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In turbulent pipe flows, drag-reducing polymers are commonly used to reduce skin-
friction drag; however, predicting this reduction in industry applications, such as crude
oil pipelines, remains challenging. The skin-friction coefficient (C f ) of polymer drag-
reduced turbulent pipe flows can be related to three dimensionless parameters: the solvent
Reynolds number (Res), the Weissenberg number (Wi) and the ratio of solvent viscosity
(ηs) to zero-shear-rate viscosity (η0), denoted as β. The function that relates these four
dimensionless numbers was determined using experiments of various pipe diameters (D),
flow velocities (U ) and drag-reducing polyacrylamide solutions. The experiments included
measurements of streamwise pressure drop (�P) for determining C f , and measurements
of shear viscosity (η) and elastic relaxation time (λ). This experimental campaign
involved 156 flow conditions, each characterised by distinct values for C f , Res , Wi and
β. Experimental results demonstrated good agreement with the relationship: C−1/2

f =
Â log10(ResC1/2

f )+ B̂, where Â = 27.6(Wiβ)0.346 and B̂ = 122/15 − 58.9(Wiβ)0.346.
Based on this relationship, onset and maximum drag reduction are predicted to occur
when Wiβ equals 3.76 × 10−3 and 3.40 × 10−1, respectively. This function can predict
C f of dilute polyacrylamide solutions based on predefined parameters (bulk velocity,
pipe diameter, density, solvent viscosity) and two measurable rheological properties of
the solution (shear viscosity and elastic relaxation time) with an accuracy of ±9.36 %.
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1. Introduction
Dissolving a small amount of high-molecular-weight polymers into the turbulent pipe flow
of a liquid is a well-established method for reducing skin-friction drag. The most effective
drag-reducing polymers are long-chain flexible molecules that form viscoelastic solutions
with a large elastic relaxation time (White & Mungal 2008). Although polymers are
readily used for drag reduction (DR) in industry applications, such as crude oil pipelines
(Burger, Chorn & Perkins 1980), predicting the ability of a given polymer to reduce drag in
certain flow conditions is challenging due to the lack of an analytical model. Additionally,
numerical simulations of turbulent viscoelastic fluids are computationally expensive and
do not map easily to realistic polymer solutions for predicting polymer DR (Xi 2019).
Furthermore, DR in polymer-laden pipe flows shows a strong dependency on shear rate;
therefore, smaller laboratory experiments with high-shear flows do not translate to the
large diameter pipes used in crude oil pipelines, even at similar Reynolds numbers Re
(Savins & Seyer 1977). As a result, choosing the right type and amount of polymer to
achieve optimal DR in industry is expensive and inefficient. For example, a combination
of laboratory-scale testing and field trials was needed for the proper implementation of
drag-reducing polymers in the Trans Alaska Pipeline System, which ultimately yielded
DR as large as 30 % (Burger et al. 1980, 1982).

Early investigations of drag-reducing polymers aimed to establish a relationship
between DR and chemical characteristics, such as molecular weight, structure and
polymer concentration (Virk 1975). However, it is unreasonable to expect these models
can accurately predict DR, considering DR is strongly influenced by flow parameters
such as velocity and geometry. Also, the final molecular weight depends on solution
preparation, as long-chain polymers often degrade in high-shear conditions (den Toonder
et al. 1995). Therefore, instead of correlating the chemical properties of polymers with
DR, later investigations have focused on establishing a connection between rheological
measurements of the solution and DR (Owolabi, Dennis & Poole 2017; Chandra,
Shankar & Das 2020).

Inspired by the numerical investigation of Housiadas & Beris (2013), Owolabi et al.
(2017) demonstrated that the DR of polymer drag-reduced pipe, channel and duct flows
was exponentially related to a near-wall Weissenberg number Wiτ = γ̇wλ, where γ̇w is
the wall shear rate in the drag-reduced flow and λ is the elastic relaxation time measured
from capillary break-up extensional rheology (CaBER). Here, the Weissenberg number
is an estimate for the extent polymers are stretched within the flow, and is represented
by the product of λ and a characteristic shear rate. Measurements of DR and Wiτ by
Owolabi et al. (2017) reasonably collapsed on the proposed exponential trend. On the
other hand, later experiments by Chandra et al. (2020) demonstrated that the C f and DR
of polymer solutions showed good scaling with Wi(1 − β), where Wi = Uλ/D is a bulk
Weissenberg number and β = ηs/η0 is the ratio of the solvent viscosity ηs to the zero-
shear-rate viscosity of the polymer solution η0. Here, U is the bulk velocity and D is the
pipe diameter.

Although, Owolabi et al. (2017) and Chandra et al. (2020) demonstrated that DR was
strongly related to the Weissenberg number, both works have their respective limitations.
Owolabi et al. (2017) acknowledged that DR does not depend on Wiτ alone, but should
also depend on the polymer contributions to the viscosity (i.e. β) and the Reynolds number.
Furthermore, predicting DR based on Wiτ is not trivial, because it requires measurements
of γ̇w in the drag-reduced flow, which changes depending on Reynolds number, DR and
the shear thinning rheology of the solution. On the other hand, Chandra et al. (2020)
utilised the more easily calculated Wi instead of Wiτ , and also incorporated β into their
scaling. That said, the experiments of Chandra et al. (2020) used microtubes with small
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Figure 1. Annotated top view drawing of the recirculating flow loop. The pipe highlighted in red draws
attention to the 6 m long interchangeable pipe section.

D (0.5–3 mm) and low Re (3000–4000), much less than those measured in Owolabi et al.
(2017) and closer to the transitional regime.

To help set up the objective of the present investigation and define the relevant
non-dimensional parameters for the polymer drag-reduced, smooth-wall, pipe flows, the
dimensional analysis of Buckingham (1914) is employed. The pressure gradient along
the streamwise direction of the pipe �P/�x is taken to be the dependent variable.
Independent variables relevant to the geometry and speed of the flow, include the pipe
diameter D, and the bulk flow velocity U . Independent variables relevant to the properties
of a dilute and viscoelastic polymer solution include the density ρ, the solvent viscosity
ηs , the zero-shear-rate viscosity η0 and the polymer relaxation time λ. Utilisation of only
these two non-Newtonian parameters assumes that viscoelasticity is the only relevant
parameter for DR in the flexible polymer solutions, and neglects other rheological
complexities (e.g. shear thinning or finite extensibility). The validity of this assumption
will be discussed throughout the analysis. Given the n = 7 variables, and k = 3 units
(mass, length and time), a functional relationship that consists of n − k = 4 dimensionless
variables can be formed. In this case, the functional relationship is represented as

C f =ψ (Res,Wi, β), (1.1)

where the skin-friction coefficient C f = (�P/�x) · D/(2ρU 2), the solvent Reynolds
number is Res = ρU D/ηs , the viscosity ratio is β = ηs/η0 and the Weissenberg number is
Wi = Uλ/D. The objective of the upcoming experiment is to identify the relationship ψ ,
that can predict C f based on Res , Wi and β. These dimensionless parameters depend on
known or measured quantities of the flow velocity, geometry and fluid properties.

