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Abstract

We apply the lifting theorem of Searle and the second author to put metrics of almost nonnegative
curvature on the fake RP6s of Hirsch and Milnor and on the analogous fake RP14s.
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1. Introduction

One of the great unsolved problems of Riemannian geometry is to determine the
structure of collapse with a lower curvature bound. An apparently simpler, but still
intractable, problem is to determine which closed manifolds collapse to a point with a
lower curvature bound. Such manifolds are called almost nonnegatively curved. Here
we construct almost nonnegative curvature on some fake RP6s and RP14s.

Theorem 1.1. The Hirsch–Milnor fake RP6s and the analogous fake RP14s admit
Riemannian metrics that simultaneously have almost nonnegative sectional curvature
and positive Ricci curvature.

Remark 1.2. By considering cohomogeneity one actions on Brieskorn varieties,
Schwachhöfer and Tuschmann observed in [14] that in each odd dimension of the
form 4k + 1, there are at least 4k oriented diffeomorphism types of homotopy RP4k+1s
that admit metrics that simultaneously have positive Ricci curvature and almost
nonnegative sectional curvature.

The Hirsch–Milnor fake RP6s are quotients of free involutions on the images of
embeddings ι of the standard 6-sphere, S6, into some of the Milnor exotic 7-spheres,
Σ7

k [11, 13]. Our proof begins with the observation that the SO(3)-actions that Davis
constructed on the Σ7

ks in [5] leave these Hirsch–Milnor S 6s invariant and commute
with the Hirsch–Milnor free involution. Next we compare the Hirsch–Milnor/Davis
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(SO(3) × Z2)-action on ι(S 6) ⊂ Σ7
k with a very similar linear action of (SO(3) × Z2) on

S6 ⊂ R7 and apply the following lifting result of Searle and the second author.

Theorem 1.3 [16, Proposition 8.1 and Theorems B and C]. Let (Me,G) and (Ms,G) be
smooth, compact, n-dimensional G-manifolds with G a compact Lie group. Suppose
that the orbit spaces Me/G and Ms/G are equivalent and that Ms/G has almost
nonnegative curvature. Then Me admits a G-invariant family of metrics that has almost
nonnegative sectional curvature. Moreover, if the principal orbits of (Me,G) have finite
fundamental group and the quotient of the principal orbits of Ms has Ricci curvature
≥ 1, then every metric in the almost nonnegatively curved family on Me can be chosen
to also have positive Ricci curvature.

We emphasise that to apply Theorem 1.3, Ms/G need not be a Riemannian
manifold, but since Ms is compact, Ms/G is an Alexandrov space with curvature
bounded from below. The meaning of almost nonnegative curvature for Alexandrov
spaces is as follows.

Definition 1.4. We say that a sequence of Alexandrov spaces {(X, distα)}α is almost
nonnegatively curved if and only if there is a D > 0 so that

sec(X, gα) ≥ −
1
α

and Diam(X, gα) ≤ D,

or equivalently, after a rescaling, X collapses to a point with a uniform lower curvature
bound.

The following is the precise notion of equivalence of orbit spaces required by the
hypotheses of Theorem 1.3.

Definition 1.5. Suppose that G acts on Me and on Ms. We say that the
orbit spaces Me/G and Ms/G are equivalent if and only if there is a strata-
preserving homeomorphism Φ : Me/G −→ Ms/G whose restriction to each stratum is
a diffeomorphism with the following property. Let πs : Ms −→ Ms/G and πe : Me −→

Ms/G be the quotient maps. If S ⊂ Me is a stratum, then for any xe ∈ S and any
xs ∈ π

−1
s (Φ(πe(xe))), the action of Gxe on ν(S)xe is linearly equivalent to the action of

Gxs on ν(S)xs . Here Gx is the isotropy subgroup at x and ν(S)x is the normal space to
S at x.

To construct the metrics on the fake RP6s of Theorem 1.1, we apply Theorem 1.3
with G = (SO(3) × Z2). Me will be the Hirsch–Milnor embedded image of S6 in Σ7

k ,
and Ms will be S6 with the following (SO(3) × Z2)-action. View S6 as the unit sphere
inH⊕ImH,whereH stands for the quaternions, and let SO(3) × Z2 act on S6 ⊂ H⊕ImH
via

SO(3) × Z2 × S
6 −→ S6

(g,±, (a, c)) 7−→±(g(a), g(c)). (1.1)

https://doi.org/10.1017/S0004972716000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000307


306 P. Rajan and F. Wilhelm [3]

Here the SO(3)-action on the H-factor is the direct sum of the standard action of SO(3)
on ImH with the trivial action on ReH.

