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Abstract. We study bi-invariant word metrics on groups. We provide an efficient
algorithm for computing the bi-invariant word norm on a finitely generated free
group and we construct an isometric embedding of a locally compact tree into the
bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry
of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are
either bounded or detected by homogeneous quasimorphisms. We call this property
the bq-dichotomy and we prove it for many classes of groups of geometric origin.
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1. Introduction. The main object of study in the present paper is bi-invariant
word metrics on normally finitely generated groups. Let us recall definitions. Let G be
a group generated by a symmetric set S ⊂ G. Let S denote the smallest conjugation
invariant subset of G containing the set S. The word norm of an element g ∈ G
associated with the sets S and S is denoted by |g| and ‖g‖ respectively:

|g| := min{k ∈ N | g = s1 · · · sk, where si ∈ S},
‖g‖ := min{k ∈ N | g = s1 · · · sk, where si ∈ S}.

The latter norm is conjugation invariant and defined if G is generated by S but not
necessarily by S. If S is finite and G is generated by S then we say that G is normally
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finitely generated. This holds, for example, when G is a simple group and S = {g±1} and
g �= 1G. Another example is the infinite braid group B∞ which is normally generated
by one element twisting the two first strands.

REMARK 1.1. The metric associated with the conjugation invariant norm is defined
by d(g, h) := ‖gh−1‖. It is bi-invariant in the sense that both left and right actions of
G on itself are by isometries. We focus in the paper exclusively on both conjugation
invariant word norms and associated with them bi-invariant metrics. Most of the
arguments and computations are done for norms.

Since invariant sets are in general infinite, the corresponding word norms are not
considered by the classical geometric group theory. The motivation for studying such
norms comes from geometry and topology because transformation groups of manifolds
often carry naturally defined conjugation invariant norms. The examples include the
Hofer norm and the autonomous norm in symplectic geometry, fragmentation norms
and the volume of the support norm in differential geometry and others, see for example
[8, 10, 13, 15, 23, 25, 27].

Bi-invariant word metrics are at present not well understood. It is known that for
some nonuniform lattices in semisimple Lie groups (e.g. SL(n, Z), n ≥ 3) bi-invariant
metrics are bounded [12, 21]. In general, the problem of understanding the bi-invariant
geometry of lattices in higher rank semisimple Lie groups is widely open.

The main tool for proving unboundedness of bi-invariant word metrics are homo-
geneous quasimorphisms. Thus, if a group admits a homogeneous quasimorphism that
is bounded on a conjugation invariant generating set then the group is automatically
unbounded with respect to the bi-invariant word metric associated with this set.
Examples include hyperbolic groups and groups of Hamiltonian diffeomorphisms
of surfaces equipped with autonomous or fragmentation metrics [9, 10, 20]. If a group
G is bi-invariantly unbounded it is interesting to understand what metric spaces can
be quasi-isometrically embedded into G.

Before we discuss the content of the paper in greater detail, let us recall a basic
property of bi-invariant word metrics on normally finitely generated groups.

1.2. Lipschitz properties of conjugation invariant norms on normally finitely
generated groups. If a group � is normally finitely generated then every
homomorphism � : � → G is Lipschitz with respect to the norm ‖ ◦ ‖ on � and
any conjugation invariant norm on G. In particular, two choices of such a finite set S
produce Lipschitz equivalent metrics, so in this case we will refer to the word metric on
a normally finitely generated group. Also, such a metric is maximal among bi-invariant
metrics.

1.3. The cancellation norm. Let G be a group generated by a symmetric set S and
let w be a word in the alphabet S. The cancellation length |w|× is defined to be the
least number of letters to be deleted from w in order to obtain a word trivial in G. The
cancellation norm of an element g ∈ G is defined to be the minimal cancellation length
of a representing word. We prove (Proposition 2.1) that the cancellation norm is equal
to the conjugation invariant word norm associated with the generating set S.

In some cases, the cancellation norm does not depend on the representing word.
In particular, the following result is a consequence of a more general statement, see
Proposition 2.5.
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THEOREM 1.4. If G is either a right-angled Artin group or a Coxeter group, then the
cancellation norm of an element does not depend on the representing word.

Section 2.9 provides an efficient algorithm for computing the cancellation length
for nonabelian free groups. More precisely, we prove the following result.

THEOREM 1.5. Let w ∈ Fn be a word of standard length n. There exists an algorithm
which computes the conjugation invariant word length of w. Its complexity is O(n3) in
time and O(n2) in memory.

A simple software for computing the bi-invariant word norm on the free group on
two generators can be downloaded from the website of MM, see [30].

1.6. Quasi-isometric embeddings. One way of studying the geometry of a metric
space X is to construct quasi-isometric embeddings of understood metric spaces into
X . In Section 3.1, we prove that the free abelian group Zn with its standard word
metric can be quasi-isometrically embedded into a group G equipped with the bi-
invariant word metric provided G admits at least n linearly independent homogeneous
quasimorphisms.

We then proceed to embedding of trees. We prove that there exists an isometric
embedding of a locally compact tree in the bi-invariant Cayley graph of a nonabelian
free group. We first construct an isometric embedding of the one skeleton of the infinite
unit cube

�∞ :=
⋃

[0, 1]n,

equipped with the �1-metric (Theorem 3.6). It is an easy observation that any locally
compact tree with edges of unit lengths admits an isometric embedding into such a
cube.

THEOREM 1.7. Let T be a locally compact tree with edges if unit lengths. There is an
isometric embedding T → F2 into the Cayley graph of the free group on two generators
with the bi-invariant word metric associated with the standard generators.

1.8. The geometry of cyclic subgroups. Let us recall that a function q : G → R is
called a quasimorphism if there exists a real number A ≥ 0 such that

|q(gh) − q(g) − q(h)| ≤ A,

for all g, h ∈ G. A quasimorphism q is called homogeneous if in addition

q(gn) = nq(g),

for all n ∈ Z. The vector space of homogeneous quasimorphisms on G is denoted by
Q(G). It is straightforward to prove that a quasimorphism q : G → R defined on a
normally finitely generated group is Lipschitz with respect to the bi-invariant word
metric on G and the standard metric on the reals [21, Lemma 3.6]. For more details
about quasimorphisms and their connections to different branches of mathematics,
see [14].

The geometry of a cyclic subgroup 〈g〉 ⊂ G is described by the growth rate of the
function n �→ ‖gn‖. A priori, this function can be anything from bounded to linear. If
it is linear, then the cyclic subgroup is called undistorted and distorted otherwise. It is
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an easy observation that if ψ : G → R is a homogeneous quasimorphism and ψ(g) �= 0
then g is undistorted. One of the main observations of this paper is that for many
classes of groups of geometric origin, a cyclic subgroup is either bounded or detected
by a homogeneous quasimorphism.

DEFINITION 1.9. A normally finitely generated group G satisfies the bq-dichotomy
if every cyclic subgroup of G is either bounded (with respect to the bi-invariant word
metric) or detected by a homogeneous quasimorphism.