Experimental measurements using a drag-reducing flexible polymer are used to
establish the relationship (1.1). The experiments include measuring the streamwise
pressure gradient in the straight pipe section of a recirculating flow loop across
a wide range of conditions, including different diameters D, velocities U , polymer
concentrations c, solvent viscosity ηs and degradation conditions. Each polymer solution
possesses unique values of η0 and λ obtained from measurements of shear and extensional
rheology. Finally, a dimensionless relationship is established to predict C f of polymer
drag-reduced pipe flows, provided Wi , β, and Re are known a priori.

2. Experimental methodology

2.1. Turbulent pipe flow
The turbulent pipe flow of drag-reducing solutions of the flexible polymer polyacrylamide
(PAM) were evaluated in a recirculating flow loop shown schematically in figure 1. The
selection of PAM for these experiments was due to its widespread use as a water-soluble
drag reducer and its higher resistance to chain scission induced by flow shear (Pereira &
Soares 2012; Soares et al. 2015). Three pipe sections with different inner diameters D of
26.7, 41.3 and 52.5 mm, were installed and tested within the red highlighted region of the
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D (mm) ṁ (kg s−1) U (m s−1) Res c (ppm)

26.7 1.26, 1.47, 1.68 2.25, 2.63, 3.01 60 000; 70 000; 80 000; 0, 50
1.89, 2.10 3.39, 3.77 90 000; 1 00 000

41.3 1.93, 2.25, 2.57 1.45, 1.69, 1.93 60 000; 70 000; 80 000; 0, 50, 100,
2.89, 3.21 2.17, 2.41 90 000; 1 00 000 150

52.5 2.48, 2.89, 3.30 1.15, 1.34, 1.53 60 000; 70 000; 80 000; 0, 50
3.71, 4.12 1.72, 1.91 90 000; 1 00 000

Table 1. List of prescribed flow conditions for each pipe section with diameter D, PAM concentrations c and
a pure water solvent ηs = 1.0 mPa s and ρ = 998 kg m−3.

flow loop shown in figure 1. All other piping within the flow loop had an inner diameter of
52.5 mm. Concentric reducers were used to gradually transition the pipe section to smaller
diameters when required. A centrifugal pump (LCC-M 50-230, GIW Industries Inc.)
was used to circulate the fluid within the loop and a Coriolis flow meter (Micro Motion
F-Series, Emerson Electric Co.) was used to measure the mass flow rate ṁ. A proportional-
integral-derivative controller was used to maintain a constant ṁ by adjusting the rotational
speed of the pump using a variable frequency drive. A thermocouple and shell-and-
tube heat exchanger were used to measure and maintain a constant fluid temperature of
20 ◦C ± 0.5 ◦C across all experimental trials.

For each pipe diameter D, five different ṁ were considered, as listed in table 1. The bulk
velocity was determined according to U = ṁ/(ρa) and listed in table 1, where a = πD2/4
is the cross-sectional area of the pipe and ρ is the density. The solvent Reynolds number
Res is listed in table 1 for each pipe. The pressure drop �P was measured utilising
a differential pressure transducer (DP-15, Validyne Engineering) along a streamwise
distance of �x = 1.75 m (corresponding to approximately 33.3D to 65.5D, depending on
the pipe diameter). The most upstream pressure port was positioned 3.6 m downstream
from the inlet of each pipe section (equivalent to 68.6D to 134.8D), as illustrated in
figure 1, to ensure a fully developed flow. Measurements of �P were collected at a
sampling rate of 1 Hz using a National Instruments data acquisition system. For each
ṁ, measurements of �P were collected for 5 min and then averaged over time.

The chosen PAM polymer (6030S, SNF Floerger) had a molecular weight Mw of 30–35
MDa. One concentration c of PAM, equal to 50 ppm, was tested in all pipe sections with
different D. However, aqueous PAM solutions with larger c of 100 and 150 ppm were
also tested, but only in the D = 41.3 mm pipe. In addition to pure water with ηs = 1.0
mPa s and ρ = 998 kg m−3, two glycerol/water solutions were also examined in the D =
26.7 mm pipe. One solvent was a 25 % glycerol/water solution, with ηs = 1.8 mPa s and
ρ = 1089 kg m−3, and the other was a 35 % glycerol/water solution, with ηs = 2.5 mPa s
and ρ = 1113 kg m−3. Flow conditions for these solvents are listed in table 2. Values of ηs
were measured from steady shear rheology in a torsional rheometer. The mass flow rates
ṁ for these conditions are manipulated such that they achieve three similar Res as those
for pure water with ηs = 1.0 mPa s listed in table 1 for the same diameter of D = 26.7 mm.
One PAM concentration of c = 50 ppm was tested with these more viscous glycerol/water
solvents. Baseline measurements of Res versus C f for the different solvents, without PAM,
are shown in Appendix A, and all demonstrate good agreement with the Prandtl’s friction
law of C−1/2

f = 4.0 log10(ResC1/2
f )− 0.4 for Newtonian turbulent pipe flow.

