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A DIMENSION THEOREM FOR REAL PRIMES 

D. DUBOIS AND G. EFROYMSON 

I n t r o d u c t i o n . Le t k be a real closed field (see § 2 for a definition). Le t 
k be an algebraic closure of k. An algebraic set denned over k is, as usual, a 
subset of kn (n some integer greater than 0) which is the set of zeros of some 
polynomials in k\X\, . . . , Xn]. A var ie ty is denned to be an absolutely ir­
reducible algebraic set. We define the real points of an algebraic set X to be 
the points in X Pi kn. One can then define X to be real if I(X C\ kn) = I(X). 
(I(X) = the polynomials in k[Xi, . . . , Xn] which vanish on X.) By dimension 
of a var ie ty we mean its usual dimension, e.g. the transcendence degree of its 
function field over the base field. W e wish to prove: 

T H E O R E M 2. Let X be a real variety of dimension d. Let W\, . . . , Ws be sitb-
varieties of X of codimension at least 2. Then there exists a real variety W of 
codimension 1 in X and W D W\ \J . . . KJ Ws. 

One application is the following: Let R be the real numbers . Le t V be an 
algebraic surface in Rw (V irreducible). Let P be any point of V, even an 
isolated point. Then there exists an irreducible curve C on F passing through P. 

The method of proof of Theorem 2 is similar to t h a t of [5] where the result 
is proved for varieties. Namely, one uses Bertini 's theorem. Of course, there is 
a problem of reality and this is taken care of by the criterion for reality given 
in Theorem 1. This criterion allows one to deduce t h a t if a certain hyperplane 
section of a real var ie ty is real, so are l'nearby" sections. 

1. P r e l i m i n a r y r e s u l t s o n var ie t ies . Let k be a field. We denote algebraic 
closure with a bar so k is the algebraic closure of k. An algebraic set denned over 
k is a subset of kn which is the set of zeros, V(I), of some ideal / of 
k[X\, . . . , Xn] = k[X], A var ie ty is an algebraic set which is absolutely ir­
reducible, i.e., irreducible when considered over k. All fields considered in this 
paper are of characteristic zero. We make this restriction since real fields are of 
characteristic zero and so there is no point in get t ing into separabili ty questions. 

L E M M A 1. Let V be a variety of dimension ^ 2 defined over k. Let Pu . . . , Pm 

be points of V (and hence in kn). Let k[%i, . . . , xn] = k[x] be the coordinate ring 
ofV. 

Then there exist fi,f\ € k[x] such that 
(l)fi(Pj) = Ofor all i,j, and 

(2) t r . d e g . f c * ( / i , / 2 ) = 2. 
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Proof. We can assume that Xi, . . . , xd, d ^ 2, are independent transcen­
den ta l over k. There exists a finite extension K of k so that all Pt £ Kn. Thus 
Pi = (ai<o, . . . , ^co) e x*. Let 

hj= n fe-^a)), i = 1,2, 
2 = 1 

and 

j0 = IT ^ / i i = 1» 2, G(K/k) the Galois group. 

It is clear that / i and /2 are in &[x] and that ft(Pj) = 0. Moreover, since / i 
is a polynomial in x\ and / 2 is a polynomial in x2, it is obvious that 
tr.deg.*(/i,/2) = 2. 

PROPOSITION 1. Let V be a variety of dimension d, V defined over k. Let 
Wi, . . . , Wm be irreducible algebraic subsets of codimension ^ 2 in V. 

Then there existfi,f2 in k[x] = k[xi,. . . , xn], the coordinate ring of V, such that 
(l)fi(Wj) = OalliJ, and 
(2 ) t r . deg .** ( / i , / 2 ) = 2 . 

Proof, (as in [5] for instance) Let m = d — 2. Note we can assume dim 
Wt = d — 2 alH. Then let k[an,. . . , a^-,. . . , amJ = k[a] and &[6i, . . . , bm] = 
k[b] be polynomial rings in mn and m variables respectively. We use round 
brackets as usual to denote quotient fields, e.g., k(a). Also let k[a] ®k k[b] = 
k[a, &], etc. Let L be an algebraic closure of k(a, b). 