REMARK 1.10. One can consider a weaker version of the above dichotomy when
a cyclic subgroup is either bounded or undistorted. Since, undistortedness is proved
usually with the use of quasimorphism most of the proofs yield the stronger statement.
There is one exception in this paper, Theorem 5.2, where we prove the weaker dichotomy
for Coxeter groups and the stronger under an additional assumption. This is because
we don’t know how to extend quasimorphisms from a parabolic subgroup of a Coxeter
group. More precisely, the following problem seems to be open:

Let g ∈ WT , where WT is a standard parabolic subgroup of a Coxeter group W.
Does sclWT (g) > 0 imply sclW (g) > 0?

Here, sclG denotes the stable commutator length in G (see Calegari’s book [14] for
details.)

The only example known to the authors of a group which does not satisfy bq-
dichotomy is provided by Muranov in [32]. He constructs a group G with unbounded
(but distorted) elements not detectable by a homogeneous quasimorphism. His group G
is finitely generated but not finitely presented. We know no finitely presented example.
Also, we know no example of an undistorted subgroup not detected by a homogeneous
quasimorphism.

REMARK 1.11. Observe that if G satisfies the bq-dichotomy then if sclG(g) = 0 then
the cyclic subgroup 〈g〉 is bounded, due to a theorem of Bavard [2].

It is interesting to understand to what extent the bq-dichotomy is true. To sum up
let us make a list of groups that satisfy the bq-dichotomy:

� Coxeter groups with even exponents – Theorem 5.2,
� finite index subgroups of mapping class groups of closed oriented surfaces

(possibly with punctures) – Theorem 5.4,
� Artin braid groups (both pure and full) on a finite number of strings –

Theorem 5.5,
� spherical braid groups (both pure and full) on a finite number of strings –

Theorem 5.6,
� finitely generated nilpotent groups - Theorem 5.8. We actually prove that

the commutator subgroup [G, G] is bounded in G,
� finitely generated solvable groups whose commutator subgroups are finitely

generated and nilpotent, e.g. lattices in simply connected solvable Lie groups
- Theorem 5.11,

� SL(n, Z) – for n = 2 it is proved by Polterovich and Rudnick [33]; for n > 2
the groups are bounded,

� lattices in certain Chevalley groups [21] (the groups are bounded in this
case),

� hyperbolic groups – due to Calegari and Fujiwara (Theorem 3.56 in [14]).
They prove there that if g is a nontorsion element such that no positive
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power of g is conjugate to its inverse then it is detected by a homogeneous
quasimorphisms. On the other hand, it follows from Lemma 4.2 that if a
positive power of g is conjugate to its inverse then g generates a bounded
cyclic subgroup.),

� right-angled Artin groups – Theorem 4.6,
� Baumslag–Solitar groups and fundamental groups of some graph of groups

– Theorem 5.15.

1.12. Bounded elements. Let [x, y] = xyx−1y−1 and tx = txt−1. In many cases,
we prove that an element g ∈ G generates a bounded cyclic subgroup by making the
observation that the element [x, t] in the group

� := 〈
x, t | [

x, tx
] = 1

〉
,

generates a bounded subgroup of �. Then, we construct nontrivial homomorphism
� : � → G such that �[x, t] = g. The examples include Baumslag–Solitar groups,
nonabelian braid groups Bn, SL(2, Z[1/2]), and HNN extensions of abelian groups,
e.g. Sol(3, Z), Heisenberg groups and lamplighter groups (see Section 4.1).

1.13. Elements detected by a quasimorphism. In some cases, it is easy to provide
examples of elements detected by a nontrivial homogeneous quasimorphism, for
example any nontrivial element in a free group has this property. Generalising this
observation yields the following result (Section 4.5).

THEOREM 1.14. Let G be one of the following groups:

(1) a right-angled Artin group,
(2) the commutator subgroup in a right-angled Coxeter group,
(3) a pure braid group.

Then for every nontrivial element g ∈ G, there exists a homogeneous quasimorphism ψ

such that ψ(g) �= 0. In particular, every nontrivial cyclic subgroup in G is bi-invariantly
undistorted.

We say that a group is quasi-residually real if it satisfies the property from the
statement of the above theorem. Of course, a quasi-residually real group satisfies the
bq-dichotomy.

2. The cancellation norm. Let G = 〈S | R〉 be a presentation of G, where S is a
finite symmetric set of generators. Let w = s1 . . . sn be a word in the alphabet S. The
number

|w|× := min{k ∈ N | s1 . . . ŝi1 . . . ŝik . . . sn = 1 in G},
is called the cancellation length of the word w. In other words, the cancellation length
is the smallest number of letters we need to cross out from w in order to obtain a word
representing the neutral element. The number

|g|× := min{|w|× ∈ N | w represents g in G},
is called the cancellation norm of g ∈ G.
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The sequence of indices i1, . . . , ik so that deleting the letters si1 , . . . , sik makes the
word w = s1 . . . sn trivial is called the trivialising sequence of w. We will sometimes
abuse the terminology and we will call the sequence of letters si1 , . . . , sin trivialising. In
this terminology, the cancellation length is the minimal length of a trivialising sequence.

PROPOSITION 2.1. Let G be finitely normally generated by a symmetric set S ⊂ G.
The cancellation norm is equal to the bi-invariant word norm associated with S.

Proof. Let g = ∏k
i=1 w−1

i siwi, then (s1, . . . , sk) is a trivialising sequence for g, and
hence |g|× ≤ ‖g‖.

Let g = u0s1u1 · · · skuk with (s1, . . . , sk) being a trivialising sequence. Then, g =∏k
i=1 w−1

i siwi with wi = ∏k
j=i uj. Thus ‖g‖ ≤ |g|×. �

Let G = 〈S | R〉. A relation v = w in R is called balanced if it has the following
property: if v̄ is the word obtained from v by deleting k letters then there exist k letters
in w such that deleting them produces a word w̄ such that v̄ =G w̄ in G. The following
lemma is straightforward to prove and is left to the reader.

LEMMA 2.2. If G = 〈S | R〉 and v = w is a balanced relation in R then

|xvy|× = |xwy|×,

for any words x, y.

EXAMPLE 2.3. Coxeter groups and right-angled Artin groups admit presentations
whose all relations are balanced. Indeed, observe that there exists a presentation of a
Coxeter group with relations of the form s = s−1 and st . . . s = ts . . . t or (st)n = (ts)n.
The presentation with balanced relations of a right-angled Artin group has relations
of the form st = ts.

The proof of the following observation is straightforward and is left to the reader.

PROPOSITION 2.4.

(1) Let Gi = 〈Si|Ri〉, for i ∈ {1, 2}, be two presentations whose all relations
are balanced and with disjoint S1 and S2. Let R0 = {s1s2 = s2s1|si ∈ Si}.
Then, 〈S1 ∪ S2|R0 ∪ R1 ∪ R2〉 is a presentation of G1 × G2 with all relations
balanced.

(2) Let Gi = 〈Si|Ri〉, for i ∈ {1, 2}, be two presentations whose all relations are
balanced. Assume that the subgroups of G1 and G2 generated by T = S1 ∩ S2

are isomorphic (by the isomorphism which is the identity on T). Then, G1 ∗〈T〉
G2 = 〈S1 ∪ S2|R1 ∪ R2〉 has all relations balanced.

