
ON THE EXISTENCE OF THE 
BURKILL INTEGRAL 

H. KOBER 

1. Introduction. The main problem of the present paper is the existence 
of the Burkill integral of an interval function / ( / ) which is not supposed to be 
continuous. Little is known about this case, though otherwise the theory of 
the integral can be considered as complete: we may refer to Ringenberg's 
comprehensive paper (2) in which further references are given. 

We shall deal with the problem by introducing the notion of infinitesimal 
additivity and will show that the indefinite integral can be continuous even 
when / ( / ) is not. Finally we apply the main result to the generalised arc 
length of a curve ; the result appears not to be known even with respect to the 
familiar notion of arc length. 

Let R(0 < Xj < Aj\ j = 1,2, . . . , » ) be a fixed interval in the Euclidean 
space Eun(n > 1), and let an interval function/(/) be defined for any closed 
interval 

I(aij < Xj < a2j] 0 < aij < a2j < Aj) C R. 

Any/(7) is supposed to be finite for every I C R* The following result is known 
(2; 3, p. 168). 

THEOREM 1. If (i) / ( / ) increases by subdivision (abbreviation / ( / ) C SA), 
(ii) the upper Burkill integral of \f(I)\ over Ris finite, and (iii)/(I) is continuous 
on R, then its Burkill integral over R and, therefore, over any I C R, exists. 

We replace the condition of continuity by a much weaker one. 

THEOREM 1'. (a) Theorem 1 holds when the condition (iii) is replaced by 
(iii') : / ( / ) is infinitesimally additive on R (see 2.1). 

(b) When R is the linear interval (0,̂ 4 ) and f(I) is subadditive, then f(I) 
is Burkill integrable if and only if (i) its lower Burkill integral is bounded above 
and (ii) / ( / ) is infinitesimally additive on R. 

Again for non-continuous/(/), / / / c a n be continuous (§ 5). 

2. Some additional definitions and notations. A representation of an 
interval / in the form I = Ii + . . . + Im = J^ Ik is said to be a subdivision 
© of / , or ©( / ) . The Ik's are always required to be finite in number and not 
to overlap. We write/(©) for J^f(Ik)', \\Ik\\ for the diameter of 7^;||©|| for max 
||ifc||(k = 1, . . . , m). When the J^'s are arranged in rows and columns 
(n > 2)© is said to be a mesh-division. Any finite number of non-overlapping 

Received May 7, 1957. 
115 

https://doi.org/10.4153/CJM-1958-015-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-015-7


116 H. KOBER 

intervals form a figure, denoted by F or J^Ik. While I is closed, 1° is open; 
\I\ is its Lebesgue measure, in Eu2, for example, the area of the interval. 

The upper, lower Burkill integral; the Burkill integral, respectively, of 
/CO over / C R are denoted by Urf, Lrf; frf. The existence of the latter 
integral is meant to imply its finiteness. 

If, for any I C R, 

/ ( / ) < / ( / i ) + / ( / , ) ( / = / i + /2), 

then / ( 0 is said to be subadditive (/(J) Ç 5/); if, for any ©, / ( / ) < / ( © ) , 
then / ( J ) 6 5 4 . Clearly S4 C s*i and &4 = 5/ in Eui. 

By i we denote any oriented interval of n — 1 dimensions such that 
i° C i?°(« > 2), while in Euu i is any point of R° = (0, A). Thus in E^2, i 
is any line segment parallel to one of the axes which does not form part of 
the perimeter of R and has no point outside R. When n = 2 and both end-
points of i, or n = 3 and all the sides of i lie on R — R°, etc., we use sometimes 
the notation i*. A function f(I) is said to be infinitesimally additive if for 
any fixed i 

2.1 / ( / , ) + / ( / , ) -/(/) ^ 0 (I = h + hCR) 

whenever I\I2 = i and \I\ —> 0. An interval i* is said to be irregular if there 
is at least one sub-interval i C *̂ for which 2.1 does not hold. We remark 
that, iff (I) is of bounded variation over R (abbreviation:/ Ç V; VTf = total 
variation of/ over I), then the limits of 

f(h),f(h),f(I) (i fixed, h\h = i, \h + I2\ = \I\ -» 0) 

exist, and the irregular i* are countable. 

3. Some lemmas 

LEMMA 1. If jRf exists then, given e > 0, there is a 5 > 0 such that whenever a 
figure 

X) Ik C R and max H^H < Ô (k = 1,2, . . . ), 

3.11 

3.12 E \f(h) - f / 
I • / Ik 

< e. 
/A 

While 3.11 is known (2; 3, p. 167), 3.12 is deduced from it by considering 
separately the intervals Ik for which the corresponding differences occurring 
in the sum in 3.11 are > 0 or < 0, respectively. 