Since F is a variety, we have k maximally algebraic in k[x]. By Zariski's 
theorem [6, p. 24, Proposition 1.61], we obtain that k(a, b) is maximally alge­
braic in k(a, b)[x]/(ax — b). We are letting ax = b stand for the equations 
YTj=iaijx3 = bu i = 1, . . . , m. If I(V) = ideal of V in k[Xlf . . . , Xn] = 
k[X], it is clear that k(a, b)[x]/(ax = b) = k(a, b)[X]/(I(V), aX = ft). Also 
we have tr. deg.*(a,6)£(a, &)[*]/(ax = fe) is 2. Thus V(I(V), aX = b) C £w 

and is a variety of dimension 2. Let I(Wi) = ideal of W* in k[X]. We have 
tr.deg.*(fl(6)ife(af b)[X]/(I(Wt), aX = b) is zero. Then V(I(Wt), aX = b) is 
{Pa, • . • Î Pw} C £w. Now by Lemma 1, wecanget/1,/2 G k(a, b)[x]/(ax = b) 
so t h a t / i ( P ^ ) = 0,f2(Pij) = 0 for all i,j, and tr. deg.*(af&)fe(a, b,fuf2) = 2. 
Moreover we can multiply by constants in k(a, b) so that fu f2 are in 
k[a, b][x]/ax = b. 

In k[a, x], let 
n 

bi = X a0%, i = 1, . . . , m. 
3=1 

Then we see that k[a, x] = k[a, b][x]/ax = b. Using this identification, we can 
embed k[a, x] in k(a, b)[x]/ax = b. By the above work, we have/ i , / 2 G k[a, x\. 

The ideal I(Wi) in k[x] generates an ideal / = (I(Wi), ax = b) in 
k(a,b)[x]/(ax = b). Moreover J = I (Pa, . . . , P ^ ) , so/1,/2 G J. Now we claim 

J r\k[a, x] = k[a] ®I(Wi). 
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For if we order the monomials av in the a*/s, we can write a n y / £ k[a, x] P\ J 
a s / = 2>,(tf)a". Then for any P t WtC kn, we have / (P) = Y^hv(P)a\ But 
the a" are linearly independent over k and h„(P) (E &. Thus all hv(P) = 0 and 
so all hv G / (WO- This implies fu f2 £ k[a] ®I(Wt). 

We wish to specialize the atj. Let <p : k[a] -^ k he the specialization, and 
/ ^ be the image of / Ç fe[a, x] in k[x]. We want tr. deg.fcfe(/i<p, f2

tp) = 2. Note 
that tr. deg.fc(a)&(a)[V) = d. Thus we can extend/ i , / 2 t o / i , / 2 , . . . , / / a trans­
cendence basis for fe(a)[x] over k(a). Thus each xz-, (i = 1, . . . , n) is integral 
over k(a)(fi, . . . , / d ) . If we choose <p so that all the integrality equations are 
preserved and a l l / ^ well defined, then k[x] will be integral over k(ff, . . . , / / ) . 
Then tr. d e g . ^ ( / ^ , . . . , / / ) = d which implies tr. deg.kk(fi<p

1f2
<p) = 2. 

PROPOSITION 2. Let V, Wi, . . . , Wm be as in Proposition 1. Then there exist 
/ i , . . . , fs in k[x], the coordinate ring of V such that 

(l)ft(Wj) =0alli,j; 
(2) tr. deg.kk(fu . . . , / 0 è 2; 
(3) / i , . . . , fs have no common components. 

Proof. We can take the / i , f2 found in Proposition 1 and add more / / s to 
achieve (3). To do this note/ i and/2 have at most a finite number of common 
components. If Z is such a component, since dim Z > dim Wt for all i, we 
can find P G Z, P g PFi for any 2'. Then there exists fz G k[x] such that 
fz(P) ï6- 0, fz(Wi) = 0. Then /1 , /2, / z no longer have Z as a common com­
ponent. 

2. Real varieties. The main properties of real fields can be found in [4]. 
Recall that a field is real if it can be ordered. A real field is real closed if no 
algebraic extension is real. We need to know that a real closed field k has the 
following property. Let /(x) Ç &[x],anda < b G k. Then iff(a) < 0,f(b) > 0, 
there exists c in (a, b) with/(c) = 0, This is easy to prove using the fact that, 
in k[x], every polynomial/(x) factors into a product of irreducible linear and 
quadratic polynomials. The quadratic factors do not change sign in [a, b] and 
so one of the linear factors does a n d / has a root in (a, b). 

