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1. Introduction
Much of the work on the theory of diffraction by an infinite wedge has

been for cases of harmonic time-dependence. Oberhettinger (1) obtained an
expression for the Green's function of the wave equation in the two dimensional
case of a line source of oscillating current parallel to the edge of a wedge with
perfectly conducting walls. Solutions of the time-dependent wave equation
have been obtained by Keller and Blank (2), Kay (3) and more recently by
Turner (4) who considered the diffraction of a cylindrical pulse by a half plane.

In this paper, using the methods of integral transforms, expressions are
obtained for the field components due to a line source of current, whose density
is some function of time, lying parallel to the edge of an infinite wedge with
perfectly conducting walls. The general expressions are used to deduce the
field components due to a step-function current source when the displacement
currents inside the wedge are neglected. A second form for the field com-
ponents is derived from these results which enables an analysis to be made of
the field within the wedge into image terms and additional " perturbation "
terms.

2. Statement of the Problem
An infinitely long line source of uniformly distributed current, whose

density is a function of time alone, lies parallel to the edge of a wedge with
perfectly conducting walls in a region of conductivity a, dielectric constant e
and permeability yu. The problem to be considered is referred to the cylindrical
co-ordinate system (r, 6, z) where the tip of the wedge is co-incident with the
z axis.

Let a be the angle of the wedge and the line source pass through

Since the problem is two dimensional, Maxwell's equations (in m.k.s. units)
for the region within the wedge are,

(1)
1 8EJ_ _ dHr 8EJ_ dHe
r 89 ~ * 8t ' 8r~H' 8t '

where
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represents a current density corresponding to a line current passing through
(ro> ^o)- -3^(0 is a function of time alone and S(x) denotes the Dirac delta function.

The boundary conditions to be applied are,

Jo.r
 === txQ ;= ijz

 === 0 at £ ̂  0 and as T—^oo. I
3. Solution of the Problem
3.1. First form of the solution

Applying Laplace and finite Fourier transforms to equations (1), we get,

Id , „.

.(3)

where
nnd

Ez{r, n, s)=\ sin — dd Ez{r, 9, t) e~st dt,
Jo a Jo

Br(r, n, s) = (a cos — d9 C Hr(r, 9, t) e~s( dt,
Jo a Jo

Bg(r, n, s)= fasin — d9 CHe{r, 6, t) e~H dt,
Jo a Jo

and m(s) is the Laplace transform of M(t).
Eliminating BT, B$ between equations (3) we find,

Id/ dEz\ I"., /nnYlf, , , 8 ( r - r 0 ) . WTT0O ...
-j- I r-r-z ) - U 2 + | — \Ez = fi8m(s)-± ^sin -0, 4
r dry dr J [ \ a r / J r a

where k2 = fis(a + es).
The solution of (4) is

Ez= -fism(s) sin7^-0In7,u(kr)Kn7,u(kr0), r<r0 (5)

When r0 < r the position of r and r0 are interchanged.
Inverting equation (5) with respect to the Laplace and Fourier transforms

we have

z
iu. £ . nrrdn . rnr9 [ . . T ., . „ ,, . , , .„.

= — Z sin -sin sm(s)IniTi (kr)Knni (kro)e
stds, r<r0. ...(6)

7ran=i a a J a "

Henceforth it is assumed that displacement currents can be neglected,
i.e., set e = 0. This means that the transient response is valid for times t >e/o.
We now consider the particular case of a current source whose density is
proportional to a step function of time, i.e., M(t) = MH{t) where H(t) is the
Heaviside unit function. Therefore m[s)=Ms~1.
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Substituting for m(s) in equation (6) and evaluating the integral by ((5),
p. 284) we arrive at the following expression which is valid for all r,

(7)
L •*•' J *

where
\ % s i n ! ^o s i n ^ /
ctjj=i a. a

Therefore from equations (7) and (1)

»'"'JI
Equations (7), (8), (9) and (10) constitute the first form of the solution.
The series F(t) is identical with that obtained by Carslaw and Jaeger ((6).

p. 313) in an expression for the temperature due to an instantaneous point
source situated inside an infinite wedge whose walls are maintained at zero
temperature. This occurs because from equation (6) onwards we are, after
putting e = 0, solving essentially a heat conduction equation.
3.2. Transformation of F(t)

We now give another form for the function F{t) which will enable us to
investigate further the field components.