Since quotient maps of isometric group actions preserve lower curvature bounds,
S6/(SO(3) × Z2) has curvature greater than or equal to 1 [4]. Thus to construct the
metrics on the fake RP6s of Theorem 1.1, it suffices to combine Theorem 1.3 with the
following result.

Lemma 1.6. The orbit space of the Hirsch–Milnor and Davis actions of SO(3) × Z2 on
ι(S6) ⊂ Σ7

k is equivalent to the orbit space of the linear action (1.1) on S6.

Our metrics on fake RP14s are octonionic analogs of our metrics on fake RP6s.
The analogy begins with Shimada’s observation that Milnor’s proof of the total spaces
of certain S3-bundles over S4 being exotic spheres also applies to certain S7-bundles
over S8 [17]. Davis’s construction of the SO(3)-actions on Σ7

ks is based on the
fact that SO(3) is the group of automorphisms of H. Exploiting the fact that G2 is
the group of automorphisms of the octonions, O, Davis constructs analogous G2

actions on Shimada’s exotic Σ15
k s. By applying a result of [3], we will see that the

Hirsch and Milnor construction of fake RP6s as quotients of ι(S6) ⊂ Σ7
k also works to

construct fake RP14s as quotients of ι(S14) ⊂ Σ15
k . Thus to construct the fake RP14s of

Theorem 1.1, it suffices to show the following.

Lemma 1.7. The orbit space of the Hirsch–Milnor and Davis actions of G2 × Z2 on
ι(S14) ⊂ Σ15

k is equivalent to the orbit space of the following linear action of G2 × Z2

on S14 ⊂ O ⊕ ImO:

G2 × Z2 × S
14 −→ S14

(g,±, (a, c)) 7−→±(g(a), g(c)). (1.2)

In Section 2 we review the construction of the Hirsch–Milnor and Davis actions and
explain why the Hirsch–Milnor construction works in the octonionic case. In Section 3
we prove Lemmas 1.6 and 1.7 and hence Theorem 1.1. In Section 4 we make some
concluding remarks. We refer the reader to [2, page 185] for a description of how G2

acts as automorphisms of the octonions.

Remark 1.8. Explicit formulas for exotic involutions on S6 and S14 are given in [1],
where it is shown, on pages 13–17, that the corresponding fake RP6 is diffeomorphic
to the Hirsch–Milnor RP6 that corresponds to Σ7

3.

2. How to construct exotic real projective spaces

In this section, we review Milnor spheres, the Hirsch–Milnor construction, and the
Davis actions. We then explain how the Hirsch–Milnor argument gives fake RP14s.

To construct the Milnor spheres, we write Λ for H or O and b for the real dimension
of Λ. To get an Sb−1-bundle over Sb with structure group SO(b), (Eh, j, ph, j), we glue
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two copies of Λ × Sb−1 together via

Φh, j : Λ\{0} × Sb−1 −→ Λ\{0} × Sb−1

Φh, j : (u, q) 7−→
( u
|u|2

,
( u
|u|

)h
q
( u
|u|

) j)
. (2.1)

To define the projection ph, j : Eh, j → S
b, we think of Sb as obtained by gluing

together two copies of Λ along Λ\{0} via u 7→ u/|u|2. Then ph, j is defined to be the
projection to either copy of Λ.

When h + j = ±1, the smooth function

f : (u, q) 7→
Re(q)√
1 + |u|2

=
Re(vr−1)√

1 + |v|2

is regular except at (u,q) = (0,±1).Hence, Eh, j is homeomorphic to S2b−1 if h + j = ±1,
and a Mayer–Vietoris argument shows that Eh, j is not homeomorphic to S2b−1 if
h + j , ±1. Since f (0,±1) = ±1, it also follows that f −1(0) is diffeomorphic to S2b−2.

From now on we assume that
h + j = 1, (2.2)

and we set
k = h − j (2.3)

so that
k = 2h − 1.

