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FLOW OF A VALLEY GLACIER WITH A SOLID 

FRICTION LAW 

By L. REYNAUD 

(Laboratoire de Glaciologie du C .N .R.S. , 2, rue Tres-Cloitres, 38 Grenoble, France) 

ABSTRACT. Friction on the bed is assumed to obey Coulomb's law of solid friction in the presence of 
interstitial pressure (Lliboutry, 1968). According to this, the friction is a maximum a t certain places in the 
bottom of the va lley. Assuming Glen's non-linear creep law, the steady-state flow of ice along a regular 
cylindrical channel of parabolic section has been calculated. The results reproduce to high accuracy the 
distribution ofveiocity measured On the Athabasca Glacier (Raymond, (971 ). 

REsuME. Ecoulement d'un glacier de valUe avec une loi deJrottement solide. Il est suppose que le fro ttement a la 
surface du lit obeit a la lo i d e frottement solide d e Coulomb en presence d 'une pression interstitielle (Lliboutry, 
(968). De ce fait, le frottement es t maximal a une certa ine distance de part et d 'autre du fond d e la vallee. 
On a ca icule, en admettant la lo i de fluage non lineaire de Glen, I'ecoulement p ermanent paralleIe de la glace 
le long d'un cana l regulier cylindrique d e sec tion droite parabolique. On retrouve avec une excellente 
precision les valeurs et la repartition d es vitesses mesurees sur le glacier de I' Athabasca (Raymond, 197 1) . 

ZUSAMMENFASSUNG. Bewegung eines Talgletschers unter der Annahme eines Reibungsgesetzes Jur Jeste Korper. 
Von der Reibung am Gletscherbe tt wird angenommen, dass sie beim Vorhandensein VOn Druck in den 
Hohlraumen d em Reibungsgesetz VOn Coulomb fur feste Kiirper folgt (Lliboutry, 1968). D emzufolge nimmt 
die Reibung an bes timmten Stellen am Grunde d es Trogcs einen Hiichs twer t an . Un ter der Voraussetzung 
von Glen 's nicht-linearem Fliessgesetz wurde die stetige Fliessbewegung des Eises entl ang eines regelmassigen, 
zylindrischen K a nals mit parabolischem Querschnitt berechnet. Die Ergebnisse geben mi t hoher Genauig­
keit die Geschwindigkei tsverteilung wieder, die am Athabasca-Glacier gemessen wurden (R aymond , 197 1). 

I. INTROD UCTION 

Nye (1965) has calculated a solution for the steady-state flow along a channel of uniform 
section and slope of a glacier obeying the non-linear flow law of Glen. H e takes as boundary 
condition on the rock bed a zero slip velocity. It could also be non-zero, uniform, and indepen­
dent of the friction, but such a hypothesis seems completely unrealistic. 

R ecent measurements of ice deformation on the surface and at depth made by Raymond 
(1971 ) on the Athabasca Glacier show a very different distribution of velocities from those 
suggested by Nye. Instead of a constant slipping velocity, Raymond has found a velocity 
which varies along the section. This velocity, which is a few m etres per year at the edges, 
reaches 42 m a - I at the centre or about 80 % of the surface velocity. This characteristic leads 
us to adopt a theoretical model which a llows large variations of slip velocity. It seems more 
realistic to adopt as boundary condition between ice and rock a frictionjproportional to the 
normal pressure of the ice, reduced by the m ean pressure of liquid water at the interface 
(Lliboutry, 1968, 1969). Measurement of the level of water in hole 2A has in effect shown that 
there exists a very large water pressure in cavities at the bed of the glacier. For an extremely 
wide glacier (plane problem) the difference between the pressure of the ice and the pressure 
of the water in cavities has the mean value 

( I ) 

where Pi and pw are the densities of ice and water respectively, h is the thickness of ice, hw the 
piezometric height corresponding to subglacial water channels, and K is a factor depending on 
the way the hydraulic network branches, and varies from t to t. 