We have from ((7), p. 181),

)= ~ I
TJ 0

^ e^ltcoahx~n"xdx, ..(11)
7T J 0

where 7T/O = V = £+A, I a positive integer and A such that 0^A< 1.
Substituting from equation (11) in equation (8) and summing Fourier and

geometric series we have,
F(t) = A + B + C, (12)

where

l{ } (13)

$m = \ 9-60\, m even, -qm=a-\ d + 60-a |, m even,

= a-\ 6-60 |, m odd, = | 6+do-a |, m odd.

B=-r-

= 0, Aa<£<a,

= \e~e% £=Aa,
=.exp [ -p n cos (Aa-0] =M + la),0<£<\a.
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exp [~^c o s h xijsin s< dx= i-2 h (- ir f
8 n 2

i = 1 ^ ' J o
j

x- cos 8*

S2=V(9+90+TT) , S 4 = V(0-0O-77) .

TABLE I. I EVEN

O<0O<S

O<0<Aa-0o

Aa-0o<0<Aa + 0o

Xa + 80<9<a

8<90<a-S,\<$

0<9<90-8
90-8<9<90+8
90+8<9<a

8<90<a — 8, A>|

0<9<a-S-90

a-60-8<9<a-90 + 8
a-90 + 8<9<a

a — 8<90<a

O<0<0o-Aa
90-Xa<9<2a-\a-60

2a-Xa-90<9<a

9(£i)

Mi + b)
Mi + la)

0

0

0

/(&+k)

0

0
0

0
0
0

0
fili + lo)

0
0

3.3. Analysis of B and C
The definition of the function g given in §3.2 implies the existence of

regions at the boundaries of which there are discontinuities in B.
Three cases of the angular position of the source have to be distinguished.

These are
0<90<8 ,8<do<a — 8 , a — 8<60<a,

where
8=Aa , A<-|,

=a—Aa , A>£.

Naturally for A = \ only two cases need to be distinguished.
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In each of these cases the form of g(^t) and g(-r}{) corresponding to the
resulting " 0 regions " are given in tables I and II.

Since A is continuous and B is discontinuous there must be compensating
discontinuities in 0. From tables I and II it is plain that on passing over

TABLE II. I ODD

O<0O<8

O<0<a-Aa-0O

a —Aa — 0O < 0 < a — Aa + 0O

a — Act + 0Q < 0 < a

8<0o<a-S,A<£

O<0<a-0o-8
a — 0O — 8<0<a — 0o + 8
a - 0 o + S<0<a

8<0o<a —8, A>£

O<0<0O-S
0 o -8<0<0 o + 8
0o + 8<0<a

a —8<0o<a

O<0<0o-a + Aa
0o-a + Aa<0<a + Aa-0o

a+Aa—0o<0<a

*(£,>

0
0

0
0
0

0

0
0

0

0

0

/(rjj + Za)

f(r]i + la)

f(r)i + la.)

0

the boundaries one of the S/s passes through an integral multiple of 2TT.
Therefore we need to consider the behaviour of

r e x p [-/?,, cosh ay] sin 8, fc

Jo cosh a; —cos 8f

as 8< crosses the origin in a positive direction.
If we introduce two bounded functions h(x) , H(x) defined by

h(x)=hr , H(x)=Hr , zr^x^xr+1

O=xo<x1<... <xr<xr+1<...,

and such that h(x) < exp [—j8/t cosh x/J\ <H(x) all x, we have

2 Z hrta,n-1Xr<K(Si)<2 2 ^
r=0 r=0

(17)
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XT=

8/ x x \
cot —*I tanh -1— — tanh ~ I

1 + cot2 -^ tanh —~ tanh -jf

Therefore
nho< lira K(Si)<TrH0 (18)

0

Since the only restriction on h0, Ho is that they be bounded and h0 < e~^t < Ho

we have
lim

similarly

and

lim
»4—o

.(19)

= 0 .