For simplicity, we will write Σ2b−1
k for Eh, j and Φk for Φh, j, and set

S 2b−2
k ≡ f −1(0).

The Hirsch–Milnor construction [11] begins with the observation that the involution

T : Λ × Sb−1 −→ Λ × Sb−1

T : (u, q) 7−→ (u,−q)
(2.4)

induces a well-defined free involution of Σ2b−1
k . Moreover, T leaves S 2b−2

k invariant.
Lemma 3 of [11] says that the quotient of any fixed point free involution on Sn is
homotopy equivalent to RPn. In particular, all of our spaces

P2b−2
k ≡ S 2b−2

k /T

are homotopy equivalent to RP2b−2. Hirsch and Milnor then show that when b = 4, P6
k

is not diffeomorphic to RP6, provided Σ7
k is an odd element of Θ7, the group of oriented

diffeomorphism classes of differential structures on S7. According to [6, pages 102–
103], there are 16 oriented diffeomorphism classes among the Σ7

ks and, among these,
eight are odd elements of Θ7.

To understand how this works octonionically, we let Θ15 be the group of oriented
diffeomorphism classes of differential structures on S15, and we let bP16 be the set of
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the elements of Θ15 that bound parallelisable manifolds. According to [12], bP16 is a
cyclic subgroup of Θ15 of order 8128 and index 2, and according to [3, Theorem 1.3],
Θ15 is not cyclic. Thus

Θ15 � bP16 ⊕ Z2 � Z8,128 ⊕ Z2.

According to Wall [18], a homotopy sphere bounds a parallelisable manifold if and
only if it bounds a 7-connected manifold. In particular, each of the Σ15

k s is in bP16.
According to [6, pages 101–107], Σ15

k represents an odd element of bP16 if and only
if 1

2 h(h − 1) is odd, that is, h is congruent to 2 or 3 (mod 4).
The Hirsch–Milnor argument, combined with the fact that Θ15 � bP16 ⊕ Z2, implies

that P14
k is not diffeomorphic to RP14, if Σ15

k is an odd element of bP16.
We let

GΛ ≡

{
S O(3) when Λ = H,
G2 when Λ = O.

Davis observed that since GΛ is the automorphism group of Λ, the diagonal action

GΛ × Λ × Sb−1 −→Λ × Sb−1 (2.5)
g(u, v) = (g(u), g(v))

induces a well-defined GΛ-action on Σ2b−1
k [5].

Next we observe that the Davis action leaves S 2b−2
k = f −1(0) invariant and commutes

with T, giving us the SO(3) × Z2 actions of Lemma 1.6 and the G2 × Z2 actions of
Lemma 1.7.

3. Identifying the orbit spaces

In this section, we prove Lemmas 1.6 and 1.7 simultaneously and hence
Theorem 1.1. In Lemma 3.1 we identify the quotient map for the standard GΛ-action
of S2b−2. In Lemma 3.2 we identify the quotient map for the Davis action on S 2b−2

k .
Then in Key Lemma 3.3, we show that the two GΛ quotients are the same. It is then a
simple matter to identify the two GΛ × Z2 quotient spaces with each other.

Lemma 3.1. Let S2b−2 be the unit sphere in Λ ⊕ Im(Λ) and let 〈 , 〉 be the real dot
product. The map

Qs : S2b−2 −→Qs(S2b−2) ( R3(
a
c

)
7−→ (|a|, Re a, 〈Im a, Im c〉)

has the following properties.

(1) The fibres of Qs coincide with the orbits of the GΛ action

GΛ × S2b−2 −→ S2b−2

(g, (a, c)) 7−→ (g(a), g(c)).
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(2) The image of Qs is Qs(S2b−2) ={
(x, y, z) | x ∈ [0, 1] y ∈ [−x, x], z ∈

[
−

√
(x2 − y2)(1 − x2) ,

√
(x2 − y2)(1 − x2)

]}
.

(3) The principal orbits are mapped to the interior of Qs(S2b−2). The fixed points
are mapped to (1, 1, 0) and (1, −1, 0), and the other orbits are mapped to
∂Qs(S2b−2)\{(1, 1, 0), (1,−1, 0)}.