PROPOSITION 2.5. Let G = 〈S|R〉 be a presentation whose all relations are balanced.
Let u and v be two words in alphabet S representing the same element g ∈ G. Then
|v|× = |w|×. In particular, the cancellation norm of g is equal to the cancellation length
of any word representing g.

REMARK 2.6. The last statement for Coxeter groups was obtained by Dyer in [18].
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Proof. Suppose that v = xy and w = xr−1ty, where r = t is a relation from R and
x, y are any words. Then, we have that

|w|× = |xr−1ty|×
= |xr−1ry|×
= |xy|× = |v|×,

where the second equality follows from Lemma 2.2. If the words v and w represent
the same element in G then w can be obtained from v be performing a sequence of the
operations above. This implies the statement. �

EXAMPLE 2.7. Let G = 〈x, t | x5 = tx2t−1〉 be a Baumslag–Solitar group. In this
case, the cancellation length is not well defined since, for example, the cancellation
lengths of x5 and of tx2t−1 are distinct but these words represent the same element.

COROLLARY 2.8. Let G be either a Coxeter group or a right-angled Artin group
generated by a set S. The inclusion PT ⊂ G of the standard parabolic subgroup associated
with a subset T ⊂ S is an isometry with respect to bi-invariant word metrics associated
with the sets T and S.

2.9. An algorithm for computing the cancellation norm on a free group.

LEMMA 2.10. If x is a generator of a free group Fn and w ∈ Fn, then

‖xw‖ = min
{
1 + ‖w‖, min{‖u‖ + ‖v‖, where w = ux−1v}} .

Proof. The sequence x, x1, . . . , xn is minimal trivialising for the word xw if and
only if the sequence x1, . . . , xn is minimal trivialising for the word w. This implies that
if x is contained in a minimal trivialising sequence then ‖xw‖ = 1 + ‖w‖.

Suppose that x is not contained in a minimal sequence trivialising xw. Then, the
word w must contain a letter equal to x−1 that is not contained in a minimal trivialising
sequence x1, . . . , xn for w and with which x may be cancelled out. This implies that
w = ux−1v and there exists k such that the sequence x1, . . . , xk minimally trivialises u
and xk+1, . . . , xn minimally trivialises v. This implies that

‖w‖ = ‖u‖ + ‖v‖.

�
Proof of Theorem 1.5 Assume that we have a reduced word v of standard length

k and we know bi-invariant lengths of all its proper connected subwords. We can
compute ‖v‖ in time k by processing the word from the beginning to the end in order
to find patterns as in Lemma 2.10 and computing the minimum.

Let w = w1w2 . . . wn be a reduced word written in the standard generators. In order
to compute ‖w‖, we need to compute bi-invariant lengths of all its connected subwords
wiwi+1 . . . wj. Thus, we proceed as follows: first, we compute bi-invariant lengths of all
words of standard length 3 (words of length 1 and 2 always have bi-invariant lengths
1 and 2, respectively), then bi-invariant lengths of all words of standard length 4 and
so on.
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In order to find computational complexity of this problem, assume that we have
computed bi-invariant lengths of all connected subwords of standard length less than
k. There are no more than n subwords of standard length k. Thus, to compute bi-
invariant length of all subwords of standard length k, we perform no more then Cnk
operations for some constant C.

Thus, the complexity of our algorithm is

�n
k=1Cnk = O(n3),

During computations, we need to remember only lengths of subwords. Since there are
O(n2) subwords, we used O(n2) memory. �

REMARK 2.11. There is no obvious algorithm computing the conjugation invariant
norm even for groups where the word problem is solvable. However, it follows from
Proposition 2.5 that we can find an algorithm for computing the conjugation invariant
word norm for groups admitting a presentation whose all relations are balanced and
with solvable word problem. But even then, we need to check all possible subsequences
of the chosen word which makes the algorithm exponential in time.

3. Quasi-isometric embeddings.

3.1. Quasi-isometric embeddings of Zn. We say that a map

f : (X, dX ) → (Y, dY ),

is a quasi-isometric embedding if f is a quasi-isometry on its image.

LEMMA 3.2. ([10]). Suppose that dim Q(G) ≥ n. Then, there exist n quasimorphisms
q1, . . . , qn ∈ Q(G) and g1, . . . , gn ∈ G such that qi(gj) = δij .

THEOREM 3.3. Suppose that dim Q(G) ≥ n. Then, there exists a quasi-isometric
embedding Zn → G, where Zn is equipped with the standard word metric and G is equipped
with the bi-invariant word metric.

Proof. Let q1, . . . , qn : G → R be linearly independent homogeneous quasimorph-
isms and let g1, . . . , gn ∈ G be such that qi(gj) = δij, where δij is the Kronecker delta.

We define � : Zn → G by �(k1, . . . , kn) = gk1
1 · · · gkn

n and observe that∥∥∥∥∥∏
i

gki
i

∥∥∥∥∥ ≤ c
∑

i

|ki|,

where c = maxi ‖gi‖. On the other hand, for every j ∈ {1, . . . , n} we have

cj

∥∥∥∥∥∏
i

gki
i

∥∥∥∥∥ ≥
∣∣∣∣∣qj

(∏
i

gki
i

)∣∣∣∣∣ ≥ |kj| − ndj,

where dj is the defect of the quasimorphism qj and cj is its Lipschitz constant. Taking
C := max{c, nc1, . . . , ncn} and D := C

∑
i ndi and combining the two inequalities we
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obtain

1
C

∑
i

|ki| − D ≤
∥∥∥∥∥∏

i

gki
i

∥∥∥∥∥ ≤ C
∑

i

|ki|.

�
It follows from the above theorem, that if the space of homogeneous

quasimorphisms of a group G is infinite dimensional then there exists a quasi-isometric
embedding Zn → G for every natural number n ∈ N.

EXAMPLES 3.4. Groups for which the space of homogeneous quasimorphisms is
infinite dimensional include:

(1) a nonabelian free group Fm [11],
(2) Artin braid groups on three and more strings, and braid groups of a

hyperbolic surface [5],
(3) a non-elementary hyperbolic group [20],
(4) a finitely generated group which satisfies the small cancellation condition

C′(1/12) [1],
(5) mapping class group of a surface of positive genus [5],
(6) a nonabelian right-angled Artin group [3],
(7) groups of Hamiltonian diffeomorphisms of compact orientable surfaces

[19, 22].

3.5. Embeddings of trees.

THEOREM 3.6. There is an isometric embedding �∞ → F2 of the vertex set of the
infinite dimensional unit cube with the �1-metric into the free group on two generators
with the bi-invariant word metric coming from the standard generators.

Proof. Let F2 be the free group generated by elements a and b and let �n = {0, 1}n

denote the n-dimensional cube. Let �n be embedded into �n+1 as �n × {0}. For an
arbitrary isometric embedding

ψn : �n → F2,

we construct an extension to

ψn+1 : �n+1 → F2,

as follows. Take an element g = b4kab−4k, where k > |ψ(v)| for every v ∈ �n. Define
ψn+1(v, 0) = ψn(v) and ψn+1(v, 1) = gψn(v). Since the multiplication from the left is an
isometry of the bi-invariant metric, ψn+1 is an isometry on both �n × {0} and �n × {1}.
Hence, what we need to show is that

d((v, 0), (w, 1)) = ‖ψn+1(v, 0)ψn+1(w, 1)−1‖,

for every v, w ∈ �n. From the definition of ψn+1, we have that

‖ψn+1(v, 0)ψn+1(w, 1)−1‖ = ‖ψn(v)ψn(w)−1b4ka−1b−4k‖,
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We shall show that every minimal sequence trivialising

ψn(v)ψn(w)−1b4ka−1b−4k,

contains the last letter a−1, thus has the length

‖ψn(v)ψn(w)−1‖ + 1 = d((v, 0), (w, 1)).