Definition. Let k be a real closed field. Let X be an algebraic set in An(k) = 
kn, affine n space. We let Xk = X C\ kn. A variety X is real if I(Xk) = I(X) 
in k[Xlt . . . , Xn). 

I t follows from the real nullstellensatz [1] that a variety X is real if and only 
if the coordinate ring T[X] of X is orderable over k. We wish to give another 
criterion for reality which will be very useful in this paper. 

Let X be an affine variety. Using Noether's normalization theorem, we can 
find Xi, . . . , xd G T[X] so that Xi, . . . , xa are independent transcendentals over 
k and T[X] = k[xi, . . . , xn] is integral over k[xi, . . . , xd]. Moreover the in­
clusion k[xi, . . . , xd] C k[xi, . . . , xn] induces a map w : X -^ Ad(k) of varie-
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ties. Moreover ir is a surjection and ir induces a map of sets irk : Xk —» kd (by 
restr ict ion). 

T H E O R E M 1. Let X, T etc. be as above. Then X is a real variety if and only if 
irk(Xk) contains a "sphere" SP>€. We let 5 P > e = {Q Ç kd\ \Q — P\ < e) where if 
Q = (alt . . . , ad), P = ( i i , . . . , bd) then 

\Q-P\ = (£ (at-bt?y 
and e is a positive element of k. 

Proof. Firs t suppose X is real. Let B = T[X] = k[x1} . . . , xn]. Then choose 
y G B so t ha t k[x1} . . . , xd, y] has the same quotient field as B. Let 

m 

f(Y) = £ <»,(*!,... f*,)K* 
2=0 

be the primitive irreducible polynomial for y over k(xi, . . . , xd) so t h a t / is 
irreducible in k[xi, . . . , xd, F ] . 

Now 

= ^ bjjjxi, . . . ,xd) j 

j=0 Cij\Xi, . . . , Xd) 

where btj and c „ £ fe|>i, . . . , xd]. Let U = \P' £ X | a m ( P ' ) ^ 0, all c 0 ( P ' ) ^ 0, 
and (df/dz)(Pf) 9e 0}. Then U is Zariski open in X. Since X is real, Xk H Lr 

is non-empty and we can choose P' £ U H X^. We let P = w(P'). We now 
know tha t 3>(P') is a real simple root of fP(Y) = Z?=o^z(P) F \ 

Nowr we let x = (xly . . . , xd) and abbreviate to f(x, Y). We can c h a n g e / 
so t ha t P = (0, 0) = 0 and y(Pr) = 0. Then we wish to show as in [4] t h a t 
there exists e so t ha t \Q\ < e implies there exists a £ k with (Q, a) = 0. We 
h a v e / ( 0 , 0) = 0 and we can normalize to get (df/dy) (0, 0) = 1. T h e n / ( x , y) = 
y (I + h(x, y)) + g{x) where h(0, 0) = 0 and g(0) = 0. We can find ô so t h a t 
\Q\ ^ à, \a\ ^ 5 implies \h(Q, a)\ ^ 1/2. Then 1 / 2 ^ 1 + h(Q, a) ^ 3 /2 if 
ICI ^ 5, |a| ^ Ô. Thus 

Ô / 2 ^ Ô ( 1 + A ( Ç , Ô ) ) ^ 3 5 / 2 
- 35/2 ^ - 5(1 + ft(0, - 5 ) ) S ~ à/2 m = °-

Choose e so t ha t 0 < e < <5 and |Q| ^ e implies \g(Q)\ ^ 5/4. Then if |Q| ^ e, 
we have/ ( (2 , ô) > 0 , / ( Q , - ô) < 0 and so there exists a G & with -ô < a < Ô 
and f(Q, a) = 0. 