In order to obtain solutions with lower DR, the PAM fluids were intentionally degraded
by increasing the rotational speed of the pump for different amounts of time. An example
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Solvent ṁ (kg s−1) U (m s−1) Res c (ppm) ηs (mPa s) ρ (kg m−3)

25 % glycerol/water 2.54, 2.97 4.18, 4.88 70 000; 80 000; 0, 50 1.8 1089
3.39 5.56 90 000

35 % glycerol/water 3.70, 4.29 5.93, 6.88 70 000; 80 000; 0, 50 2.5 1114
4.87 7.82 90 000

Table 2. List of flow conditions for additional tests performed with more viscous solvents, the first being a
25 % glycerol/water solution and the second being a 35 % glycerol/water solution. Experiments tested here
were performed in the D = 26.7 mm diameter pipe.
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Figure 2. A sample plot of (a) mass flow rate ṁ and (b) streamwise pressure drop �P versus time t for a
50 ppm PAM solution degraded within the D = 26.7 mm pipe. Vertical lines of similar colour represent the
bounds for averaging windows, where measurements of ṁ and �P were averaged.

of the degradation procedure for a 50 ppm PAM solution in the D = 26.7 mm pipe, with
a pure water solvent (ηs = 1.0 mPa s) is shown in figure 2. Figure 2(a) shows the time
series of mass flow rate ṁ with respect to time t , and figure 2(b) demonstrates the time
series of pressure drop �P versus t for the same experiment. Coloured vertical lines in
figure 2 represent the bounds of different stages of the experiment. Each stage is labelled
with a roman numeral in figure 2(a) that increases chronologically with t . Prior to the
experimental trial, a 15 l concentrated master solution was prepared. In stage (i), the
master solution is added to the flow loop and circulated for 300 s at a constant pump
rotational speed of 300 rpm, mixing and diluting the solution to the desired c. Shortly
after mixing, the rotational speed of pump is increased to 1200 rpm and the solution is
intentionally degraded. This degradation phase, labelled stage (ii) and bounded by grey
lines in figure 2, was 1470 s for the experiment shown in figure 2. The exact duration of
stage (ii) was manipulated day to day to achieve drag-reduced flows with different C f
values and polymer rheology. As an exception, to achieve C f values near the maximum
DR, the solutions were not degraded, and stage (ii) was omitted. In stage (ii) of figure 2(a),
polymer degradation causes ṁ to decrease with respect to t , when the pump is maintained
at a constant rotational speed. Values of �P are large in stage (ii) and would exceed the
range of the differential pressure transducer. To avoid damaging the transducer during
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stage (ii), the pressure sensor is isolated from the flow loop using valves; hence the
appearance of �P = 0 in stage (ii) of figure 2(b). After degradation, the rotational speed
of the pump is reduced and the valves that feed the pressure transducer are re-opened. The
ṁ is then set to the lowest value of 1.26 kg s−1 for the D = 26.7 mm pipe listed in table 1
and held at that ṁ for �t = 300 s. The proportional-integral-derivative controller is used
to manipulate the rotational speed of the pump and maintain a constant ṁ for the 300 s
duration. Stage (iii), bounded by blue lines in figure 2, is a 270 s window where ṁ and
�P were averaged over t ; 30 s of data were neglected to avoid any transient development
in the flow. The resulting average values of ṁ and �P are then used in the calculation
of the dimensionless numbers such as C f , Wi and Res . From stages (iv) to (vii), ṁ was
increased sequentially using the values listed in table 1 for D = 26.7 mm. This procedure
is the same for the D = 41.3 and D = 52.5 mm pipes, albeit with different prescribed
values of ṁ for stages (iii) to (vii), as listed in table 1. This degradation procedure was
used to produce eight, eleven and six different degraded 50 ppm PAM solutions for the
D = 26.7 , 41.3 and 52.5 mm pipes, respectively. While for the 100 and 150 ppm PAM
solutions, three and two different degraded solutions were considered, respectively, within
the D = 41.3 mm pipe. Only fresh PAM solutions (i.e. with no degradation) were tested for
the two glycerol/water solvents with properties listed in table 2. Overall, this investigation
considered drag-reduced pipe flows with three D, five ṁ, and 32 different PAM solutions
(three c, three solvents ηs and two to eleven different amounts of degradation), thus
producing a total of 156 unique trials with different rheology and C f .

2.2. Fluid rheology
For each PAM solution, and at each ṁ, fluid samples were collected for shear and
extensional rheology measurements from the flow loop half-way through the 270 s data
collection intervals labelled (iii) to (vii) in figure 2. The steady shear viscosity η with
respect to shear rate γ̇ was measured for each sample using a single-head torsional
rheometer (DHR-2, TA Instruments) equipped with a double-gap concentric cylinder
geometry. Each curve of η versus γ̇ is fit with the model of Cross (1965)

η− η∞
η0 − η∞

= 1
1 + (K γ̇ )m

, (2.1)

where η∞ is the infinite-shear-rate viscosity, η0 is the zero-shear-rate viscosity, K is the
consistency and m is the flow index. Sample measurements of shear viscosity η versus
shear rate γ̇ are shown in figure 3(a) for seven c = 50 ppm PAM solutions with different
amounts of degradation. At low γ̇ , measurements of η are neglected due to the low torque
limitation (M < 600 nN m) of the device, as indicated by the solid black line on the left
side of figure 3(a). At larger γ̇ , measurements of η demonstrate an abrupt increase due to
the inception of Taylor vortices at a Taylor number T a of 1700 and indicated by the solid
black line on the right side of figure 3(a). The coloured lines represent Cross model (Cross
1965) fits represented by (2.1). Figure 3(a) demonstrates that as the 50 ppm PAM solutions
degrade, η decreases for all γ̇ . Furthermore, η0 demonstrates a notable reduction with
increasing amounts of degradation; therefore β = ηs/η0 should increase as PAM solutions
degrade. In this case, for the given 50 ppm PAM solutions, β increased from 0.56 to 0.87
with increasing amounts of degradation. For the 100 ppm PAM solutions β was between
0.5 and 0.7, while the 150 ppm PAM solutions had β between 0.2 and 0.5.

Considering the polymer solutions are shear thinning, with shear rheograms described
well by (2.1), some doubt is cast on the validity of the assumptions used in § 1 to arrive
at ψ of (1.1). Given the polymers are shear thinning, questions arise as to why K , m
or η∞ are not included in (1.1). Although shear thinning has been shown to cause DR

1016 A1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
24

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10243


Journal of Fluid Mechanics

M
 =

 6
0
0
 n

N
 m Ta

 =
 1

7
0
0

β = 0.56
λ = 5.2 ms

λ
 =

 0
.1

9
 m

s

2.5

2.0

1.5

1.0

100
10−2

10−1

×10−3

100

101

β = 0.87
Degradation

Degradation

102 103 0−10 10 20

η
 (

P
a 

s)

γ̇ (s−1) t − tb (ms)

D
m

in
/
D

0

(b)(a)

Figure 3. Plots of (a) steady shear viscosity with respect to shear rate and (b) filament diameter versus time
from liquid dripping extensional rheometry. Solid lines in (a) are fits using (2.1). Solid lines in (b) are fits
using (2.2).

