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FLOW OF A VALLEY GLACIER WITH A SOLID
FRICTION LAW

By L. REYNAUD
(Laboratoire de Glaciologie du C.N.R.S., 2, rue Trés-Cloitres, 38 Grenoble, France)

AmstracT. Friction on the bed is assumed to obey Coulomb’s law of solid friction in the presence of
interstitial pressure (Lliboutry, 1968). According to this, the friction is a maximum at certain places in the
bottom of the valley. Assuming Glen’s non-linear creep law, the steady-state flow of ice along a regular
cylindrical channel of parabolic section has been calculated. The results reproduce to high accuracy the
distribution of velocity measured on the Athabasca Glacier (Raymond, 1971).

Risumi. Ecoulement d’un glacier de vallée avec une loi de frottement solide. 11 est supposé que le frottement a la
surface du lit obéit 4 la loi de frottement solide de Coulomb en présence d’une pression interstitielle (Lliboutry,
1968). De ce fait, le frottement est maximal & une certaine distance de part et d’autre du fond de la vallée.
On a calculé, en admettant la loi de fluage non linéaire de Glen, I’ecoulement permanent parallele de la glace
le long d’un canal régulier cylindrique de section droite parabolique. On retrouve avee une excellente
précision les valeurs et la répartition des vitesses mesurées sur le glacier de I’Athabasca (Raymond, 1971).

ZUSAMMENFASSUNG. Bewegung eines Talgletschers unter der Annahme eines Reibungsgesetzes fiir feste Korper.
Von der Reibung am Gletscherbett wird angenommen, dass sie beim Vorhandensein von Druck in den
Hohlraumen dem Reibungsgesetz von Coulomb fiir feste Kérper folgt (Lliboutry, 1g68). Demzufolge nimmt
die Reibung an bestimmten Stellen am Grunde des Troges einen Héchstwert an. Unter der Voraussetzung
von Glen’s nicht-linearem Fliessgesetz wurde die stetige Fliessbewegung des Eises entlang eines regelmassigen,
zylindrischen Kanals mit parabolischem Querschnitt berechnet. Die Ergebnisse geben mit hoher Genauig-
keit die Geschwindigkeitsverteilung wieder, die am Athabasca-Glacier gemessen wurden (Raymond, 1971).

1. INTRODUCTION

Nye (1965) has calculated a solution for the steady-state flow along a channel of uniform
section and slope of a glacier obeying the non-linear flow law of Glen. He takes as boundary
condition on the rock bed a zero slip velocity. It could also be non-zero, uniform, and indepen-
dent of the friction, but such a hypothesis seems completely unrealistic.

Recent measurements of ice deformation on the surface and at depth made by Raymond
(1971) on the Athabasca Glacier show a very different distribution of velocities from those
suggested by Nye. Instead of a constant slipping velocity, Raymond has found a velocity
which varies along the section. This velocity, which is a few metres per year at the edges,
reaches 42 m a—! at the centre or about 80Y%, of the surface velocity. This characteristic leads
us to adopt a theoretical model which allows large variations of slip velocity. It seems more
realistic to adopt as boundary condition between ice and rock a friction f proportional to the
normal pressure of the ice, reduced by the mean pressure of liquid water at the interface
(Lliboutry, 1968, 1969). Measurement of the level of water in hole 24 has in effect shown that
there exists a very large water pressure in cavities at the bed of the glacier. For an extremely
wide glacier (plane problem) the difference between the pressure of the ice and the pressure
of the water in cavities has the mean value

N = k(pih— pwhy) (1)

where p; and py are the densities of ice and water respectively, £ is the thickness of ice, Ay the
piezometric height corresponding to subglacial water channels, and « is a factor depending on
the way the hydraulic network branches, and varies from { to 3.

But, as Professor Lliboutry has commented, for a valley glacier we must take into account
the variation in pressure due to the difference in height H between the point considered and
the place where the subglacial water cavities come together with the main subglacial stream.
The expression for N becomes

N = «l(pih—pwhw) +(pw—pi) H]. (2)
251
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2. (Co-ORDINATES AND NOTATION

We adopt a co-ordinate system as shown in Figure 1. The free surface of the ice is the
plane y = o which makes an angle « with the horizontal, ¢ is the angle formed by the normal
to the bed with the Oy axis, w is the ratio of the half-width to the depth @ of the perpendicular
scction, and yy is the distance from the water table to the surface.

Y y

Fig. 1. Schematic diagram of valley glacier. Left: longitudinal profile along centre line. Right: transverse parabolic cross-
section of widih ratio w= 2.