We proceed to some elementary existence theorems. 

LEMMA 2. The integral JRf exists if, and only if, given e > 0, there is a 8 > 0 
such that for subdivisions ©i,©2 of R 

3.21 l / ( © i ) - / ( © 2 ) | < € , (| |@,(*)| | < 5 , j = l , 2 ) ; 
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or if 

3.221 

or 

3.222 

k v I J \ 

/(**) - Z /(/«) 

< e; 

< € 

whenever R = Y, h, max | | ^ | | < ô and I* = Y^ihi-
Part 3.21 is trivial. The necessity of the condition of 3.221 follows from 

it; so does the sufficiency, when ©i is taken as J^Ik and Yl/cJhi as a sub­
division both of ©I(JR) and of ©2CR). Hence the condition 3.222 is sufficient 
also. Its necessity is deduced from 3.12 by the additivity of the Burkill integral. 

LEMMA 3a. When f (I) £ SA the integral exists if, and only if, (i) LRf < °°, 
and (ii) given e > 0, there is a 5 > 0 such that for any figure F = £ Ik C R, 
with \\F\\ < 8 and Ik = Ihl + Ik2, 

(3.3) £ {/(i»i) + / ( / « ) - / ( / * ) } < e . 
k 

LEMMA 3b. In Eu\, (ii) can be replaced by the weaker condition (ii') f(I) is 
infinitesimally additive (see 2.1). 

Proof af Lemma 3a. The necessity of the condition follows immediately 
from 3.221. To prove the converse we may consider Eun for n = 2 only. Clearly 
LRf>f(R) > - oo. We show that, for any ©(£ ) , / (©) < L*f; which 
implies that 

URf<LRf, UR = LR = JRf. 

Since / ( / ) G SA we may for convenience suppose that ©(J?) (i£ = 1 ^ ) 
be a mesh-division. Fixing e and 5 according to (ii), we find an ©*(R) (R = 
£ /*) such tha t / (©*) < LRf + e, and that ||@*|| is smaller than ô and the 
sides of each Jjm Denote the Iks that lie in one, two or four of the Jj by Iv, 
Iq or Ir, respectively, and set 

Iq = Iql + Iq2, I? = I rl + • • • + Irij 

where each IqU IrX belongs to one Jj only. Asf(I) Ç SA, 

AS) < Ef(/P) + z z /(/„) + z z /(̂ «) 
= Z /(A) + Z { z /(/««) -/(/,)} + Z { z /(/,«) 

A; ? V 1=1 ' r \ 1=1 

- K i n + Ir*) -f(Ir* + Ir*)\ + Z W rl + Ir*) 

+ /(/„+ /*)-/(/,)} 
< /(S*) + 3e < LBf + 4e 

by (ii). Taking e —> 0 we complete the proof. 
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Proof of Lemma 3b. We proceed as before, but observe that in Eui the 
Iks are either of the type Iv or Iq and that the number of the Iq's is less than 
N, the number of the J/s. Taking a suitable ©* we show that, given e > 0, 

/(©) <LRf+e + Ne; 

therefore, UR = LR} so that the integral exists. Conversely, to obtain 2.1 
we take F = I Z) i and observe that \\F\\ = | / | in this case. 

Finally we state two results which are not difficult to prove. 

Iff(I) € SA and URf is finite and Ljf additive, then jRf exists. 
In Eu\, if UR\f\ < oo and f(I) is infinitesimally additive, then both Uif 

and Ljf are additive. 

4. Proof of Theorem 1'. Again we show that (in') is not a necessary 
condition. 

Part (b) follows from Lemma 3b. To deal with (a) we take n = 2. We 
have to show that, for any 

@CR) (£ = £/»)./(©) <LBf; 
we may suppose that @ be a mesh-division since / ( / ) Ç 5^4. Let ii*, . . . , v* 
and %+i*> . . . , %+r* be the lines generating ©, parallel to the Xi and x2 

axis, respectively. If the variation o f / ( / ) on R is zero at each of these lines 
then, given e > 0, we deduce by a known argument (3, pp. 166, 168) that 
/ (©) < LRf + 3e and take e —> 0. Suppose now that the variation o f / ( / ) on 
R is not zero at ii*, say. Let i i , ^ , • . • , I2T+1 be the intervals lying between 
x2 = 0 and ii*; 72,/4, . . . , I2T+2 between ix* and i2*. We can draw i' between 
X2 = 0 and ii*, i" between ii* and ^*, both lines parallel to ii* and arbitrarily 
near it, and such that the variation o f / ( / ) on i? vanishes at i ' and i" \ these 
lines divide 72*-i or I2k (k = 1,2, . . . , T + 1) into /2*-i,i and I2k-i,2, or into 
^ , 1 and I2k,2, respectively, where l2k-i,2 and 72*,i are adjacent. Set I2k-i,2 
+ / 2 U = / J , ' A S / ( I ) e 5 i , 