(Singh, Rudman & Blackburn 2017; Arosemena et al. 2021), its contributions to DR are
assumed to be minimal compared with viscoelasticity. Drag reduction using a inelastic
Carreau shear thinning constitutive models was investigated using turbulent channel flow
direct numerical simulation (DNS) by Arosemena et al. (2021). Despite large amounts of
shear thinning, with η∞/η0 = 1 × 10−3, Arosemena et al. (2021) reported only a small
DR percentage of 10 %. Given the smallest η∞/η0 among all of the present drag-reducing
PAM solutions is 0.36, which is much closer to unity than that used by Arosemena et al.
(2021), it is expected that shear thinning does not contribute significantly to C f in these
fluids.

Liquid dripping extensional rheology was used to determine λ for each PAM solution
(Deblais et al. 2020; Rajesh, Thiévenaz & Sauret 2022). Here, a droplet of each PAM
solution is expelled from a blunt end nozzle with an outer diameter of D0 = 1.27 mm,
using a syringe pump with a flow rate of 0.02 ml min−1. As the droplet is expelled from the
nozzle, a liquid bridge forms between the droplet and the outlet of the nozzle. A high-speed
camera (NOVA S9, Photron Inc.) and light emitting diode were used to record images
of the minimum diameter Dmin of the liquid bridge with respect to time t . Viscoelastic
polymer solutions tend to exhibit elasto-capillary (EC) thinning, where Dmin/D0 closely
resembles an exponential function of the form

Dmin

D0
= C exp

(
− t − tb

3λ

)
. (2.2)

Here, C is a fitting constant, tb is an inertial break-up time and λ is the elastic relaxation
time (Anna & McKinley 2001). For each sample, extensional rheology measurements were
repeated three times. The λ of each solution was taken to be the average of the three values
of λ derived from the fits of (2.2). Sample measurements of extensional rheology, given
by Dmin/D0 with respect to t − tb, are shown in figure 3(b) for the same PAM solutions
shown in figure 3(a) with different amounts of degradation. For t > tb the PAM solutions
exhibit EC thinning, where Dmin/D0 resembles (2.2). In the EC regime, λ tends to be
smaller for PAM solutions that experience larger amounts of degradation. In this case, the
50 ppm solutions shown in figure 3(b) have a λ that reduces from 5.2 to 0.19 ms with
increasing amounts of degradation. Regardless of the concentration c, PAM solutions that
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Figure 4. The skin-friction coefficient as a function of solvent viscosity Reynolds number. The upper and
lower black lines are the C f for Newtonian turbulent pipe flow and MDR (Virk et al. 1970), respectively.

experience more mechanical degradation tend to have lower values of λ, similar to that
shown previously in Owolabi et al. (2017) using CaBER measurements of λ. That said,
λ tends to be overall larger for solutions with greater c.

The uncertainty in the measurements of ṁ and �P consist of systematic uncertainties,
prescribed by the sensor manufacturer, and random uncertainties, established from the
repeatability in the measurements of ṁ and �P for water. The relative uncertainty in
η0 was conservatively assessed to be ±4.0 % for all PAM solutions. Uncertainty in
λ was assumed to be the range in the thrice-repeated measurements of λ from liquid
dripping extensional rheology. Using these estimates, the uncertainty in the dimensionless
variables was assessed from propagation of uncertainty (Wheeler & Ganji 2010), and are
represented by error bars in all figures to follow. A detailed discussion of the measurement
uncertainties is provided in Appendix A.

3. Skin-friction scaling
Plots of C f versus Res are shown in figure 4(a) for all 156 pipe flow measurements of PAM
with different D, ṁ, c, ηs and degradation conditions. Markers are coloured according
to D, while marker symbols correspond to different c and ηs as indicated by the legend
above figure 4(a). Figure 4(a) demonstrates that the measurements cover a wide range
of C f values, that fall between the C f versus Re distributions for Newtonian turbulent
pipe flows according to Prandtl’s friction law of C−1/2

f = 4.0 log10(ResC1/2
f )− 0.4 and

maximum drag reduction (MDR) according to C−1/2
f = 19.0 log10(ResC1/2

f )− 32.4
(Virk, Mickley & Smith 1970). As the PAM solutions are degraded, C f increases for a
given Res , as annotated in figure 4(a). Note, that typically Res is not used in plots of C f
for polymer drag-reduced flows; rather, a Reynolds number based on a near-wall viscosity
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Figure 5. Plots of (a) DR versus Wiβ and (b) A versus Wiβ for the polymeric flows with different D and c.
The black lines in (a,b) represent the fit functions labelled on each plot. Marker symbols and colours are the
same as those shown in figure 4(a).

Rew = ρU D/ηw is used (Xi 2019), where ηw is the near-wall viscosity. Different
definitions of the Reynolds number, including Rew and Re0 = ρU D/η0, are explored
later in § 4 of the manuscript.

Figure 4(b) shows a plot of C f versus Res , with markers coloured according to each
fluid’s respective value of Wiβ. The Wi represents the extent to which the polymers are
stretched based on the bulk shear rate U/D. In general, a higher Wi indicates greater
polymer stretching, which is expected to result in a lower C f , establishing an inverse
relationship. However, this approximation of Wi , derived in § 1, does not account for the
effect of polymers on viscosity. As inferred from figure 3, PAM solutions with higher
λ (and thus higher Wi) exhibit greater viscosity, which leads to a smaller β. Since this
smaller β contributes to a larger C f , which is also an inverse relationship, Wi is multiplied
by β to compensate for the viscosity effect. This is confirmed in figure 4(b) showing that
C f decreases as Wiβ increases for a given Res . Flows with small values of Wiβ, close
to zero, have values of C f close to the Newtonian skin-friction correlation, while Wiβ in
excess of 0.2 produce values of C f that approach MDR. We acknowledge that use of Wiβ
is in contradiction with the prior work of Chandra et al. (2020), who demonstrated that C f
scales with Wi(1 − β). Scaling of C f with Wi(1 − β) is discussed in greater detail in § 5.