To see that assume on the contrary, that a−1 is not in a minimal trivialising sequence.
Then, it has to cancel out with some letter a in ψn(v)ψn(w)−1. But |ψn(v)ψn(w)−1| < 2k,
so in order to make the cancellation possible, one has to cross out at least 2k + 1 letters
b between ψn(v)ψn(w)−1 and a−1. Since

2k + 1 > |ψn(v)ψn(w)−1| + 1 ≥ ‖ψn(v)ψn(w)−1‖ + 1,

such trivialising sequence cannot be minimal.
Now, take an arbitrary ψ0 and construct a sequence of isometries ψn. Then,

ψ∞ = ⋃∞
n=0 ψn is an isometric embedding of �∞. �

Proof of Theorem 1.7 Let T be a locally compact tree with edges of unit length.
Then, T isometrically embeds into the cube �∞ as follows. Let v be a vertex of T and w

be a vertex of �∞. We map a star of v isometrically into a star of w. We then continue
the procedure inductively. It is possible because the star of any vertex of the cube has
countably infinitely many edges. �

4. Bi-invariant geometry of cyclic subgroups.

4.1. Bounded cyclic subgroups.

LEMMA 4.2. Let � := 〈
x, t

∣∣ [x, tx] = 1
〉
. The following identity holds in �:

[x, t]n = [xn, t] .

In particular, the cyclic subgroup generated by [x, t] is bounded by two (with respect to
the generating set

{
x±1, t±1

}
).

Proof. The identity is true for n = 1. Let us assume that it is true for some n. We
then obtain that

[x, t]n+1 = xntx−n (
t−1xt

)
x−1t−1

= xnt
(
t−1xt

)
x−nx−1t−1

= xn+1tx−(n+1)t−1.

The statement follows by induction. �
EXAMPLES 4.3. In the following examples, we prove boundedness of a cyclic

subgroup of a group G by constructing a relevant homomorphism � : � → G.

(1) Let

BS(p, q) = 〈a, t |tapt−1 = aq〉,
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be the Baumslag–Solitar group, where q > p are integers. Let � : � →
BS(p, q) be defined by �(x) = ap and �(t) = t. It follows that the cyclic
subgroup generated by [�(t), �(x)] is bounded. Since, [t, ap] = ap−q we
obtain that the cyclic subgroup generated by a is bounded.

(2) Let A ∈ SL(2, Z) and let G = Z �A Z2 be the associated semidirect product.
If A = ( a b

c d ) then G has the following presentation

G = 〈
x, y, t

∣∣ [x, y] = 1, tx = xayc, ty = xbyd 〉 .
Note that, � : � → G given by �(t) = t and �(x) ∈ Z2 ⊂ G is a well-defined
homomorphism.
If A has two distinct real eigenvalues, for example if A is the Arnold cat
matrix, then every element in the kernel generates a bounded cyclic subgroup.
If A �= Id has eigenvalues equal to one then the centre of G is bounded (cf.
Theorem 5.8 and 5.11).

(3) Consider the integer lamplighter group

Z � Z = Z � Z∞.

where Z∞ denotes the group of all integer valued sequences {ai}i∈Z. The
generator t of Z acts by the shift and hence the conjugation of {ai} by t has
the following form

t{ai}t−1 = {ai+1}.

Since for every sequence {ai}, there exists a sequence {bi} such that ai =
bi+1 − bi, we get that {ai} = t{bi}t−1{bi}−1. Let � : � → Z � Z be defined by
�(x) = {bi} and �(t) = t. This shows that every element in the commutator
subgroup of the lamplighter group generates a bounded cyclic subgroup.

(4) Let G = SL(2, Z[1/2]). Define

�(x) = (
1 1
0 1

)
�(t) = (

2 0
0 2−1

)
.

It well defines a homomorphism since �(tx) = ( 1 4
0 1 ). Consequently, we get

that ( 1 −3
0 1 ) = �([x, t]) generates a bounded cyclic subgroup. More generally,

it implies that the subgroups of elementary matrices are bounded. It is known
that every element of G can be written as a product of up to five elementary
matrices [28] (see also [14, Example 5.38]). Hence, we obtain that the whole
group G is bounded.

(5) Let Bk be the braid group on k ≥ 2 strings and let i : Bn → B2n be a natural
inclusion on the first n strings. Assume, that g is in the image of i. Let
� = (σ1 . . . σn−1) . . . (σ1σ2)(σ1) (� is a half-twist Garside fundamental braid)
where σi’s are the standard Artin generators of the braid group Bn. The
conjugation �g�−1 flips g, thus [�g�−1, g] = e. For example, if g = σ1 ∈ B4,
then �g�−1 = σ3 and σ1σ

−1
3 is bounded in B4.

(6) Let � ∈ Bn be as above and let g = σi1 . . . σik ∈ Bn be any element. The
conjugation by � acts on g as follows

�σi1σi2 . . . σik�
−1 = σn−i1σn−i2 . . . σn−ik .
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This implies that every braid of the form

g = σi1σi2 . . . σ−1
n−i2σ

−1
n−i1 ,

is conjugate via � to its inverse. Consequently, [gn,�] = g2n which implies
that the cyclic subgroup generated by g is bounded by 2‖�‖ + ‖g‖. For
example, σ1σ

−1
2 ∈ B3 generates a bounded cyclic subgroup.

(7) It is a well-known fact that the centre of B3 is a cyclic group generated by
�2 (for definition of �, see item (4.3) above). We have a central extension

1 → 〈�2〉 → B3
�−→ PSL(2, Z) → 1,

where �(σ1) = ( 1 1
0 1 ) and �(σ2) = ( 1 0

−1 1 ). Denote

J = �(�) = (
0 1

−1 0

)
.

Let M ∈ PSL(2, Z) be a symmetric matrix. It has two orthogonal
eigenspaces (over R) with reciprocal eigenvalues. The rotation J swaps the
eigenspaces which implies MJ = M−1. Moreover, there exists a braid g in
B3 such that g is conjugate to g−1 and �(g) = M. Indeed, any symmetric
matrix is of the form [J, N] for some N ∈ PSL(2, Z). Let h be a lift of N to
B3 and take g = [�, h]. Then

�−1g� = h�−1h−1� = h�−1�2h−1�−2� = [h,�] = g−1.

By the same argument as in item (4.3) above, g generates a bounded
subgroup. For example, the image of an element σ1σ

−1
2 is Arnold’s cat

matrix ( 2 1
1 1 ). Since, there are infinitely many conjugacy classes of symmetric

matrices in PSL(2, Z), there are infinitely many conjugacy classes of bounded
cyclic subgroups in B3. It should be compared to the group of pure braids
P3, which is a finite index subgroup of B3, but due to Theorem 4.8 every
nontrivial element in P3 is undistorted.