Proof. Part (2) follows from the observations that

|a| ∈ [0, 1],
Re a ∈ [−|a|, |a|],

〈Im a, Im c〉 ∈ [−|Im(a)||Im(c)|, |Im(a)||Im(c)|],

and
|Im(a)||Im(c)| ∈ [0,

√
(|a|2 − Re(a)2)(1 − |a|2)].

Since the three quantities |a|, Re a, 〈Im a, Im c〉 are invariant under GΛ, each orbit
of GΛ is contained in a fibre of Qs.

Conversely, if (a1, c1) and (a2, c2) satisfy Qs(a1, c1) = Qs(a2, c2), then

|a1|= |a2|

Re(a1) = Re(a2), and
〈Im a1, Im c1〉= 〈Im a2, Im c2〉.

Together with Re(ci) = 0 and |ai|
2 + |ci|

2 = 1, this gives

|Im(a1)|= |Im(a2)|
|Im(c1)|= |Im(c2)|.

Since we also have 〈Im a1, Im c1〉 = 〈Im a2, Im c2〉, it follows that an element of GΛ

carries (a1, c1) to (a2, c2). This completes the proof of part (1).
To prove part (3), we first note that the orbit of (a, c) is not principal if and only if

|〈Im a, Im c〉| = |Im(a)||Im(c)|,

and this is equivalent to Qs(a, c) ∈ ∂Qs(a, c). So the principal orbits are mapped
onto the interior of Qs(S2b−2). On the other hand, the fixed points are (±1, 0) and
Qs(±1, 0) = (1,±1, 0) as claimed. �

Before proceeding, recall that we view

Σ2b−1
k = (Λ × Sb−1) ∪Φk (Λ × Sb−1),

where Φk is determined by (2.1)–(2.3). Combining this with the definition of S 2b−2
k ,

we have that
S 2b−2

k = U1 ∪Φk U2,

where

U1 ≡ {(u, q) ∈ Λ × Sb−1 | Re(q) = 0},
U2 ≡ {(v, r) ∈ Λ × Sb−1 | Re(vr−1) = Rev̄r = 0}.

The quotient map of the GΛ-action on S 2b−2
k has the following description.
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Lemma 3.2. Let φ : Rn −→ R be given by φ(v) = 1/
√

1 + |v|2. The map

Qk : S 2b−2
k −→ Qk(S 2b−2

k ) ( R3

Qk|U1 (u, q) = φ(u)(|u|, Re uq, φ(u)〈Im uq, Im q〉).
Qk|U2 (v, r) = φ(v)(|r|, Re r, φ(v)〈Im r, Im v̄r〉)

is well defined and has fibres that coincide with the orbits of GΛ.

Proof. To see that Qk is well defined, we will show that

Qk|U1\{0×Sb−1} = Qk|U2\{0×Sb−1} ◦ Φk|U1\{0×Sb−1}, (3.1)

which is equivalent to the commutative diagram

U1\{0 × S b−1}

R3

U2\{0 × S b−1}

Qk|U1

Φk

Qk|U2

Since

Φk(u, q) =

( u
|u|2

,
( u
|u|

)h
q
( u
|u|

)−(h−1))
,

where k = 2h − 1, the left-hand side of (3.1) is

Qk|U2\{0×Sb−1} ◦ Φk|U1\{0×Sb−1}(u, q) = Qk

( u
|u|2

,
uhqu−(h−1)

|u|

)
= φ

( u
|u|2

)(∣∣∣∣∣uhqu−(h−1)

|u|

∣∣∣∣∣, Re
uhqu−(h−1)

|u|
, φ

( u
|u|2

)〈
Im

uhqu−(h−1)

|u|
, Im

ū
|u|2

uhqu−(h−1)

|u|

〉)
.