But, as Professor Lliboutry has commented, for a valley glacier we must take into account 
the variation in pressure due to the difference in height H between the point considered and 
the place where the subglacial water cavities come together with the main subglacial stream. 
The expression for N becomes 
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2. CO- ORDINATES AND NOTATION 

W e adopt a co-ordinate system as shown in Figure T . The free surface of the ice is the 
plane y = 0 which makes an angle iX with the horizontal, t is the angle formed by the normal 
to the bed with the Oy axis, w is the ratio of the half-width to the dep th a of the perpendicular 
section, and Yw is the distance from the water table to the surface . 

---i--------+-------~------~-~------;r~z 

.x 

y 

Fig. I. Schematic diagram of valley glacier. Left: longitudinal profile along centre line. Right : trarlsverse parabolic cross­
sectiot! of width ratio W = 2. 

We suppose that the movement is in a steady state and is parallel to the Ox axis with 
velocity u. W e suppose that the stresses follow the equations: 

crx = cry = crz = - pig cos ixy, l 
T yz = 0, J 

with, in the planey = 0, 

cry = Txy = o. 

In this case the equilibrium equations reduce to 

(hxy (!Tu 
oy +---az = - pig sm iX, 

and Glen's flow law gives 

ou -- = ATn- 1T oy xv, 

where T = (TXy2 + TXZ 2)!, A = 0.17 and n = 3. 
W e adopt the reduced variables 

l' = y/a, z = z/a, 1'w = yw/a, } 

T y = TXY / pga sin iX, Tz = TXZ / pga sin iX, 

T = T(pga sin cx, U = u(aA (pga sin iX )n, 

a nd the stress function IjJ already introduced by Nye so that 

oljJ l' oljJ Z 
Ty =oZ--; ' Tz = 31'- 2 

(5) 

(6) 
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3. B OU NDARY CO NDITIONS A T T H E BOTTOM O F THE GLACIE R 

The friction condition at the bed is written 

T y cos t+ Tz sin t = CoN/ pga sin IX (8) 

where Co is a constant if w and rw are given . For 0 ~ r ~ rw the second term in Equation (8) 
becomes cr with C = C OK cot IX, and for rw ~ r ~ I 

C [pwrw _ Pw- Pi r] 
Pi Pi 

(9) 

Along the edge of the perpendicular section where rand Z are related by the equation 
r = 1 - (Z2/W 2), Equation (8) is a first-order differentia l equation for a function of a single 
variable. Let us put t = tan t, and Equation (8) is written for 0 ~ r ~ rw 

where 0 = (Pw - pd /pi = 0 . 12 and tw is the value of t for rw. 
Along the 0 <: axis T y = 0 therefore d~/dZ = 0 and ~ is constant. Similarly on Oy where 

T z = 0 , d~/dy = 0 and ~ is constant. One chooses this constant to be zero, and therefore ~ 
is known at two points of the bed: r = 0 , Z = ±w and r = I , Z = o. These two expres­
sions for ~ must become the same at r = rw which determines the value of C. 

I t follows that for r ~ r w : 

Cw2 [I6 - W2 (2Ao ) (8Ao ) I6 + w
2 

] ~ = - -- - - At - w2 - _ At3 +-- (A ' - A') + 
64 2 w w 3 2 0 

(11 ) 

and for r w ~ r ~ I: 

wilh 

where 

gw, .\ w, Aw' are the values of g, A, A' for r = r w, and .\0' 110' the values of .\, .\' for r = o. 
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4. NUMERICAL SOLUTIONS 

Function <j;, known at the edges of the section, must satisfy within the section the equation 
in partial derivatives: 

[( o<j; Y)2 ( o<j; Z)2] 02<j; [( o<j; Y)2 ( o<j; Z)2] 02<j; 
OZ- 2 +3 OY+2 op + 3 OZ- 2 + oY+2 OZ2+ 

( oif; Y)( oif; Z) 02if; 
+4 oZ- "2 aY+-2 oroz = 0 

Equation ( 14) is of the elliptic type throughout the domain. To resolve this Dirichlet 
problem, one uses an iterative relaxation method described in detail by Nye (1965) . To do 
this, Equation (14) is written in finite difference form for the network shown in Figure 2. 

