point size is set
to 0.6 mm, resulting in a total of 104 236 material points.

In figure 17, it can be seen that the cellular pattern shown in previous cases is completely
gone. These thermals lose their regularity as they ascend. The heights of different thermals
are also different. Nevertheless, all thermals manifest as rising columns of fluid, spaced
more or less evenly along the expanse of the heated surface. As a thermal ascends through
the relatively calm surrounding fluid, its leading edge becomes blunted and folded back,
resulting in a nearly semi-spherical cap, and bestowing a mushroom-like appearance upon
the thermal. Once these characteristics are established, the locations where the thermals
originate appear to be fixed. In other words, subsequent generations of thermals emerge
consistently from the same predetermined sites. These characteristics are consistent with
the experimental results shown in figure 17(c), where the generations of thermals are in
evidence. Figure 18 illustrates the temperature evolution at the monitor point indicated in
figure 16. This monitor point is located 0.8 cm above the heating plate, positioned above an
active thermal. In the experiment, a thermocouple junction was placed at this location to
record temperature changes. The experimental results show that the temperature oscillates
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Figure 17. Thermals rising from a heating plate: (a) numerical results obtained from PD; (b) numerical
results obtained from SPH; and (c) experimental results (Sparrow et al. 1970).

with a nearly constant amplitude and a specific frequency, indicating that thermals are
generated at almost consistent locations. The periodicity of the oscillations obtained from
our numerical results generally aligns well with the experimental recordings. However, the
numerical results exhibit slight deviations from strict periodicity and constant amplitude.
These discrepancies may be attributed to the smaller simulation domain that was adopted.
Another possible reason is that the mesh resolution may be insufficient to fully resolve the
interactions between nearby thermals, potentially leading to potential interference between
them.
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Figure 18. Temperature evolution at a specific point above the heating plate.

6.2. Discussion: performance and limitations
A key concern regarding the proposed PD method is its computational efficiency. Common
fluids, such as water, exhibit low thermal conductivity and high specific heat capacity,
which often necessitates significant time to reach steady-state flow or display typical flow
patterns. Achieving this with an explicit time integration scheme can lead to substantial
computational costs.

To assess the computational efficiency of the proposed PD method, we compare its
performance with that of SPH for the turbulent Rayleigh–Bénard convection case. The
PD and SPH share several similarities that make them suitable for comparison; both are
particle-based methods that rely on interactions between particles. While PD is primarily
known for its application in solid mechanics, SPH is widely used for fluid modelling (Feng
et al. 2021, 2024). For this comparison, we reproduce the coupled thermo-hydrodynamic
SPH method reported by Reece et al. (2024). To ensure fair comparison, both PD and SPH
employ explicit time integration schemes, identical model set-ups, and the same time step
sizes. Additionally, the interaction range for both methods, defined as the horizon in PD
and the smoothing length in SPH, is set to three times the particle size. For the turbulent
Rayleigh–Bénard convection case, parallel computing is employed using 12 cores of an
Intel® Xeon® Gold 6248 @ 3 GHz processor. The numerical result generated by SPH is
presented in figure 17(b). Both PD and SPH qualitatively capture the mushroom-shaped
thermals. However, based on our current results, SPH appears to produce fewer thermals
compared to PD.

Natural convection cases are also simulated using SPH, with computations performed
on a single core of the same CPU. The computational times for the different cases,
using both PD and SPH, are summarized in table 1. From this table, it can be observed
that the computational efficiency of PD is comparable to that of SPH for coupled
thermo-hydrodynamic problems when using a single thread. However, PD exhibits
lower efficiency than SPH when parallel computing is utilized. This difference can be
attributed to several factors. The governing equations in PD, particularly for state-based
formulations, are more complex than those in SPH, leading to higher computational
overhead. Furthermore, SPH has been extensively used and optimized over several
decades, especially in fluid dynamics. As a relatively newer method, PD has not yet
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Case No of particles Steps PD SPH

Turbulent Rayleigh–Bénard convection 104 236 500 000 169 037 s 55 687 s
Natural convection with Ra = 103 7396 5 000 000 134 518 s 162 974 s
Natural convection with Ra = 104 7396 5 000 000 183 647 s 161 683 s
Natural convection with Ra = 105 7396 5 000 000 192 777 s 163 988 s

Table 1. Computational time comparison between PD and SPH.

benefited from the same level of algorithmic optimization and parallelization efforts as
SPH.

Nevertheless, it is important to acknowledge that the efficiency of particle-based
methods, whether PD or SPH, is generally lower than that of element-based methods such
as FEM and FVM when modelling internal flows. The primary advantages of particle-
based methods lie in their ability to handle free-surface flows and fluid–solid interaction
problems with evolving geometries. Unlike element-based methods, which use Eulerian
meshes and cannot precisely identify the position of free surfaces within an element,
particle-based methods naturally and accurately capture free surfaces. This capability
makes them particularly well-suited for problems involving complex interfacial dynamics.