(8) Let f, h : M → M be homeomorphisms of a manifold such that h(supp(f )) ∩
supp(f ) = ∅. Then, the commutator [f, h] is bounded with respect to any bi-
invariant metric on a group of homeomorphisms containing f and h.

4.4. Unbounded cyclic subgroups not detected by quasimorphisms. Let G be the
simple finitely generated group constructed by Muranov in [32]. The following facts
are proved in the Main Theorem of his paper:

� every cyclic subgroup of G is distorted with respect to the bi-invariant
word metric; in particular, G does not admit nontrivial homogeneous
quasimorphisms (Main Theorem (3)).

� G contains cyclic subgroups unbounded with respect to the commutator
length (Main Theorem (1)); in particular, they are unbounded with respect
to the bi-invariant word metric.

4.5. Cyclic groups detected by homogeneous quasimorphisms. A group G is
called quasiresidually real if for every element g ∈ G there exists a homogeneous
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quasimorphism q : G → R such that q(g) �= 0. It is equivalent to the existence of
an unbounded quasimorphism on the cyclic subgroup generated by g.

Free groups are quasiresidually real as well as torsion-free hyperbolic groups. It
immediately follows that every element in such a group is undistorted. The purpose of
this section is to prove the following results.

THEOREM 4.6. A right-angled Artin group is quasiresidually real.

THEOREM 4.7. A commutator subgroup of a right-angled Coxeter group is
quasiresidually real.

THEOREM 4.8. A pure braid group on any number of strings is quasiresidually real.

We need to introduce some terminology and state some lemmas before the proof.
The definitions and basic properties of rank-one elements can be found in [6].

LEMMA 4.9 (Bestvina–Fujiwara). Assume that G acts on a proper CAT(0) or
hyperbolic space X by isometries and g ∈ G is a rank-one isometry. If no positive power
of g is conjugate to a positive power of g−1 then there is a homogeneous quasimorphism
q : G → R which is nontrivial on the cyclic subgroup generated by g.

Proof. Let x0 ∈ X be the basepoint and σ = [x0, gx0] be a geodesic interval. If α is
a piecewise geodesic path in X then let |α|g be the maximal number of nonoverlapping
translates of σ in α such that every subpath of α which connects two consecutive
translates of σ is a geodesic segment. Let cg : G × G → R be defined by

cg(x, y) := inf
α

(|α| − |α|g),

where α ranges over all piecewise geodesic paths from x to y.
Let �g : G → R be defined by

�g(h) = cg(x0, h(x0)) − cg(h(x0), x0),

and it follows from [6, the proof of Theorem 6.3] that there exists k > 0 such that �gk

is unbounded on the cyclic group generated by g. Homogenising �gk yields a required
quasimorphism q : G → R. �

LEMMA 4.10. Let G be a group acting on a proper CAT(0) space X by isometries.
Assume that g ∈ G is a rank-one isometry. Then

xgnx−1 �= g−m,

for all x ∈ G and m, n > 0 provided that m �= n. If G is torsion-free, the above holds also
if m = n.

Proof. Suppose otherwise that there exists x ∈ G and m, n such that

xgnx−1 = g−m. (1)

Assume that m = n. Then, we have that

x2gnx−2 = xg−nx−1 = gn,

which means that gn and x2 commute. Moreover, a group generated by gn and x2 is of
rank two. To prove it, assume otherwise that there exist r ∈ G and k, l such that gn = rl
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and x2 = rk. Take the kth power of (1)

xgknx−1 = g−kn.

Together with gkn = rkl = x2l, it gives that x4l = e which is a contradiction.
Since gn is an element of the free abelian subgroup of rank two, it follows from the

flat torus theorem that its axis lies in some flat. Thus gn, and consequently g, cannot
be a rank-one isometry.

Assume now that m �= n and take the k-th power of (1)

xgknx−1 = gkm.

Let P be a point on the axis L ⊂ X on which g acts by a translation by d units. Since
xgkmx−1(P) = (g−1)kn(P), the image of a geodesic between x−1(P) and gkmx−1(P) with
respect to x is contained in the axis L.

Let l := d(x−1(P), P), where d is the distance function on X . Applying the triangle
inequality, we get that

kmd = d
(
P, gkm(P)

)
≤ d

(
P, x−1(P)

) + d
(
x−1(P), gkmx−1(P)

) + d
(
gkmx−1(P), gkm(P)

)
= 2l + d

(
x−1(P), gkmx−1(P)

)
.

This and a similar additional computation imply that

kmd − 2l ≤ d
(
P, xgkmx−1(P)

) ≤ kmd + 2l.

On the other hand, d
(
(g−1)kn(P), P

) = knd which implies that

(g−1)kn(P) �= xgkmx−1(P),

for k large enough which contradicts (1). �
Let A� be the right-angled Artin group defined by the graph �. The presentation

complex X� of A� is a two-dimensional complex with one vertex and with edges
corresponding to generators and two-dimensional cells corresponding to relations.
It is a union of two-dimensional tori. Its universal covering X̃� is a CAT(0) square
complex. Let �′ ⊂ � be a full subgraph. Then

(1) the homomorphism π : A� → A�′ defined by

π (v) :=
{

v if v ∈ �′

1 if v /∈ �′

is well defined and surjective;
(2) every quasimorphism q : A�′ → R extends to A�.

If �′ is a bipartite graph then the subgroup A�′ ⊂ A� is called a join subgroup.

Proof of Theorem 4.6 Let g ∈ A� be a nontrivial element of a right-angled Artin
group. Suppose that no conjugate of g is contained in a join subgroup. Then, according
to Berhstock–Charney [3, Theorem 5.2], g acts on the universal cover X̃� of the
presentation complex as a rank-one isometry.
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Thus, since A� is torsion-free, we can apply Lemma 4.10 and consequently
Lemma 4.9 to g.

If g is an element of a join subgroup then we project it to one of the factors
repeatedly until no conjugate of g is contained in a join subgroup and then we apply
the above construction and extend the obtained quasimorphism to A�. �

The right-angled Coxeter group given by the graph � is a group defined by the
following presentation

W� = 〈v ∈ �| v2 = 1, [v, v′] = 1 iff (v, v′) is an edge in �〉,

As in the case of right-angled Artin groups, we have a well-defined projection π for an
arbitrary full subgraph �′ and the notion of a join subgroup.

The natural CAT(0) complex on which W� acts geometrically is the Davis cube
complex �� (see Davis [17] for more details).

Proof of Theorem 4.7 First, we prove that the commutator subgroup W ′
� of W� is

torsion-free. Let g ∈ W ′
� be a torsion element. By the CAT(0) property it stabilises a

cube in ��. It follows from the definition of the Davis complex that stabilisers of cubes
are conjugate to spherical subgroups (i.e. subgroups generated by vertices of some
clique). Note that an abelianization of W� equals ⊕v∈�Z/2Z and spherical subgroups,
as well as its conjugates project injectively into the abelianization. Thus, g is a trivial
element.