In this case the value of if; at point 2 is a linear function of the values of if; at the eight neigh­
bouring points. 

t 

6 4 7 

h 

8 5 9 

Fig. 2. Square mesh used to write Equation ( [1) as ajinite-differmce approximation at the point 2. N ear the bed (heavy lil1e) . 
the points 3,5,9 and 8 can be exlerior to the cross-section. Instead of these points we take the points 31, 5I, 91 and 81 . 
The distance of these points from point 2 are the Pi. 

A difference in treatment affects the way of expressing Equation ( 14) for points neighbour­
ing the boundary when some of the eight neighbouring points are outside the domain. These 
external points (points 8, 5, 9 and 3 in Figure 2) are replaced in the example shown by the 
points 81, 51, 91 and 31 respectively. The distances between the point 2 and the points il 
are called pi. The first derivatives at the point 2 are therefore given to the second order 
approximately by: 
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These expressions involving .p2 we have replaced by 

.1. ' = .pSI - .p4 } 
't'Y Ps + h' 

.p' _ .pJI- .p!. 
Z - PJ+ h . 

The method has been programmed for an IBM 360- 70 computer. To cover the domain, a 
technique of alternate iterations has been used taking the points line by line and beginning 
from an axis on the perpendicular section, then column by column beginning this time by 
the points at the margin. This treatment related to a relaxation technique gives a rapid 
convergence . The meshes of the grid are squares of variable side, the first solution obtained 
fOl' squares of side 0.2, serves as an initial solution for the grid of side o. I , etc. The calculation 
has been terminated for squares of side 0.05, the solution obtained being very close to its 
predecessor. The calculating programme was tested for two obvious solutions of Equation (14) 
which are • 

.pI = o:y + f3z, whm " and ~ are con".n", } 
( '7 ) 

.pn = o:yz . 

The tests showed that for these solutions the finite-difference form of the differential 
equation and the manner of treating points near to the boundary of the perpendicular section 
a re correct. 

5. SOLUTIONS 

The calcu lation has been made with values obtained on the Athabasca Glacier: W = 2 , 

a = 310 m, Cl = 3° 30' . 
Using the Yw the value of the water level for water in bore-hole 2A: Yw = O. I 3, we obtain 

a velocity at the centre of 104 m a - I at the surface and 96 m a - I at the bottom, although the 
shear stress Txy at the bottom is only - 0.37 pga sin Cl. The value o. I 3 for the parameter Y,v 
therefore leads to results rather far from experimental results. However, taking Yw = O. 13-

one produces at the subglacial stream and at cavities which communicate easily with each 
other a very high pressure equal to 27 bars . But, according to L1iboutry's model, this pressu re 

(0 ) 

o 
O+-------------~-,--_,r_----_h--==r=~~+_----r_--._----_7 

0 .5 1,5 2 

0 .5 

( b) 

Fig. 3. Distribuli071 of longitudinal velocity for a parabolic channel of width ratio 2 with a = 310 m. ex = f 30' and 
Y w = 0·33, n = 3, A = OJ7, (a) down the Y-axis, (b) in cross section. Units are m a- '. 

https://doi.org/10.3189/S0022143000032068 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000032068


JOURNAL OF GLACIOLOGY 

varies from one point to another on the bed according to the nature of the interconnection of 
the cavities with the main subglacial stream. This has been verified in the course of borings 
made on the Glacier de Saint-Sorlin, France. For certain bore holes the level of water 
stabilized at different heights although others in the same neighbourhood emptied suddenly 
when the boring tool reached the rock bed (verbal communication from F. Gillet). It is for 
this reason that measurement of the piezometric height at a single point can only give a rough 
idea of the pressure which is occurring at the base of the glacier. 