A DR percentage DR is often used to estimate the reduction in C f of each polymer
solution relative to Newtonian turbulence (Owolabi et al. 2017; Xi 2019). Here, the DR
percentage of each polymer drag-reduced pipe flow is defined by the equation,

DR =
(

1 − C f

C f,N

)
× 100 %, (3.1)

where C f,N is a Newtonian skin-friction coefficient at a similar Res (or ṁ) following
Prandtl’s friction law. Uncertainty in DR propagates from the errors in C f , discussed in
Appendix A, and is represented by error bars in plots of DR that follow. Other definitions
of DR, using C f,N at a similar Re0 and Rew as the polymeric flows, are also explored later
in § 5.

Figure 5(a) demonstrates DR as a function of Wiβ for all polymer solutions with
different c and D. Values of DR show good consistency with one another when
plotted with respect to Wiβ, and are well represented by an inverse relationship
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D̂R = 79.3 %[−0.0173(Wiβ + 0.0143)−1 + 1]. Here, the hat symbol ·̂ · · is used to
represent a prediction based on a fit of the measurements. This inverse relationship was
chosen because it predicts an onset DR (DR = 0%), and an asymptotic value of DR,
corresponding roughly to the limit of MDR in the range of Res considered. Based on
the fit of D̂R, DR commences when Wiβ exceeds 3.00 × 10−3, and DR asymptotically
saturates to 79.3 %. The equation for D̂R fits the measurements well, given a coefficient of
determination R2 = 1 − ∑N

n=1(DRn − D̂Rn)
2/

∑N
n=1(DRn − 〈DR〉)2 of 0.954. Here, n

is a sample measurement, N = 156 is the total number of measurements and angle brackets
〈· · ·〉 represent the average of the quantity contained within the brackets.

Although DR shows good scaling with Wiβ, the proposed inverse equation has some
limitations. Notably, the asymptotic limit of D̂R corresponding to MDR is only expected
to apply for the range of Res measured here. This is because the skin-friction equation
for Newtonian turbulence and MDR diverge with increasing Res , and the value of DR
corresponding to MDR increases with Res . To alleviate this concern, a new variable A
is used to describe the proximity of C f for each drag-reduced flow to the skin-friction
coefficient for Newtonian turbulence and MDR. Here, A is the slope of C f and Res in
Prandtl–von Kármán coordinates according to

C−1/2
f = A log10(ResC1/2

f )+ B, (3.2a)

B = 122
15

− 32A

15
, (3.2b)

where B is the intercept of C−1/2
f at ResC1/2

f = 1. Note that, when A = 4.0 and 19.0, (3.2)
produces the skin-friction correlations for Newtonian turbulence and MDR, respectively.
Here B, represented by (3.2b), is defined such that all values of A produce lines
of C f versus Res that pass through the point of intersection between the lines for
Newtonian turbulence and MDR. Values of A are determined for each flow based on
their respective value of C f and Res and from rearranging (3.2), as A = (C−1/2

f −
122/15)/(log10(ResC1/2

f )− 32/15). Therefore, each measured value of C f and Res ,
shown in figure 4(a), has a corresponding value of A based on (3.2). Considering all
values of C f for the polymer drag-reduced flows are less than Prandtl’s friction law, but
greater than MDR – as demonstrated in figure 4(a) – it is expected that A will be bounded
between 4.0 and 19.0.

A plot of A versus Wiβ for each flow with known C f and Res values, is shown
in figure 5(b). As predicted, values of A are between 4.0 and 19.0, corresponding to
Newtonian turbulence and MDR, respectively. When plotted with respect to Wiβ, values
of A show good consistency with one another for the flows of different D and c, and are
accurately described by the power-law function Â = 27.6(Wiβ)0.346. The R2 of this fit is
0.949, which is comparable to that of D̂R. However, unlike the inverse function of D̂R, the
function Â enables a more obvious prediction of DR onset and MDR, which would occur
where Â = 4 and 19, respectively. Based on the power-law function of Â versus Wiβ, DR
onset would occur at Wiβ = 3.76 × 10−3, not too dissimilar from the Wiβ = 3.00 × 10−3

predicted by D̂R, and MDR would occur at Wiβ = 3.40 × 10−1. Substituting Â for A in
(3.2), provides an equation for the skin-friction coefficient as a function of Res , Wi and β;
in other words, the function ψ , as per (1.1). The function is represented as

Ĉ f
−1/2 = Â log10(ResĈ f

1/2
)+ B̂, (3.3a)
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Figure 6. Plot of (a) C f versus Res with lines and markers coloured based on A and Â respectively, and
(b) p.d.f. of the per cent difference between Ĉ f and C f , or ω, for each flow.

where

Â = 27.6(Wiβ)0.346, (3.3b)

and

B̂ = 122/15 − 58.9(Wiβ)0.346, (3.3c)

and Ĉ f represents the predicted value of skin-friction coefficient based on Res , Wi and β.
As a final simplification, the implicit function of (3.3a) can be made explicit through use
of the zeroth branch of the Lambert function (Goudar & Sonnad 2003). Therefore, (3.3a)
can be equally represented as

Ĉ f
−1/2 = Â

ln(10)
W

[
Res ln(10)

Â
exp

(
B̂ ln(10)

Â

)]
, (3.4)

where W is the Lambert function, which is the inverse operation of f (w)=w exp(w).
Here, w is an arbitrary dependent variable. In other words, the Lambert function can be
expressed as, w=W[w exp(w)].

A per cent difference between Ĉ f and C f , equal to ω= (Ĉ f − C f )/C f × 100 %, is
also used to evaluate the accuracy of (3.3). Figure 6(a) demonstrates C f versus Res ,
similar to figure 4(a), however, with markers coloured according to values of ω. Large
values of ω appear to typically occur at lower C f or larger DR and Wiβ. One condition
in particular with C f between 1 × 10−3 and 2 × 10−3, corresponding to the flow with
D = 41.3 mm and c = 50 ppm, shows values of ω near 20 % for all Res , perhaps
highlighting an anomalous test day. The probability density function (p.d.f.) of ω is shown
in figure 6(b). The p.d.f. in ω appears to be slightly skewed to more positive values with
a median of −0.332 % and a mean of 0.318 %. Values of ω vary between ±20 %, as
demonstrated by the extents of the p.d.f. shown in figure 6(b). An approximate estimate
for the accuracy of the prediction (3.3) is assumed to be the standard deviation in ω, which
is 9.36 %.
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4. Reynolds number definition
Use of Res is not typical when considering polymer drag-reduced pipe flows (Xi 2019);
generally, the enhanced viscosity of the polymer solutions needs to be taken into account.
For that reason, the influence of different Reynolds number definitions are discussed in this
section. Figure 7 demonstrates the skin-friction scaling for the two other definitions of the
Reynolds number; Re0 = ρU D/η0 and Rew = ρU D/ηw. Marker colours and symbols,
that represent the polymer drag-reduced flows of different D and c, are the same as those
defined earlier in figure 4(a).