Now, the argument is analogous to the proof of Theorem 4.6. Suppose that g ∈ W ′
�

is an element such that no conjugate of g is contained in a join subgroup. According
to [16, Proposition 4.5], g acts on �� as a rank-one isometry. Now, we apply Lemma
4.10 and 4.9 to g and W ′

�.
If g is in a join subgroup, we project g together with W ′

� on the infinite factor.
The projection of a commutator subgroup is again a commutator subgroup, thus it is
torsion-free. Hence, the assumption of Lemmas 4.10 and 4.9 are satisfied. Thus, we
apply the same argument as in Theorem 4.6 constructing a quasimorphism which can
be extended to W ′

�. �

Before the proof of Theorem 4.8, let us recall basic properties and definitions
of braid and pure braid groups. Denote by Dn an open two-dimensional disc with n
marked points. The braid group on n strings, denoted Bn, is a group of isotopy classes
of orientation-preserving homeomorphisms of Dn which permute marked points (this
is the mapping class group of a disc with n punctures). A class of a homeomorphism
which fixes all marked points is called a pure braid. The group of all pure braids on n
strings, denoted Pn, is a finite index normal subgroup of Bn.

Let g > 1. Denote by MCGn
g the mapping class group of a closed hyperbolic

surface �g with n punctures. In [7], Birman showed that Bn naturally embeds into
MCGn

g. More precisely, let D be an embedded disc in �g which contains n punctures.
Then, a mapping class group of this n punctured disc D is a subgroup of MCGn

g. Let
us identify Bn with this subgroup. In the same way, we identify Pn with a subgroup of
the pure mapping class group PMCGn

g. Note that, PMCGn
g is a finite index subgroup

of MCGn
g.

It follows from the Nielsen–Thurston decomposition in MCGn
g that for every

γ ∈ Bn < MCGn
g there exists N, pseudo-Anosov braids γ1, γ2, . . . , γm ∈ Bn and Dehn
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twists δ1, δ2, . . . , δn ∈ Bn such that

γ N = γ1γ2 . . . γmδ
m1
1 δ

m2
2 . . . δmn

n ,

where all elements in the above decomposition pairwise commute. Moreover, the
support of each element is contained in a connected component of the disc D, is
bounded by a simple curve and contains non empty subset of marked points.

Following [4, Section 4], we call an element γ chiral if it is not conjugate to its
inverse. Note that, if two elements in Bn < MCGn

g are conjugate inMCGn
g, then they are

conjugate in Bn. Similarly, if two elements in Pn < PMCGn
g are conjugate in PMCGn

g,
then they are conjugate in Pn. It follows that γ is chiral in Bn if and only if it is chiral
in MCGn

g, and the same statement holds for groups Pn and PMCGn
g. The following

lemma is a straightforward consequence of Theorem 4.2 from [4].

LEMMA 4.11 (Bestvina–Bromberg–Fujiwara). Let � be a closed orientable surface,
possibly with punctures. Let G be a finite index subgroup of the mapping class group of
�. Consider a nontrivial element γ ∈ G and Nielsen–Thurston decomposition of its
appropriate power as above. Assume that every element from the decomposition is chiral
and nontrivial powers of any two elements from the decomposition are not conjugate in
G. Then, there is a homogeneous quasimorphism on G which takes a non-zero value on γ .

A group G is said to be bi-orderable, if there exists a linear order on G which is
invariant under left and right translations. For example, the pure braid group on any
number of strings is bi-orderable [34].

LEMMA 4.12. Let G be a bi-orderable group. Then, xymx−1 �= y−n for every y �=
e, x ∈ G and positive m, n.

In particular, every nontrivial element in a bi-orderable group is chiral.

Proof. Let < be a bi-invariant order on G. Assume on the contrary that
xymx−1 = y−n. Without loss of generality, we can assume that y > e. Then ym > e,
we can conjugate the inequality by x which gives that y−n = xymx−1 > e. Thus e > yn,
that is e > y. We got a contradiction. �

Proof of Theorem 4.8 Let γ be a nontrivial pure braid on n strings. We will show
that there is a homogeneous quasimorphism on Pn nontrivial on γ . After passing to a
power of γ, we can write that

γ = γ1γ2 . . . γmδ
m1
1 δ

m2
2 . . . δmn

n ,

where γi and δi are as in the discussion above. Since Pn is a finite index subgroup of Bn,
we can find M such that all γ M

i and δM
i are in Pn. Thus passing to even bigger power

of γ , we can assume that the braids arising in the decomposition are pure.
Lemma 4.12 implies that every element from the decomposition is chiral, and

so it is chiral in PMCGn
g. Let x and y be two distinct elements among γi and δmi

i .
From the definition of the decomposition, simple curves associated to x and y bound
disjoint subsets of marked points. Since isotopy classes from Pn preserve marked points
pointwise, powers of x and y cannot be conjugate by a pure braid and hence by no
element of PMCGn

g.
The assumptions of Lemma 4.11 are satisfied, hence γ is detectable by

homogeneous quasimorphism. Note that, this homogeneous quasimorphism is defined
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on the whole group PMCGn
g, and a quasimorphism on Pn, which detects γ , is a

restriction of the above quasimorphism to the subgroup Pn < PMCGn
g. �

5. The bq-dichotomy. The purpose of this section is to prove the bq-dichotomy
for various classes of groups. We introduce a family of auxiliary groups which detects
bounded elements.

LEMMA 5.1. Let m̄ = (m0, m1, . . . , mk) be a sequence of integers such that 1
m0

+
1

m1
+ . . . + 1

mk
= 0. Define

�(m̄) = 〈x0, . . . , xk, t1, . . . , tk | (tix0)m0 = xmi
i , [xj, xk] = e〉,

Then, g = x0x1 . . . xk generates a bounded cyclic subgroup.

Proof. Let N = m0m1 . . . mk and ai = N
mi

. From the assumption on mi, we have that
a0 + a1 + . . . + ak = 0. For any n, we obtain that

gnN = xnN
0 xnN

1 . . . xnN
k

= xnm0a0
0 xnm1a1

1 . . . xnmkak
k

= xnm0a0
0 (t1x0)nm0a1 . . . (tkx0)nm0ak

= xnm0(−a1−a2−...−ak)
0 (t1x0)nm0a1 . . . (tkx0)nm0ak

= (t1x0)nm0a1 x−nm0a1
0 . . . (tkx0)nm0ak x−nm0ak

0

= [t1, xnm0a1
0 ] . . . [tk, xnm0ak

0 ].

It shows that gnN is bounded by 2k for every n. Hence, g generates a bounded
subgroup. �

Let us remark that �(1,−1) is isomorphic to the group � defined in Section 4.2.
We start with a somewhat weaker statement for Coxeter groups.

THEOREM 5.2. Let W be a Coxeter group and let g ∈ W.

� The cyclic subgroup 〈g〉 is either bounded or undistorted.
� Let WT = WT1 × WT2 be a standard parabolic subgroup such that both

WT1 and WT2 are infinite and standard parabolic. If the standard projection
W → WT is well defined for all WT of the above form then W satisfies the
bq-dichotomy.

REMARK 5.3. Let S be the standard generating set for W . The property in the
second item of the theorem holds if for every s ∈ S \ T and t ∈ T the exponent in the
relation (st)m is even.