2A 
T 

50 

lA 
T 

5A 

100 200m 

Fig. 4. Distribution of longitudinal velocity in Athabasca Glacier cross-section (section A, Raymolld, 1970). Units are m a- I 
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Fig. 5, Lateral variations of surface velocity in three sectiolls of Athabasca Glacier (Raymond, 1970). Field data (solid lilles), 
and computed values, with a = 310 rn, Yw = 0.33, Il = 3, A = 0. 17 (dashed line). 

Several calculations, made with various values for the parameter Tw, show that the velocity 
decreases rapidly when Tw increases (Fig. 7) . For a mean-water height of ~a or a pressure of 
20.8 bars at the ba e, the distribution of velocities (Fig. 3) is very close to that obtained by 
Raymond, for the majority of the section (Figs. 4, 5), the only difference coming from veloci­
ties close to the edge. But for this region a comparison is hardly possible because no measure­
ments were made at depth. This value of Tw has therefore been adopted. 

The values of the velocities used at the centre of the surface, of the mean velocities over 
the surface <us> and the mean values over the section <u> as well as the total outflow are 
shown in Table I for the values measured on the Athabasca Glacier, those given by Nye's 
theory and by our theory. 
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TABLE 1. MEASURED AND CA L CULATED VELOCITIES AND OUTFLOWS 

II <liS> <,,> Outflow 
nl a - I nl a - I nl a- I hm3 a- I 

Athabasca Glacier 52 36 4 ' IO.g 
Nye's theory 17 11.6 11.4 2.g 
Our theory Yw = 0.33 52 37·5 41.5 11 

6. STRESS DISTRIBUTION 

The distribution of stresses shown in Figure 6 gives a variation of'l"xy along the axis of the 
glacier practically linear with depth and at the bottom: 

'l"xy = - 0.5 I pga sin iX . 

Along the edges at Y = 0, Z = ±w, Equation (10) gives 3';; /3 Y = - ~; this value does not 
depend strongly on Yw when w = 2. 

'tJ': -0.75 -0.50 -0,25 0 
xy 

(bar) 

05 1.5 

'i'(bar ) 

1.2 

1.0 
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(b) (a. ) 0.6 

( c) 0.4 

02 

~----------~-------------r----===Z~~~--1-----------__ +0 
o 05 1.5 2 

Fig . 6. D istribution of shear stress T for a parabolic channel of width ratio 2 with a = 310 rn , " = 3° 30', Y w = 0.33, 
n = 3 and A = 0. 17, (a) in a cross section, (b) down the Y-axis, (c) on the Z -axis. 

W e therefore have: 
3';; Z 

T Z = -3Y - ; 
2 

With the exception of the case where Yw = I , that is to say the case where the subglacial 
stream is at atmospheric pressure, Tz has a maximum at the surface and not on the edge but 
at some distance from the margin of the glacier (Fig. 7) . But it must be noted that if this 
corresponds with observations, this does not constitute a proof of the validity of our model, for 
Nye has obtained the same result with differen t boundary conditions. 

With the law adopted, the maximum stress on the bed is no longer obtained along the axis 
of the channel as in Nye's model , but at the edges for Y = Yw. This last characteristic can 
explain, as Professor Lliboutry has pointed out, the important lateral erosion and the U -shape 
encountered in the majority of valley glaciers. 
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Fig. 7. ParaboLic channeL, w = 2 , n = 3; vaLues in dimensionLess form. Top Left: VeLocity distribution down the Y-axis. 
Top right: VeLoci~y in a transverse Line (Z -axis) on the surface . Bottom Lift: shear stress Y y on the Y-axis. Bottom right: 
shear stress Tz on the Z-axis. Numbers on curves are vaLues of Yw . The dashed Line represents the values computed QY N:ye 
for the same channeL. 
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