(3.2)

To see that this is equal to Qk|U1\{0×Sb−1}(u, q), we will simplify each coordinate
separately. Before doing so, we point out that

1
|u|
φ
( u
|u|2

)
=

1
|u|

1√
1 + 1/|u|2

=
1√
|u|2 + 1

= φ(u). (3.3)

So the first coordinate of the right-hand side of (3.2) is

φ
( u
|u|2

)∣∣∣∣∣uhqu−(h−1)

|u|

∣∣∣∣∣ = φ( u
|u|2

)
= |u|φ(u),

and the second coordinate of the right-hand side of (3.2) is

φ
( u
|u|2

)
Re

uhqu−(h−1)

|u|
= φ

( u
|u|2

)
Re

(uq
|u|

)
=

1
|u|
φ
( u
|u|2

)
Re(uq)

= φ(u) Re(uq), by (3.3).
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Finally, the third coordinate of the right-hand side of (3.2) is

φ
( u
|u|2

)2〈
Im

uhqu−(h−1)

|u|
, Im

ū
|u|2

uhqu−(h−1)

|u|

〉
= φ

( u
|u|2

)2〈
Im

uhqu−(h−1)

|u|
, Im

uh−1qu−(h−1)

|u|

〉
= φ

( u
|u|2

)2 1
|u|2
〈Im uh−1(uq)u−(h−1), Im uh−1(q)u−(h−1)〉

= φ(u)2〈Im uq, Im q〉, by (3.3).

Combining the previous three displays with (3.2) and the definition of Qk|U1 , we see
that Qk : S 2b−2

k −→ Qk(S 2b−2
k ) ( R3 is well defined.

To see that Qk|U1 is constant on each orbit of GΛ, we use the fact that GΛ acts by
isometries and commutes with conjugation to get

Re g(u)g(q) =
〈
g(u), g(q)

〉
= 〈g(u), g(q̄)〉 = 〈u, q̄〉 = Re(uq).

We also have

〈Im(g(u)g(q)), Im g(q)〉

= 〈Re(g(u))Im g(q) + Re(g(q))Im g(u) + Im g(u) Im g(q), Im g(q)〉

= 〈Re(u)Im g(q) + Re(q)Im g(u), Im g(q)〉

= 〈g(Re(u)Im(q) + Re(q)Im(u)), g(Im(q))〉

= 〈Re(u)Im(q) + Re(q)Im(u), Im(q)〉

= 〈Re(u)Im(q) + Re(q)Im(u) + Im uqIm q, Im(q)〉

= 〈Im(uq), Im q〉.

Since |g(u)| = |u| and φ(gu) = φ(u), it follows that

Qk|U1

(
g(u)
g(q)

)
= Qk|U1

(
u
q

)
.

Combining this with

Qk|U2 g
(
0
r

)
= (1,Re(r), 0) = Qk|U2

(
0
r

)
,

it follows that Qk is constant on each orbit of GΛ.

On the other hand, if

Qk|U1 (u1, q1) = Qk|U1 (u2, q2),
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then

φ(u1)|u1|= φ(u2)|u2|, (3.4)
φ(u1)2〈Im(u1q1), q1〉= φ(u2)2〈Im(u2q2), q2〉, (3.5)

φ(u1)Re u1q1 = φ(u2)Re u2q2. (3.6)

Equation (3.4) implies that |u1| = |u2| and φ(u1) = φ(u2). So

Re(u1) = Re(u1)〈q1, q1〉

= 〈(Re(u1) + Im(u1))q1, q1〉, since Re(q1) = 0
= 〈u1q1, q1〉

= 〈Im(u1q1), q1〉, since Re(q1) = 0
= 〈Im(u2q2), q2〉, by (3.5) and the fact that φ(u1) = φ(u2)
= Re(u2)

and

〈Im(u1), q1〉=−〈u1, q̄1〉, since Re(q1) = 0
=−Re u1q1

=−Re u2q2, by (3.6) and the fact that φ(u1) = φ(u2)
=−〈u2, q̄2〉

= 〈Im(u2), q2〉.

Together with |u1| = |u2| and the fact that q1 and q2 are imaginary, the previous two

displays imply that
(
u1
q1

)
and

(
u2
q2

)
are in the same orbit.

Finally, suppose that
Qk|U2 (0, r1) = Qk|U2 (0, r2).

Then
(1,Re(r1), 0) = (1,Re(r2), 0).

Since we also have that |r1| = |r2| = 1, it follows that (0, r1) and (0, r2) are in the same
GΛ-orbit. �

Key Lemma 3.3. Let Qs be as in Lemma 3.1.

(1) There is a well-defined surjective map

Q̃k : S 2b−2
k → S2b−2/GΛ

whose fibres coincide with the orbits of the GΛ action on S 2b−2
k .