Figure 7(a) demonstrate C f versus Re0. Considering η0 >ηs , values of Re0 are lower
than Res shown in figure 4(a). The PAM solutions with c = 100 and c = 150 ppm have
lower Re0 values than most of the c = 50 ppm flows, due to their much larger η0.
In some instances, values of C f and Re0 for the 150 ppm solution fall slightly below the
MDR asymptote, calculated based on Re0. Figure 7(b) demonstrates the DR percentage
of the polymer drag-reduced flows evaluated according to (3.1), but with respect to
a Newtonian skin-friction coefficient C f,N at a similar Re0. This DR percentage is
defined as DR0. Despite the difference between DR and DR0, values of DR0 appear to
follow a similar inverse relationship; in this case DR0 is well predicted by the function
D̂R0 = 82.9 %[−0.0167(Wiβ + 0.0142)−1 + 1]. The coefficient of determination R2

of the function D̂R0 is 0.958, which is slightly better than that of D̂R. Figure 7(c)
demonstrates the parameter A0, defined from rearranging (3.2), but with Re0 in lieu
of Res . Similar to A, values of A0 faithfully follow a power-law trend with respect to
Wiβ, but represented by Â0 = 37.0(Wiβ)0.398. The prediction Â0 has an R2 = 0.926 that
is marginally worse than the R2 of 0.949 for Â. Certain values of A0 also exceed 19
(corresponding to MDR), particularly at larger c and lower D, hinting that Re0 is not an
ideal Reynolds number definition for the flows.

Figure 7(d) shows C f versus a Reynolds number Rew based on the near-wall
viscosity ηw. Here, ηw is derived using the Cross model (2.1) coupled with measurements
of the wall shear stress τw = (D/4)�P/�x , which can be equally represented as τw =
ηwγ̇w, where γ̇w is the near-wall shear rate. This Reynolds number definition Rew is
typically used in most investigations of polymer drag-reduced flows and is therefore,
important to consider (Xi 2019). Generally, η0 >ηw > ηs and Rew tends to be lower than
Res , but larger than values of Re0 – as seen when comparing figure 4(a) with figures 7(a)
and 7(d). The DR percentage DRw and the slope parameter Aw based on Rew, shown
in figure 7(e, f ), respectively, demonstrate similar trends as those seen for DR and A,
with subtle differences in value and the quality of fit. For example, the function Âw has
a better data collapse than Â and Â0, with an R2 of 0.964, implying Rew is the most
appropriate Reynolds number definition. That said, for the sake of predicting DR or C f ,
Res is suitable; since the wall viscosity ηw is not known a priori.

5. Previous correlations of drag reduction and viscoelastic rheology
The most relevant rheological correlation of DR and elastic flow features was performed
by Owolabi et al. (2017). As discussed in § 1, Owolabi et al. (2017) correlated DR with a
near-wall Weissenberg number Wiτ = λγ̇w, where γ̇w is a wall shear rate estimated from
measurements of τw from �P and shear rheograms. Owolabi et al. (2017) proposed that
DR should scale with Wiτ according to

DR = 2C1

(
1

1 + exp(Wic − Wiτ )
− Wic

)
, (5.1)
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Figure 7. Plots of (a) C f versus zero-shear-viscosity Reynolds number Re0, (b) DR0 based on similar Re0
versus Wiβ, (c) slope factor A0 versus Wiβ, (d) C f versus wall-viscosity Reynolds number Rew , (e) DRw
based on similar Rew versus Wiβ, (f ) slope factor Aw versus Wiβ. Lines in (a,d) labelled ‘NT’ correspond
to Newtonian turbulence C−1/2

f = 4.0 log10(ReC1/2
f )− 0.4 and ‘MDR’ correspond to maximum DR C−1/2

f =
19.0 log10(ReC1/2

f )− 32.4 (Virk et al. 1970), where Re = Re0 in (a) and Re = Rew in (d). Black solid lines
in (b,c) and (e,f ) correspond to the equations annotated on each respective panel. Marker symbols and colours
are the same as those labelled in figure 4(a).

where C1 is the asymptotic limit of DR as Wiτ → ∞ and Wic is the critical onset value
Wiτ where DR starts to exceed 0 %. Owolabi et al. (2017) based (5.1) on a trend derived
by Housiadas & Beris (2013) that was established using DNS with different viscoelastic
constitutive models (Oldroyd-B, Giesekus and FENE-P [finitely extensible non-linear
elastic dumbells with a Peterlin approximation]). The trend established by Housiadas &
Beris (2013) is

DR = C1

⎛
⎝1 + 2

1 + exp
(

Wiτ−Wic
σ

)
⎞
⎠ , (5.2)

where σ is a fitting constant that modifies the rate at which DR increases with Wiτ .
Note that, (5.1) from Owolabi et al. (2017) is the same as (5.2) from Housiadas & Beris
(2013), for σ = 1 and Wic = 0.5. Figure 8 demonstrates DR as a function of the near-wall
Weissenberg number Wiτ for the present polymer drag-reduced flows. Equation (5.1) is
shown in figure 8 using a dashed black line for C1 = 79.3 %, which corresponds to MDR
as shown in figure 5(a), and Wic = 0.5 from Owolabi et al. (2017). Measurements of DR
increase with growing Wiτ , but do not show a similar collapse on the profile of (5.1)
previously seen by Owolabi et al. (2017). The onset Wiτ of 0.5 appears to be consistent
with Owolabi et al. (2017), but for all Wiτ >Wic measurements deviate from (5.1). The
coefficient of determination R2 for (5.1) relative to the current measurements is 0.24,
which is much worse than the R2 of 0.820 observed by Owolabi et al. (2017).
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Figure 8. Drag reduction percentage based on constant ṁ or Res with respect to near-wall Weissenberg number
Wiτ . The dashed black line represents the correlation of DR and Wiτ (5.1) from Owolabi et al. (2017) with
C1 = 79.3 % and Wic = 0.5. The solid black line represents the model (5.2) from Housiadas & Beris (2013)
with an additional fitting parameter of σ = 2. Marker symbols and colours are the same as those presented
throughout the manuscript and labelled in figure 4(a).