Now let Q' = (xi(Q), . . . , xd(Q), xd+i(Q, a), . . . , xn(Q, a)). We claim t h a t 
Q' is a point of Xk with ^(Q' ) = Q. T o see this, note t h a t / irreducible in 
k[xi, . . . , xd, Y] implies ( / ) is prime in this ring. And, we have Y —•> y induces 
k[xi, . . . , xd, Y] —» fe[#i, . . . , xd, y]. This map is onto and since the kernel will 
be a prime of k[xi, . . . , xd,y], it will be a minimal pr ime; bu t as it contains ( / ) , 
it must be ( / ). 
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Next note thatx*—>x t(Q), 2 = 1 , . . . , d, and F ^ a now induces a homomorph-
ism k[x\} . . . , xd, y] —> k. This extends to a homomorphism B —-> k since all 
cij(Q) ** 0- And this is jus t the point Q'. We now have shown ir(Xk) D SPft. 

Next assume X is not real. Then Xk C W where W is an algebraic set 
properly contained in X. Then dim W < dim X = d. So TT(W) is an algebraic 
set of dimension less than d. Bu t irk(Xk) C 7r(W0. And if w(W) contains a 
sphere 5 P j e , then 7r(W) = ^4d(&) by the following lemma. 

LEMMA. / / / G A ^ i , . . . , Xd] andf{SP,e) = 0, then f = 0. 

Proof. Use induction on J . For d = 1, since a non-zero polynomial can have 
a t most a finite number of roots, the result is clear. 

For d > 1, let P = (0, . . . , 0) and suppose \a\ < e i m p l i e s / ( a ) = 0 (for 
a = (ai, . . . , ad)). Now fix ad with \ad\ < e, and let g{x\, . . . , xd_i) = / ( # i , 
. . . , Xd-u ad). Then g(ai , . . . , ad_i) = 0 if | (ax, . . . , a d_i) | < e — |ad |, so by 
induction g = 0. So if \ad\ < e we have / ( # i , . . . , ad-i, ad) = 0. Thus , fix 
ai , . . . , ad_i and apply the same a rgument to h(x) = f(aly . . . , ad-\, x). 

Remark. Note t h a t we have actually proven more in the second pa r t of the 
proof, namely: Let k[xi, . . . , xd] C T[X] define ir : X —> Ad(k). Then if dim 
X = d and irk(Xk) contains a sphere 5 P j 6 in kd, then X is real. 

3. T h e m a i n r e s u l t . We are now ready to s ta te our main theorem. 

T H E O R E M 2. Let X be a real variety defined over a real closed field k. Let Wi, 
. . . , Ws be subvarieties of X on codimension at least 2 in X. Then there exists a 
real subvariety W of X such that W D W\ VJ . . . \J Ws and W is of codimension 
1 in X. 

Proof. We choose T[X] = k[xi, . . . , xn] as before so t h a t xlf . . . , xd are 
independent t ranscendentals and x±, . . . , xn are integral over k[xi, . . . , xd]. 
As before, k[xi, . . . , xd] C k[xi, . . . , xn] induces a surjective morphism 
Tr:X-*Ad(k). 

Let ir(Wi) = Zt. We know Zt is a subvariety of Ad(k) of codimension a t 
least 2. Moreover, by Theorem 1, irk(Xk) contains SQt€ a sphere in kd. There 
exists P G SQje, P ? Z i U . . . U Z s by the lemma in section 2. T h u s we can 
find another e so t h a t irk(Xk) D SPj€ and SP,e ^ (Zi W . . . U Z s ) = 0. 

By Proposition 2, we can find gi, . . . , gr £ &[xi, . . . , xd] so t ha t 
(1) g<(P) = 0 all i, andg , (Z , ) = 0 all i, j , 
(2) gi, . . . , gr have no common components , 
(3) tr.deg.kk(g1/g1,...,gr/g1) è 2. 

We wan t to find g,.+i £ &[xi, . . . , xd] so t h a t g r + i ( P ) = 0, gr+1(Zj) = 0 for 
a l l j , and (dgr+1/dxd)(P) ^ 0. 

T o do this we can suppose P = (0, . . . , 0 ) . Then find h so t h a t h(P) ^ 0, 
h(Zj) = 0 all j . Finally let gr+i = xdh. One easily checks t h a t this works. 