(2) The orbit types of p ∈ S 2b−2
k and Q−1

s (Q̃k (p)) coincide.
(3) For p ∈ S 2b−2

k and any q ∈ Q−1
s (Q̃k (p)), the isotropy representations of GΛ

p and
GΛ

q are equivalent.

In particular, S2b−2/GΛ and S 2b−2
k /GΛ are equivalent orbit spaces.
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Proof. Motivated by [7, 19], we let h1, h2 : Λ × Sb−2 → S2b−2 be given by

h1(u, q) =

(
uq
q

)
φ(u),

h2(v, r) =

(
r
v̄r

)
φ(v).

We claim that Qs and Qk are related by

Qk =

Qs ◦ h1 on U1,

Qs ◦ h2 on U2.
(3.7)

In other words, the following diagram commutes:

U2

U1

S2b−2 S2b−2/GΛΦk
Qs

h1

h2

Qk

Qk

where the map Qk is not defined everywhere, but only on U1\{0 × S b−1} and U2\{0 ×
S b−1}. Indeed,

Qs ◦ h1(u, q) = Qs

(
uq
q

)
φ(u)

= φ(u)(|u|,Re uq, φ(u)〈Im uq, Im q〉)
= Qk(u, q)

and

Qs ◦ h2(v, r) = Qs

(
r
v̄r

)
φ(v)

= φ(v)(|r|,Re(r), φ(v) 〈Im r, Im v̄r〉)
= Qk(v, r),

proving (3.7).
Since h1(Λ × Sb−2) ∪ h2(Λ × Sb−2) = S2b−2, (3.7) implies that Qk(S 2b−2

k ) =

Qs(S2b−2); so setting Q̃k = Qk gives a well-defined surjective map

Q̃k : S 2b−2
k → S2b−2/GΛ,

and part (1) is proven. Parts (2) and (3) follow from the observation that h1 and h2 are
GΛ-equivariant embeddings. �

https://doi.org/10.1017/S0004972716000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000307


314 P. Rajan and F. Wilhelm [11]

Since the antipodal map A : S2b−2 −→ S2b−2 and the involution

T : S 2b−2
k −→ S 2b−2

k ,

defined by (2.4), commute with the GΛ-actions (1.1), (1.2) and (2.5), they induce well-
defined Z2-actions on the orbit space

Qs(S2b−2) = Qe(S 2b−2
e )

=

{
(x, y, z) | x ∈ [0, 1], y ∈ [−x, x], z ∈

[
−

√
(x2 − y2)(1 − x2),

√
(x2 − y2)(1 − x2)

]}
.

A simple calculation shows that the two Z2-actions on Qs(S2b−2) coincide and are given
by

(x, y, z) 7→ (x,−y, z).

Since quotient maps of isometric group actions preserve lower curvature bounds,
S2b−2/(SO(3) × Z2) has curvature greater than or equal to 1 [4]. Therefore,
Theorem 1.1 follows from Theorem 1.3 and Key Lemma 3.3.

4. Some closing remarks

In the same paper, Hirsch and Milnor also constructed exotic RP5s and P5
ks. The

Davis action also descends to the P5
ks where they commute with an SO(2)-action. The

combined SO(2) × SO(3)-action on the P5
ks is by cohomogeneity one. Dearricott and,

independently, Grove and Ziller, observed that since these cohomogeneity-one actions
have codimension-two singular orbits, [9, Theorem E] implies that they admit invariant
metrics of nonnegative curvature.

Octonionically, the Hirsch–Milnor construction yields closed 13-manifolds, P13
k ,

that are homotopy equivalent to RP13. Their proof that the P5
ks are not diffeomorphic

to RP5 breaks down, since in contrast to dimension 6, there is an exotic 14-sphere;
however, Chenxu He has informed us that some of the P13

k s are in fact exotic (personal
communication).

The Davis construction yields a cohomogeneity-one action of SO(2) ×G2 on the
P13

k s, only now one of the singular orbits has codimension six. So we cannot apply
[9, Theorem E]. Moreover, there are cohomogeneity-one manifolds that do not admit
invariant metrics with nonnegative curvature [8, 10]. On the other hand, by the main
theorem of [15], every cohomogeneity-one manifold admits an invariant metric with
almost nonnegative curvature.
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