Proof. We proceed by induction on a number of Coxeter generators. If there is
only one generator the theorem is obvious. Let n ∈ N be a natural number and W
be a Coxeter group generated by n Coxeter generators. Assume that the theorem is
true for Coxeter groups generated by less than n Coxeter generators. Let g ∈ W be a
nontorsion element. There are two cases:

Case 1: The element g acts as a rank-one isometry on the Davis complex. If no
positive power of g is conjugate to a positive power of g−1, then we can apply Lemma
4.9 to obtain a homogeneous quasimorphism nonvanishing on g. Otherwise, we have
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that xgmx−1 = g−n for some x ∈ W and positive m, n ∈ N. By Lemma 4.10, it follows
that m = n. There is a homomorphism

� : �(m,−m) → W,

defined on generators as �(x0) = �(x1) = g, �(t1) = x. Thus, the element �(x0x1) =
g2 (as well as g) generates a bounded cyclic subgroup.

Case 2: g does not act as a rank-one isometry on the Davis complex. Then,
according to Caprace and Fujiwara [16, Proposition 4.5], g is contained in a parabolic
subgroup P that is either

(1) equal to P1 × P2, where P1 is finite parabolic and P2 is parabolic and affine
of rank at least three or

(2) equal to P1 × P2, where both P1 and P2 are infinite parabolic.

In the first case, both P1 and P2 are bounded [31] and so is their product and hence
g generates a bounded subgroup.

In the second case, we project g to the factors and the first statement follows
by induction because the inclusion of a parabolic subgroup is an isometry due to
Corollary 2.8.

If the projection of g to one of the factors is detectable by a homogeneous
quasimorphism then this quasimorphisms extends to the product P. Thus, if W
satisfies the assumption of the second statement, we pull back the latter to W using
the projection W → WT and the conjugation xWT x−1 = P. Otherwise, g generates
a bounded subgroup in both P1 and P2. Indeed, we proceed by induction since the
assumption of the second statement is inherited by parabolic subgroups. Thus, g also
generates a bounded subgroup in P1 × P2 and hence in W . �

THEOREM 5.4. The bq-dichotomy holds for a finite index subgroup of the mapping
class group of a closed surface possibly with punctures.

Proof. Let us recall some notions from [4, Section 4]. We say that two chiral
elements of a group G are equivalent if some of their nontrivial powers are conjugate.
An equivalence class {γ0, γ1, . . . , γn} of this relation is called inessential, if there
is a sequence of numbers m̄ = (m0, . . . , mn) such that elements γ mi

i are pairwise
conjugate and � 1

mi
= 0. Let h = γ0 . . . γn, where all γi’s commute. Note that, there

is a homomorphism

� : �(m̄) → G,

defined on the generators as �(xi) = γi. From the Lemma 5.1, it follows that
�(x0 . . . xn) = h generates a bounded subgroup. When γ is not chiral, it generates
a bounded subgroup due to a homomorphism from �(1,−1) defined by �(x0) =
�(x1) = γ .

Let γ ∈ G. By the same argument as in the proof of Theorem 4.8, we can assume
that γ has a Nielsen–Thurston decomposition within G (that is, elements of the
decomposition are in G). Assume that there is no homogeneous quasimorphism which
takes non-zero value on γ . Then by [4, Theorem 4.2] in the decomposition of γ we
have either not chiral elements, or chiral elements which can be divided into inessential
equivalence classes. Hence, we can write that

γ = c1 . . . cmh1 . . . hn,

https://doi.org/10.1017/S0017089515000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000129


THE GEOMETRY OF BI-INVARIANT WORD METRICS 171

where ci are not chiral and hi are products of elements from inessential class. In both
cases, they generate bounded subgroups. Since c′s and h′s commute, we have that

γ k = ck
1 . . . ck

nhk
1 . . . hk

n.

Thus, γ generates a bounded subgroup in G. �
THEOREM 5.5. The bq-dichotomy holds for Artin braid groups.

Proof. Let γ ∈ Bn < MCGn
g, where g > 1. Recall that two braids in Bn are

conjugate in Bn if and only if they are conjugate in MCGn
g. Hence an equivalence

class {γ0, γ1, . . . , γn}, where each γi ∈ Bn, is essential (respectively inessential) in Bn if
and only if it is essential (respectively inessential) in MCGn

g. Similarly if γ is not chiral
in Bn, then it is not chiral in MCGn

g.
Assume that there is no homogeneous quasimorphism on MCGn

g which takes non-
zero value on γ . Then by [4, Theorem 4.2] in the Nielsen–Thurston decomposition
of γ in MCGn

g we have either not chiral elements, or chiral elements which can be
divided into inessential equivalence classes. Since each element in the Nielsen–Thurston
decomposition of γ lies in Bn, and the notion of equivalence class and chirality is
the same in Bn < MCGn

g and in MCGn
g, it follows that there is no homogeneous

quasimorphism on Bn which takes non-zero value on γ . Hence, we can write that

γ = c1 . . . cmh1 . . . hn,

where ci’s are not chiral in Bn and hi’s are products of elements from inessential class
in Bn. In both cases, they generate bounded subgroups (see the discussion in the proof
of the previous case). Since c′s and h′s commute, we have that

γ k = ck
1 . . . ck

nhk
1 . . . hk

n.

Thus, γ generates a bounded subgroup in Bn. �
THEOREM 5.6. The bq-dichotomy holds for spherical braid groups (both pure and

full).

Proof. The case of spherical pure braid groups Pn(S2). Recall that Pn(S2) is a
fundamental group of an ordered configuration space of n different points in a two-
sphere S2. As before, we denote by

MCGn
0 the mapping class group of the n punctured sphere, and byPMCGn

0 the pure
mapping class group of the n punctured sphere. Since Pn(S2) are trivial for n = 1, 2, we
assume that n > 2. It is well-known fact that Pn(S2) is isomorphic to a direct product
of Z/Z2 and PMCGn

0, see e.g. [24]. Since, we already proved the statement for finite
index subgroups of mapping class groups, the proof of this case follows.

The case of spherical braid groups Bn(S2). The group Bn(S2) is a fundamental group
of a configuration space of n different points in a two-sphere S2. It is known that the
group MCGn

0 is isomorphic to Bn(S2)/〈�2〉, where � is the Garside fundamental braid,
see [29]. In particular, �2 lies in the centre of Bn(S2) and �4 = 1Bn(S2). Let


 : Bn(S2) → Bn(S2)/〈�2〉 ∼= MCGn
0,

be the projection homomorphism. Since �4 = 1Bn(S2) and �2 is central, every
homogeneous quasimorphism on MCGn

0 defines a homogeneous quasimorphism on
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Bn(S2) and vice versa. In addition, if two elements 
(x),
(y) ∈ MCGn
0 commute or are

conjugate in MCGn
0, then x and y commute or are conjugate up to the multiplication

by a torsion element �2 in Bn(S2).
Let γ ∈ Bn(S2). Assume that there is no homogeneous quasimorphism on Bn(S2)

which takes non-zero value on γ . Then, there is no homogeneous quasimorphism on
MCGn

0 which takes non-zero value on 
(γ ). Then by [4, Theorem 4.2] in the Nielsen–
Thurston decomposition of 
(γ ) in MCGn

0 we have either not chiral elements, or chiral
elements which can be divided into inessential equivalence classes. Hence, we can write
that


(γ ) = 
(c1) . . . 
(cm)
(h1) . . . 
(hn),

where 
(ci) are not chiral inMCGn
0 and 
(hi) are products of elements from inessential

class in MCGn
0. As before, 
(γ ) generates a bounded subgroup in MCGn

0 and since
�4 = 1Bn(S2) and �2 is central, γ generates a bounded subgroup in Bn(S2). �

5.7. The bq-dichotomy for nilpotent groups. Let us recall that a group G is said
to be boundedly generated if there are cyclic subgroups C1, . . . , Cn of G such that
G = C1 . . . Cn. It is known that a finitely generated nilpotent group has bounded
generation [36]. In the proof below, we shall use a trivial observation that if group is
boundedly generated by bounded cyclic subgroups then it is bounded.