Consider the linear system X t t i ^ g t = g on X . If we let ai , . . . , ar+i be 
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independent transcendentals, we obtain from the theorem of Zariski [6] quoted 
in the proof of Proposition 1, t ha t k(a1} . . . , aT+i) is maximally algebraic in 
the field K = k(aif . . . , a r + i , Xi, . . . , xn) where 

Since gi, . . . , gT+i have no common component in Ad(k), they have none 
in X, and so K is the quotient field of k(aly . . . , ar+1)[xi . . . xn]/(g). The map 
k[au . . . , ar+1] C *[oi, . . • 

, (2r+i, X\ . . . xn~]/(g) induces a morphism of varie­
ties a : Y —>Ar+1(k). Moreover, a t the generic point /z of Ar+1(k) (generic in 
the sense of Grothendieck), the fiber FM is geometrically integral (which is 
jus t the s ta tement t ha t k(au . • • , CLT+I) is maximally algebraic in K). There­
fore, there exists a Zariski open set U in Ar+1(k) so t ha t if (blf . . . , br+i) £ U, 
then Yb is geometrically integral over k, i.e., Yb is a variety. The proof of this 
theorem should appear in [2] and a proof was given in [3]. 

Now 

T[Y>] = k[xh...,xn]/:Z bigi 

and F 6 is a subvariety of X. Our problem now is to choose the b's so t ha t F 6 

will also be real. 
We have (dgT+i/dxd+i) (P) ^ 0 so there exists X so tha t gr+i(0,. . . , 0, X) > 0, 

gr+i(0, . . . , 0, —X) < 0 and |X| < e. By choosing bi, . . . , br small enough, we 
have t ha t if g = gr+i + 5Z*=i&ig<» t n e n 

g(0, . . . , 0 , X ) > 0, g ( 0 , . . . , 0 , - X) < 0 . 

We let F(g) = F 6 where g = ]^ï=i&ig< + gn-i» We claim tha t we can find 
bi, . . . , br small enough so t ha t (6i, . . . , bri 1) £ £/. This is because we can 
really consider (blf . . . , 6r+i) as projective coordinates since V(g) depends 
only on (bu . . . , br+1) up to scalar multiples. For such blf . . . , br, we claim 
F(g) is a real subvariety of X . T o see this, note tha t (b\, . . . , 6 r, 1) Ç Z7 

implies V(g) is a variety. 
For reality, note there exists b with 0 < 8 ^ e — |X| so tha t , if | (a i , . . . , 

a<*-i)| ^ 5, then g(au . . . , ad_i, X) > 0, g(au . . . , ad_i, — X) < 0. 
We are still assuming P = (0, . . . , 0 ) . Bu t then there exists ad in ( — X, X) 

so t h a t g(ai, . . . , a a) = 0 . Then we note (a,\, . . . , ad) £ Sp.e and so there 
exists «d+i, . . . , an £ k so t h a t (ai, . . . , an) £ X. This implies tha t , if r is the 
morphism: V(g) —^Ad~1(k) induced by 

r+l 

*[*i, . . . , xd_i] C k[xu . . . , * „ ] / 2 ] bigi = g, 

then Tjfc(F(g)) Z) SO.Ô in &d_1. By the remark a t the end of section 2, this implies 
V(g) is real and we are done; for, jus t let W = V(g). 
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Definition. Let k be an ordered field, A a ^-algebra and p a prime ideal of A. 
Then p is a real prime if A/]) is orderable over k. 

COROLLARY. Let k be a real closed field. Let A be a finitely generated k algebra. 
Assume A is an integral domain and that K, the quotient field of A, is orderable 
over k. 

Let qi, . . . , qm be primes of A of height ^ 2. Then there exists a real prime q 
of height 1 in A with q C Cfi H . . . P\ qm. 

Proof. Let A = k[xi, . . . , xn]. Then A = k[Xi} . . . , Xn]/I for some real 
prime 7 of k[Xlt . . . , X J . Then the algebraic set V(I) C An(k) defined by 7 
will be a variety if & is maximally algebraic in K. So let a be algebraic over k, 
and a £ K. Then, since k(a) C ^ , &(«) is orderable, but k real closed implies 
k = k(a) and a (z k. Thus F(7) is a variety and it is real by the real nullstel-
lensatz [1]. 

Each c\i defines an algebraic set V(qt) in An(k) and we can let F(q*) = \JjWtj 

a union of varieties. Now apply Theorem 2 to obtain W C ^(7) , where W is 
of codimension 1 in V(I) and W Z) U/, ;T^o-

Let q = 7(W) and q is real, again using the real nullstellensatz [1]. 
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