TABLE III

A<i

A>*

d0 Region

O<0 o <a-2Aa
a — 2Xa<90<a

0<60<2a-2\a
2 a - 2 A a < 0 o < a

Number of 'Q'
Virtual Images

22—1
21

21
21+1

0O Region

0 < d0 < 2Aa
2Aa <90<a

O<0o<2Aa-a
2Aa — a<60<a

Number of 'R'
Virtual Images

21
21-1

21+1
21

This exactly compensates for the discontinuities in B.

Oberhettinger (1) has shown for a>7r that the boundaries at which the
analytic form of the solution changes can be connected with the visibility of
the source and its images from the observation point, with reference to the
walls of the wedge. I t will now be shown that this is also true for a=%7r.

Denoting by Qn
a, Qo the angular coordinates of the nth. image in the walls

8 = a, 6 = 0 respectively, on reflection first in 0=a, and by R'o, Rn
a the angular

coordinates of the nth. image in the walls 6 = 0, 6=a respectively, on reflection
first in 6 = 0 ; we get

Qo=-2na + 9o, R" =

The limitation on the total number of images for
occurrence of real images is summarised in table III .

•(20)

arising from the
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We now define a " complementary " region to the wedge by7r<0<7r + a.
Images falling in the complementary region either become visible or cease

to be visible on crossing the line produced connecting the image to the edge
of the wedge, unless they can be regarded as images in both walls simultaneously
which only occurs when a is a sub-multiple of TT.

By considering the angular coordinates of images falling in the com-
plementary region we obtain boundaries which are summarised in table IV.

On analysis into A<£, A> | the boundaries given in table IV agree with
those indicated in tables I and II, i.e., the regions of tables I and II coincide
with the regions of visibility of the source and its images.

TABLE IV

Source Regions

O<0o<Aa
Xa<80<a
0<60<a — Xa
a—Xa< 60<a

' 6 ' Boundaries

I Even

Aa-0o

60-Xa
Xa+60

2a-Xa-60

I Odd

a — Xa + 80

a + Xa-60

a — Xa—60

do + Xa — a

For 7T<a<27T, Z = 0, and £<A<1, the part A does not exist, S=Aa and
the forms of g(£i), g(rji) are given by table I. In this case the resulting
" 9 regions " reduce to those obtained by Oberhettinger (1) who in another
paper (8) has considered integrals of the type (16) for large and small r.

3.4. Second form of the solution
We now substitute for F(t) from equation (12) in equations (7), (9) and (10).

° Ez from parts A, B and GDenoting by Ef, Ef, E° the contribution to
. respectively and similarly for Hr, He we find

Contribution from part A

2rrQ cos ir)m +ma)-r2-r2
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ftA - - M. exo [ - VE (r2 + r*)\ ' i? f [ f ~ r ° C0S(

[r-r0 cos (r}m + ma)]f(Vm , .,.„.,,
2rrQ c o s (77 ' ™* -N ~2 ~2 '

Contribution from part B

exp — ̂ — (r2 + r2) {^(^j)— Sf(i?;)}, (24)

L 4< J

277 P [ 4« l + ro'J \2rr0

(25)

2rrQ cos (•ql + la) — r2 — r* )

[r — r0 cos
r0 cos (£

[r — r0 cos
._ (26)

Contribution from part C

f ( i [r2 + r + 2% cosh

I

cosh va; cos 8, — 1 ,

7 r Vr2
d a ;' 28

(cosh vx — cos o,)z

m (r + r0 cosh a;) exp [-fi / t cosh x] ^ g

„ (cosh vx— cos S.)(r2 + r2 + 2?r,. cosh x)

where

U
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