THEOREM 5.8. Let N be a finitely generated nilpotent group. Then the commutator
subgroup [N, N] is bounded in N. Consequently, N satisfies the bq-dichotomy.

In the proof of the theorem, we will use the following observation. Its
straightforward proof is left to the reader.

LEMMA 5.9. Let K � H < G be a sequence of groups such that K is normal in G. If
K is bounded in G and every cyclic subgroup of H/K is bounded in G/K then every cyclic
subgroup of H is bounded in G.

Proof of Theorem 5.8 Let Ni ⊂ N be the lower central series. That is N0 = N,
N1 = [N, N] and Ni+1 = [N, Ni]. Since, N is nilpotent Ni = 0 for i > k and the last
nontrivial term Nk is central.

Observe first that Nk is bounded in N. Let x ∈ N and let y ∈ Nk−1. Then, z =
[x, y] ∈ Nk is central and a direct calculation shows that zn = [xn, y]. Since N is finitely
generated, we know that all Ni are finitely generated as well, according to Baer [26,
page 232]. Now, we have that Nk is finitely generated by products of commutators of
the above form and, since Nk is abelian, these elements generate bounded (in N) cyclic
subgroups. This implies that Nk is bounded in N as claimed.
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The quotient series Ni/Nk is the lower central series for N/Nk and by the same
argument as above we obtain that Nk−1/Nk is bounded in N/Nk. Applying Lemma 5.9
to the diagram

Nk

��

�� Nk

��
Nk−1

��

�� N

��
Nk−1/Nk �� N/Nk

we get that every cyclic subgroup in Nk−1 is bounded in N. Again, this implies that
Nk−1 is bounded in N. Repeating this argument for N/Nk−1, we obtain that Nk−2 is
bounded in N. The statement follows by induction. �

5.10. THE BQ-DICHOTOMY FOR SOLVABLE GROUPS. THEOREM 5.11. Let G be a
finitely generated solvable group such that its commutator subgroup is finitely generated
and nilpotent. Then, the commutator subgroup [G, G] is bounded in G. Consequently, it
satisfies the bq-dichotomy.

Proof. Let us first proof the statement under an additional assumption that G
is metabelian (hence, [G, G] is a finitely generated abelian group). Let x, y, t ∈ G
and consider the element [t, [x, y]] ∈ [G, [G, G]]. Observe that it generates a bounded
subgroup in G because [x, y] commutes with t[x, y] and we can apply Lemma 4.2. Since
the subgroup [G, [G, G]] ⊂ [G, G] is finitely generated abelian, it is boundedly generated
by cyclic subgroups bounded in G and hence [G, [G, G]] is bounded in G.

Consider the following diagram.

G2 = [G, [G, G]]

��

�� [G, [G, G]]

��
G1 = [G, G]

��

�� G

��
G1/G2 �� G/G2

Since [G/G2, [G/G2, G/G2]] is trivial, G/G2 is metabelian and nilpotent. Hence, due to
Theorem 5.8, we get that G1/G2 = [G/G2, G/G2] is bounded in G/G2. It then follows
from Lemma 5.9 that [G, G] is bounded in G.

Let us prove the statement for a general G. Since, the commutator subgroup
G1 = [G, G] is finitely generated and nilpotent we have, according to Theorem 5.8, that
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G2 = [G1, G1] is bounded in G1 and hence in G.

G2 = [G1, G1]

��

�� [G1, G1]

��
G1 = [G, G]

��

�� G

��
G1/G2 �� G/G2

Since G/G2 is metabelian and G1/G2 = [G/G2, G/G2] is finitely generated (because G1

is) we have that G1/G2 is bounded in G/G2, due to the first part of the proof. Again,
by Lemma 5.9, we get that [G, G] is bounded in G as claimed. �

REMARK 5.12. The integer lamplighter group G = Z � Z is solvable and finitely
generated but its commutator subgroup is abelian of infinite rank. The proof still
works in this case because we have that [G, [G, G]] = [G, G]. We also showed it directly
in Example 4.3 (3).

5.13. The bq-dichotomy for graph of groups. For an introduction to graph of
groups, see Serre [35].

LEMMA 5.14. Let A be a graph of groups and let GA be its fundamental group.
Assume that g ∈ GA is not conjugate to an element of the vertex group. Then, g is
either detectable by a homogenous quasimorphism or 〈g〉 is bounded with respect to the
conjugation invariant norm.

Proof. Consider the action of GA on the Bass–Serre tree TA. The action of g on TA

does not have a fixpoint, for GA acts on TA without edge inversions and the stabilisers
of vertices are conjugate to the vertex groups. Thus, g acts by a hyperbolic isometry and
it is automatically of rank one. By Lemma 4.9, g is either detectable by a homogeneous
quasimorphism, or it is conjugate to g−1, hence 〈g〉 is bounded. �

Let H ⊂ G be a subgroup. We say that H satisfies the relative bq-dichotomy (with
respect to G) if every cyclic subgroup of H is either bounded in G or it is detected by
a homogeneous quasimorphism q : G → R. The following result is a straightforward
application of the above lemma.

THEOREM 5.15. Let A be a graph of groups and let GA be its fundamental group.
If each vertex subgroup of GA satisfies the relative bq-dichotomy then GA satisfies the
bq-dichotomy.

EXAMPLE 5.16. Baumslag–Solitar groups satisfy the bq-dichotomy. Indeed,
Baumslag–Solitar groups are HNN extensions of the infinite cyclic group Z. The
graph of groups in this case has one vertex and one edge. By virtue of Example 4.3 (1),
the vertex group is bounded and we can apply Theorem 5.15.

EXAMPLE 5.17. The groups �(m) (defined in Lemma 5.1) satisfy the bq-dichotomy.
We keep the notation from Lemma 5.1. The group �(m̄) is the fundamental group
of the graph of groups associated with a rose with k petels. The vertex group is Zk+1

generated by x0, . . . , xk and the edge groups are cyclic generated by xmi
i . The elements
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xi are detected by a homomorphism h : �(m̄) → Z defined by h(ti) = 0 and h(xi) = ai.
The kernel of this homomorphism is bounded, according to Lemma 5.1. Consequently,
the bq-dichotomy follows from Theorem 5.15.
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