One potential solution to further improve efficiency of PD is to employ an implicit
scheme (Bie et al. 2019), which would allow for a much larger time step. Additionally,
the semi-Lagrangian formulation necessitates neighbour searches at each step, which can
consume more time than the actual model computations in CPU-based codes. In this
context, GPU-accelerated computing (Wang & Yin 2024; Wang et al. 2025) also emerges
as a promising approach. While these technical considerations are intriguing, they delve
more into the computer science and coding aspects, warranting dedicated future research.
The primary focus here is more on the fluid mechanics aspect and the development of the
coupled thermo-hydrodynamic formulation within a unified PD framework.

It should be emphasized that the Rayleigh number in the Rayleigh–Bénard convection
case reaches up to 1010. According to Danis et al. (2013), thermal flows at such high
Rayleigh numbers are inherently turbulent. While the proposed PD method demonstrates
the ability to capture typical turbulent thermal flow patterns, its performance for cases
with even higher Rayleigh numbers requires further investigation. Additionally, the
current implementation does not incorporate a turbulence model. Although the results
align reasonably with experimental observations, we anticipate that the accuracy of
the simulations could be further enhanced by integrating a turbulence model into the
PD framework. This integration would improve the capability of the method to resolve
finer-scale turbulent structures and dynamics.

Another important aspect of the multi-horizon scheme that warrants exploration is
its energy conservation property, which has not been addressed explicitly in previous
work (Yang et al. 2024a). An important assumption made in the present study is that
kinetic energy and thermal energy are independent, conserving within their respective
horizons. This assumption is fundamental, as fluid flow is driven primarily by internal
buoyancy forces, and fluid displacement does not generate or dissipate heat. However,
in two-way coupled thermo-hydrodynamic scenarios, such as the plastic flow of liquid
metal, where heat generation or dissipation occurs due to fluid movement, ensuring energy
conservation in the multi-horizon scheme poses an intriguing challenge that requires
further investigation.
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7. Conclusion and outlook
This paper presents a new thermo-hydrodynamic model developed within the state-
based peridynamics (PD) framework. The semi-Lagrangian PD formulation is adopted for
modelling large deformations of fluids. This formulation is extended to non-isothermal
conditions by incorporating the energy equation, which governs the heat conduction
within the fluids. The energy equation is transformed into a non-local form using non-
local gradient and divergence operators to align with the PD formulation. Consequently,
multi-physics analysis involving fluid flow with heat transfer can be conducted effectively
within the framework. To mitigate the numerical oscillations in thermal fields and to
reduce computational costs, a multi-horizon scheme is proposed for coupled thermo-
hydrodynamic modelling, where a smaller horizon is adopted for the thermal field (i.e.
temperature), and a larger horizon is used for the flow field (i.e. velocity, acceleration).
The proposed method is benchmarked against a pure conduction problem and a classical
natural convection problem in a closed cavity. Further applications demonstrate the
capabilities of the coupled PD method in capturing complex thermal flow patterns,
including steady roll-type flows and turbulent mushroom-like thermals, as evidenced
by experiments. Quantitative comparisons between the numerical results and recorded
experimental data on periodicity and frequency of turbulent thermal generation further
validated the proposed method.

The proposed computational method paves the way for the future development of a
unified framework for computational modelling of coupled THM processes for both solids
and fluids, particularly in scenarios where evolving discontinuities in solids play a critical
role. Such scenarios are commonly encountered in nature and engineering applications.
For instance, magma-driven fracturing (Spence & Turcotte 1985; Taddeucci et al. 2021)
in crustal rocks serves as a typical example. Similarly, in geothermal energy exploitation,
cool water is injected into hot dry rock to create a more interconnected fracture network.
In these contexts, the intricate interplays between mechanical and thermal fracturing,
heat conduction and convection in and across different phases, as well as fluid flow,
must all be considered. The proposed PD method for fluid modelling can be integrated
seamlessly with existing thermo-mechanical PD solid models, such as the one developed
by Yang et al. (2024a), which is capable of modelling heat transfer in solids as well
as fracture initiation and propagation. Since both fluid and solid components can be
modelled within a single particle-based framework, there is no need to explicitly define the
fluid–solid interface. This represents a significant advantage when addressing complex,
evolving geometries in fluid–structure interaction problems. Furthermore, coupling PD
fluid and solid models does not require specialized techniques. A straightforward fictitious
point method (Yang et al. 2024b) can be employed to complete the horizons of
interacting solid and fluid material points. This unified framework can be extended
further to incorporate phase change processes between fluid and solid, enabling the
modelling and interpretation of many intriguing phenomena in geoscience, such as igneous
processes and rainfall- or temperature-induced fracture initiation and propagation in
glaciers.
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