The model of (5.1) can be improved by incorporating an additional fitting parameter (σ )
and utilising the trend of (5.2) proposed by Housiadas & Beris (2013). Using the same
onset Weissenberg number Wic = 0.5 and asymptotic DR percentage C1 = 79.3 % used
for (5.1), but with σ = 2, the trend in DR versus Wiτ is much more accurately modelled,
with an R2 of 0.76. Recall that the model of Owolabi et al. (2017) corresponds to σ = 1;
therefore, comparing the dashed and solid black lines corresponding to (5.1) and (5.2),
respectively, demonstrates that increasing σ in (5.2) will delay the transition to maximum
DR C1 or reduce the rate at which DR increases with growing Wiτ . Interestingly, much
of the deviation between (5.2) corresponds to flows with larger c, despite the fact that the
fluids with larger c have a more comparable β to the PAM solutions with β ≈ 0.1 used in
Owolabi et al. (2017).

One potential cause for a large error in figure 8 could be attributed to a large uncertainty
in measuring γ̇w for calculating Wiτ . The maximum measurable shear rate γ̇ in the given
rheometer using the double gap Taylor–Couette geometry was approximately 200 s−1.
However, near-wall shear rates in the turbulent pipe flow are on the order of 103 to 104

s−1, particularly for the smallest D of 26.7 mm. Extrapolating shear rheograms using
shear thinning models, such as the model of Cross (1965) and given by (2.1), are typically
known to produce large uncertainties in ηw and γ̇w (Singh et al. 2016). Measurements of η
at larger γ̇ would provide better confidence in the resulting values of Wiτ and comparison
with (5.1); however, it is unclear if shear rheograms were also extrapolated in the work of
Owolabi et al. (2017) in their derivation of γ̇w.

Another work that demonstrated scaling of C f and DR with viscoelastic rheology was
that of Chandra et al. (2020). In their measurements of C f in polymer drag-reduced
microtubes, Chandra et al. (2020) demonstrated good scaling between DR and Wi(1 − β).
In the present investigation, better scaling was observed between DR and Wiβ, and not
Wi(1 − β), as shown in figure 5(a). The following discussion using figure 9 shows the
discrepancy that exists if Wi(1 − β) is used.

Figure 9(a) demonstrates DR versus Wi for all flows. Values of DR versus Wi for differ-
ent D, but a similar c of 50 ppm, tend to overlap; however, for a given DR (e.g. DR = 50 %)
and D of 41.3 mm, Wi increases as c grows. Values of λ are known to increase with c
(Rajesh et al. 2022), hence Wi = λU/D is expected to also increase with c for a given U
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Figure 9. Drag reduction percentage based on constant ṁ or Res with respect to (a) Wi , (b) 1 − β and
(c) Wi(1 − β). Marker symbols and colours are the same as those labelled in figures 4(a) and 8.

and D. Similarly, for a given DR, 1 − β also tends to increase with c, as demonstrated by
the plot of DR versus 1 − β of figure 9(b). As shown in figure 9(c), multiplying Wi and
1 − β does not collapse the data, as previously demonstrated by Chandra et al. (2020),
but rather, amplifies the discrepancies between the different PAM concentrations. On the
other hand, multiplying Wi with β tempers the spread in the measurements of DR for
different c, as shown in figure 5(a). At a given DR, values of β are smaller for larger
c, counteracting the spread in Wi due to concentration differences shown in figure 9(a).
It should be noted that the present experiments are different than those of Chandra et al.
(2020), who considered polymer drag-reduced flows with different c and polymer type,
but not degraded polymer solutions. Furthermore, Chandra et al. (2020) does not explicitly
determine λ from extensional viscosity measurements, but utilises a correlation of λ and c.

6. Further discussion
Expanding upon the discussion of figure 9, we elaborate further on the use of Wiβ as a
combination of scaling parameters in the following discussion. Recall that Wi = Uλ/D
represents the extent polymers are stretched within the flow (based on a bulk shear rate
U/D), which is an increasing function of c. On the other hand, β = ηs/η0 is meant to
account for the influence of polymers on shear viscosity, which is a decreasing function
of c. Therefore, the combination Wiβ can be interpreted as an ‘effective Weissenberg
number’, or a viscosity corrected bulk Weissenberg number. This definition of the
effective Weissenberg number (Wiβ) accounts for differences in c better than other
effective Weissenberg number definitions, e.g. Wi(1 − β), when predicting C f or DR,
as demonstrated when comparing figure 5(a) with 9(c).

Although the proposed model of (3.3) is able to accurately predict C f , as shown by
figure 6, its derivation is predicated on the assumption that viscoelasticity is the main
contributor to DR, as stated in § 1. That said, it is possible other rheological complexities,
not measured in the present investigation, could contribute to skin-friction drag or be used
in lieu of λ for prediction of C f . For example, previous investigations have demonstrated
that the first normal stress differences N1 roughly scales with DR (Escudier, Presti & Smith
1999); however, values of N1 were also previously shown to be correlated with λ and might
not imply a distinct mechanism for DR (Zell et al. 2010). Another rheological property
that could have been considered was the extensional viscosity ηext , which is widely
regarded as a relevant mechanism for DR (Lumley 1973). In dimensionless terms, the
ratio of the extensional to shear viscosity is the Trouton ratio T r = ηext/η. Measurements
of ηext could be implied from the present extensional rheology measurements, although
strain rates are likely too low for comparison with the turbulent pipe flows. Alternatively,

1016 A1-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
24

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10243


L. Warwaruk, S. Singh, P.F. Mendez and S. Ghaemi

the recently developed stagnation-point extensional rheology techniques could be used to
derive measurements of the steady state extensional viscosity ηext (Haward et al. 2023a,b).

7. Conclusions
To derive a functional relationship that relates the four dimensionless parameters, C f ,
Wi , Res and β, skin-friction measurements were conducted in a pipe flow facility for
156 solutions of PAM. The experiments considered three pipe diameters and five bulk
velocities, corresponding to Res between 60 000 and 100 000. To achieve a broad range
of C f values, the polymer solutions were also deliberately degraded using the centrifugal
pump within the flow facility. This degradation influenced the rheology of the solutions, as
characterised by measurements of zero-shear-rate viscosity, η0, and elastic relaxation time,
λ. Three different PAM concentrations were also considered, which further manipulated
the rheology of the fluids. In addition, PAM solutions with different solvents, pure water
and two glycerol/water mixtures, with unique ηs , were also examined.