We suppose that the movement is in a steady state and is parallel to the Ox axis with
velocity u. We suppose that the stresses follow the equations:
Op = Oy = G, = —pigcos ay, |

(3)

Tyz — 0,
with, in the plane y = o,
Oy = Tgy = O.
In this case the equilibrium equations reduce to

aTg;y E)Tg;z

a-y az = —pig Sin o, (4)
and Glen’s flow law gives
3 b
a_; == A'T"ﬂ""a:y: ;_z — AT”‘_ITQ;z, (5)

where 1 = (122 + 724 A =o0.17and n = 3.
We adopt the reduced variables

Y=yla, RK=2z[a, Tw=ywla
Ty = Tzy/pga sin o, Tz = 72:[pga sin o, (6)
T = 7/pga sin a, U = ulad(pga sin o),

and the stress function ¥ already introduced by Nye so that

o0 i o
Ty = %—; s Tz = _%—g' ()
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3. BOUNDARY CONDITIONS AT THE BOTTOM OF THE GLACIER

The friction condition at the bed is written
Ty cos t+ Tz sin t = C,N/pga sin « (8)

where C, is a constant if w and ¥y, are given. Foro < ¥ < ¥, the second term in Equation (8)
becomes CY with € = Cyk cot o, and for Vi << ¥ < 1

¥,
C [Pw w Pw Pi T:l ) (9)
Pi Pi

Along the edge of the perpendicular section where ¥ and { are related by the equation
¥ = 1 —(Z2[w?), Equation (8) is a first-order differential equation for a function of a single
variable. Let us put ¢ = tan ¢, and Equation (8) is written for o << ¥ << Ty

A " wiE\ | w? w?§?
b =~ e (- 25) 18 (14 25),
<r< (10)

[+ (1-28) oo (1-250) 17 (1425))

where § = (pw—pi)/pi = 0.12 and &y is the value of £ for ¥y,

Along the Oz axis Ty = o therefore dyy/dZ = oand ¢ is constant. Similarly on Oy where
Tz = o, dyj/dy = o and ¢ is constant. One chooses this constant to be zero, and therefore
is known at two points of the bed: ¥ =0, { = +w and ¥ = 1, J = 0. These two expres-
sions for % must become the same at ' = 7 which determines the value of C.

It follows that for ¥ < Vi

Cw? [16—w? [2A, - 84, . 64w?
b= B[ (e ) s (Beae) + 1 0 |+

64 2
w? w2s w
-E-—é- (f-l— )—E, (11)

and for ¥y
. Cw
iy =

12

and for Yo <V < 18
Cw? 16—w? w? 16-4-w? | ;
b= [a{( - f’—gfﬂ)H— - A}—rw(x+a>(A§+A)]+

(s+“""f3) . (12)

wiih

8 Wiy’ 16—uw? 16 Hu
o= flaro {(LE Bo ) B A vt A e

8—w? 16fw?
8w Aot 16 Ao]

+

(13)

where A= (14-£2)4 A =1In (A+§),
£ws Aw, Ay’ are the values of £, A, X' for ¥ = Yy, and A,, A," the values of A, X’ for ¥ = o.
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4. NUMERICAL SOLUTIONS

Function i, known at the edges of the section, must satisfy within the section the equation
in partial derivatives:

(G2 s G a b ) ) =

+4 (%—g)(f—f#f) aa;gbz =e

Equation (14) is of the elliptic type throughout the domain. To resolve this Dirichlet
problem, one uses an iterative relaxation method described in detail by Nye (1965). To do
this, Equation (14) is written in finite difference form for the network shown in Figure 2.

In this case the value of ¢ at point 2 is a linear function of the values of i at the eight neigh-
bouring points.

'

a4

5l

8I

8 5 =)

tig. 2. Square mesh used to write Equation (14) as a finite-difference approximation al the point 2. Near the bed (heavy line).
the points 3, 5, 9 and 8 can be exterior to the cross-section. Instead of these points we take the points 31, 51, 91 and 81.
The distance of these points from point 2 are the p;.

A difference in treatment affects the way of expressing Equation (14) for points neighbour-
ing the boundary when some of the ecight neighbouring points are outside the domain. These
external points (points 8, 5, g and 3§ in Figure 2) are replaced in the example shown by the
points 81, 51, 91 and 31 respectively. The distances between the point 2 and the points i1
are called p;. The first derivatives at the point 2 are therefore given to the second order

approximately by:
l}l! ’ '1[’§ 1 ‘!’2 ‘11’2 ‘/’4
Yy Q s h L]

’ 1 [ty — ¢'z 1
l,bz:;( P3 h )
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These expressions involving i, we have replaced by

Bl ‘1651*“!’4
R |
(16)
gy = '1&31_'9’!‘}
‘ psth '

The method has been programmed for an IBM 360-70 computer. To cover the domain, a
technique of alternate iterations has been used taking the points line by line and beginning
from an axis on the perpendicular section, then column by column beginning this time by
the points at the margin. This treatment related to a relaxation technique gives a rapid
convergence. The meshes of the grid are squares of variable side, the first solution obtained
for squares of side 0.2, serves as an initial solution for the grid of side 0.1, etc. The calculation
has been terminated for squares of side 0.05, the solution obtained being very close to its
predecessor. The calculating programme was tested for two obvious solutions of Equation (14)
which are

P = ay+ Bz, where « and B are constants,
(17)
P11 = oz

The tests showed that for these solutions the finite-difference form of the differential
equation and the manner of treating points near to the boundary of the perpendicular section
are correct.