Based on the experimental results, the functional relationship C−1/2
f = Â log10

(ResC1/2
f )+ B̂, where Â = 27.6(Wiβ)0.346 and B̂ = 122/15 − 58.9(Wiβ)0.346, can be

used to estimate C f of polymer drag-reduced pipe flows given prior measurement of Wi
and β using a small sample of the polymer solution. Based on this model, it is predicted
that DR onset occurs when Wiβ exceeds 3.76 × 10−3, and MDR occurs when Wiβ
equals 3.40 × 10−1. From an applied perspective, this function serves as a practical tool
for predicting C f of polymer drag-reduced pipe flows based on predefined flow features
(D, U ) and simple-to-measure fluid properties (ρ, ηs , η0, λ). Future experiments should
strive to confirm or correct the applicability of the derived functional relationship, by
collecting similar measurements for different types of polymers (e.g. polyethylene oxide,
xanthan gum), solvents (e.g. hydrocarbons), Res values that are beyond the range currently
considered and larger D values that are more comparable to those used in industrial
applications such as crude oil pipelines.
Funding. The authors acknowledge the financial support of the Natural Sciences and Engineering Research
Council of Canada. The last author thanks Dr C. O’Neill for valuable discussions.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Uncertainty analysis
The main source of uncertainty in ṁ is a systematic uncertainty equal to ±1.0 % of
the measured ṁ, as per the Coriolis flow meter manufacturer. Random errors in mass
flow rate are negligible, because ṁ is prescribed using a controller. For measurements
of �P , the systematic error is equal to ±0.5 % of the full scale range of the pressure
transducer, according to the pressure transducer manufacturer. Random uncertainties in
�P are determined based on the repeatability of �P measurements for water at the five
given ṁ for each pipe D listed in table 1. For each ṁ, three repeated measurements
of �P were collected. The random error in �P is taken to be the range (maximum
minus minimum) in the three repeated measurements of �P , for each ṁ and D. The
total uncertainty in �P is established by taking the L2-norm between the random and
systematic uncertainties, which varied between 1.2 % and 6.4 % of the average �P .
Uncertainty in the dimensionless variables (e.g. C f , Res) is determined using propagation
of uncertainty (Wheeler & Ganji 2010). Figure 10(a) demonstrates C f versus Res for
water at different D. The flows at different Res and D show good agreement with one
another, and the correlation for Newtonian turbulence C−1/2

f = 4.0 log10(ResC1/2
f )− 0.4.
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Cf −1/2 = 19.0 log10 (ResCf 1/2) − 32.4

Cf −1/2 = 4.0 log10 (ResCf 1/2) − 0.4

D = 26.7 mm, ηs = 1.0 mPa s
D = 41.3 mm, ηs = 1.0 mPa s
D = 52.5 mm, ηs = 1.0 mPa s
D = 26.7 mm, ηs = 1.8 mPa s
D = 26.7 mm, ηs = 2.5 mPa s
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Figure 10. Plots of (a) C f versus Res for Newtonian solvents in different pipe diameters D, and (b) repeated
measurements of η versus γ̇ for a 50 ppm PAM solution. The upper and lower black solid lines in (a) are the
skin-friction versus Reynolds number correlations for Newtonian turbulent pipe flow and MDR (Virk et al.
1970), respectively. Solid lines in (b) represent Cross model fits according to (2.1) and dashed black lines
represent the low torque (M > 600 nN m) and Taylor vortex (T a < 1700) limits of the viscosity measurements.

The uncertainty in�P is assumed to be the same for the polymeric pipe flows at the given
ṁ and D listed in table 1. Among all of the polymeric and Newtonian flows the relative
uncertainty in C f varied between 2.5 % and 6.7 %. Baseline measurements of C f versus
Res for the Newtonian 25 % glycerol/water and 35 % glycerol/water flows in the D = 26.7
mm pipe are also shown on figure 10(a) using open symbols. Error bars in figure 10(a)
demonstrate the uncertainties in C f and Res that propagates from uncertainties in�P and
ṁ. Properties of the flow and glycerol/water mixtures are listed in table 2. The Newtonian
flows of these two glycerol/water mixtures show good agreement with measurements of
water at similar Res and the Newtonian turbulent pipe flow correlation.

The uncertainty in η0 was estimated considering it is an extrapolation of measurements
of η to low γ̇ due to the low torque limitation of the rheometer. The systematic uncertainty
in η0 is assumed to be ±3 % of the measured η0, as per the precision prescribed by the
rheometer manufacturer. The random uncertainty in η0 is determined based on repeated
measurements of η as a function of γ̇ . Measurements of η versus γ̇ are repeated three
times for a given 50 ppm solution of PAM. The Cross model (2.1) was then fit to the three
separate shear rheograms. The measurements of η versus γ̇ for the three repeated samples
are shown in figure 10(b) alongside fits using the Cross model (2.1), shown using solid
lines. Measurements of η for the three samples show good repeatability for γ̇ between
the low torque (M > 600 nN m) and Taylor vortex (T a < 1700) limits of the viscosity
measurements, shown by the dashed black lines. Separate measurements of η versus γ̇
and Cross model fits, yielded η0 of 1.220, 1.212, 1.245 mPa s. The random uncertainty in
η0 is chosen to be the range in the measured η0, which is equal to 0.033 mPa s or ±2.6 %
of the average η0, for the given PAM solution. The total uncertainty was determined to be
±4.0 % of the measured η0, based on the L2-norm between the systematic and random
uncertainties in η0. This conservatively estimated relative error of ±4.0 % was assumed
to be the relative uncertainty of all η0 measurements for different PAM solutions, which
then propagates to errors in the dimensionless variables β.
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The total uncertainty in λ is taken to be the range in the thrice-repeated measurements
of λ from liquid dripping extensional rheology detailed in § 2. This uncertainty ranged
between ±1 % and ±15 % of the average λ depending on the PAM solution. These errors
in λ propagate to Wi , which is the only dimensionless parameter that depends on λ.
Depending on the flow, the error in Wi varied between 1.0 % and 12.4 %.
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