5. SOLUTIONS

The calculation has been made with values obtained on the Athabasca Glacier: If = 2,
¢ = 3lom, u=3" 30",

Using the Ty the value of the water level for water in bore-hole 2a: ¥y = 0.13, we obtain
a velocity at the centre of 104 m a~" at the surface and g6 m a~' at the bottom, although the
shear stress 7,y at the bottom is only —0.37 pga sin . The value 0.1 for the parameter 1y
therefore leads to results rather far from experimental results. However, taking ¥y = 0.13
one produces at the subglacial stream and at cavities which communicate easily with each
other a very high pressure equal to 27 bars. But, according to Lliboutry’s model, this pressure

{my-) 50 40
T T

gl
(a) (b)

Fig. 3. Distribution of longitudinal velocily for a parabolic channel of width ratio 2 with a = 310 m. « — 3° 30" and
Yw = 033, n= 3, A= o0.17, (a) down the Y-axis, (b) in cross section. Unils are m a~1.
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varies from one point to another on the bed according to the nature of the interconnection of
the cavities with the main subglacial stream. This has been verified in the course of borings
made on the Glacier de Saint-Sorlin, France. For certain bore holes the level of water
stabilized at different heights although others in the same neighbourhood emptied suddenly
when the boring tool reached the rock bed (verbal communication from F. Gillet). It is for
this reason that measurement of the pieczometric height at a single point can only give a rough
idea of the pressure which is occurring at the base of the glacier.

4A 2A 1A 3A 5A
I 1 1 -7

Fig. 4. Distribution of longitudinal velocity in Athabasca Glacier cross-section (section A, Raymond, 1970). Unils are m a™*
g Ly 2y
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Fig. 5. Lateral variations of surface velocity in three sections of Athabasca Glacier (Raymond, 1970). Field data (solid lines),
and computed values, with a — grom, Yy = 0.33, n = 3, A — o.17 (dashed line).

Several calculations, made with various values for the parameter ¥y, show that the velocity
decreases rapidly when ¥y increases (Fig. 7). For a mean-water height of fa or a pressure of
20.8 bars at the base, the distribution of velocities (Fig. g) is very close to that obtained by
Raymond, for the majority of the section (Figs. 4, 5), the only difference coming from veloci-
ties close to the edge. But for this region a comparison is hardly possible because no measure-
ments were made at depth. This value of ¥y has therefore been adopted.

The values of the velocities used at the centre of the surface, of the mean velocities over
the surface ¢us> and the mean values over the section (x> as well as the total outflow are
shown in Table I for the values measured on the Athabasca Glacier, those given by Nye’s
theory and by our theory.
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TaBLE I. MEASURED AND CALCULATED VELOCITIES AND OUTFLOWS

u {us> lud Quiflow
m a~! ma~t ma~! hms a-t
Athabasca Glacier 52 36 41 10.9
Nye’s theory 17 11.6 1.4 2.9
Our theory ¥y — 0.33 52 37.5 41.5 I

6. STRESS DISTRIBUTION

The distribution of stresses shown in Figure 6 gives a variation of 7y along the axis of the
glacier practically linear with depth and at the bottom:

Tzy — —0.51pga sin o
Along the edges at ¥ = 0, { = +w, Equation (10) gives ¢/@1 = —1; this value does not
depend strongly on ¥y when w = 2.
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Fig. 6. Distribution of shear stress = for a parabolic channel of width ratio 2 with a = 310m, « = 3° 30', ¥y = 0.39,
= gand A = o0.17, (a) in a cross section, (b) down the Y-axis, (c) on the J-axis.

We therefore have:

o it o

QJ|QJ
~ |
LR PN

1
=

With the exception of the case where ¥y = 1, that is to say the case where the subglacial
stream 1is at atmospheric pressure, 7z has a maximum at the surface and not on the edge but
at some distance from the margin of the glacier (Fig. 7). But it must be noted that if this
corresponds with observations, this does not constitute a proof of the validity of our model, for
Nye has obtained the same result with different boundary conditions.

With the law adopted, the maximum stress on the bed is no longer obtained along the axis
of the channel as in Nye’s model, but at the edges for 7" = 7. This last characteristic can
explain, as Professor Lliboutry has pointed out, the important lateral erosion and the U-shape
encountered in the majority of valley glaciers.
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Fig. 7. Parabolic channel, w — 2, n — 3; values in dimensionless form. Top left: Velocily distribution down the Y-axis.
Top right : Velocity in a transverse line (Z-axis) on the surface. Bollom left: shear stress Yy on the Y-axis. Bottom right:
shear stress Tz on the Z-axis. Numbers on curves are values of ¥w. The dashed line represents the values computed by Nye

Jor the same channel.
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