/ ( / , ,_!) + / ( / 2 t ) </( / 2*- 1 . i ) + / ( /£*) + / ( / 2 * ) + A; 
A =/(J2*_i t 2) + / ( / 2 *. i ) - / ( / 2 * ) - > 0 (i#->ir, i " - > i î ) , 

s ince/( / ) is infinitesimally additive. Proceeding in this way we replace <&(R) 
by a <&'(R) such that the variation at each of the lines producing &(R) is 
zero and that 

/ (©) < / ( © , ) + e; 

which completes the proof. 

Clearly (iiir) is weaker than the condition that / ( / ) be continuous; in 
Eun (n > 2) however, (iiir) is not a necessary condition either. Consider the 
square 0 < X\ < 1,0 < x2 < 1 and take / ( / ) = 0 except in the following 
cases. 
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(a) One side of I is formed by a segment, of length 1(0 < I < 1) say, of the 
line Xi — | . Then take f(I) = /. 

(b) Part of the line X\ = J is contained in the interior of I, and the total 
length / of the closed segment concerned is < 1. Then / ( J ) = 21. 

Plainly f(I) £ SA, f(I) is integrable, and / « / = 2. Yet f(I) is not 
infinitesimally additive. Take i* as the segment 0 < Xz < 1 of xi = \. Then 

I = l , / ( / i ) = f(h) = 1, (hh = i*, I = / i + / 2 ) 

while / ( / ) = 0. Thus the term 

/ ( / i ) + / ( / 2 ) - / ( / ) = 2 

and does not tend to zero. 

5. Continuity of the indefinite integral. We deduce 

THEOREM 2. Suppose that f(I) is Burkill integrable. 
(a) Then F (I) = J if is continuous on R if and only if, given e > 0, there 

are numbers 8frj > 0 such that !]£/(/*) I < e whenever \I\ < 5, I = J^Ik and 
\\h\\ < 17. 

(b) The continuity of f(I) is necessary and sufficient for that of F (I) (i) in 
Eui, (ii) when 

1/0)1 < I£/(/*) I (/ = Hh), 
for instance when f(I) increases by subdivision and is non-negative. 

The statement (a) is deduced from the inequality 

I I £ /(/*) I - I F(I) I I < h (max I I /J I < v) 
II I I II \ * I I I I / 

which follows from Lemma 1. Since continuity is well-known to be a sufficient 
condition (3, p. 167), (b ii) is now evident. In Eu\, we have | / | = | | / | | . Hence 
it is necessary that 

| / ( / ) | < e f o r | / | < m i n (ô,V). 

Thus / ( / ) is continuous. 
Note that in Eun, n > 1, the condition in (a) does not imply continuity of 

/ ( / ) . Take n = 2; R as the square 

0 < * , < 1 ; / ( J ) = \I\+P 

when I touches the line xi = 1 along a segment of length /, / ( / ) = |7| other­
wise. Clearly / ( / ) is not continuous, while F = J Rf exists; F (I) = |/ | , which 
is continuous. 

6. A rectifiable curve. The curve C{xi(t), x2(/), . . . , xm(t)} in Eum is 
defined by functions Xj(t) of bounded variation over 

R = (0,a), j = 1,2, . . . , w, Xj (0 - ) = xj(0), Xj(a + ) = Xj(a). 
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Its arc length AQ,ais 

^ i m ) h 

Ao,a = l.u.bd. S F(Ik); F(I) = ] 2 (xj(I))2\ , £ /* = i?, max|/*| -> 0, 

where x •,•(/) = Xj{h) — Xj(ti) for J = {tut2) C.R. If all the Xj{t) are continuous 
then not only the upper bound, but also the proper limit of ^F(Ik), that is 
/ R F ( I ) , is known to exist. We deduce 

THEOREM 3. Given a curve C{x\(t), . . . , xn(t)}, the Burkill integral jRF(I) 
exists if, and only if, C is normal. This holds for the generalised form of F {I) as 
defined below. 

Definition 1. A curve C{{x\{t), . . . , xm{t)} is normal if all Xj(t) Ç V and if, 
for any t £ i£°, there is a p*(0 < pt < 1) such that 

6.1 xj(t) = PtXj(t - ) + (1 - pO*i(* + ) , j = 1,2, . . . , w, 

that is, if any point associated with t lies on the line segment joining the two 
points Xj(t — ), Xj{t + ) (j = 1, . . . , m); which clearly coincide when all the 
Xj(t) are continuous at /. 

Definition 2 (Generalisation of the arc length). Let the function 

f(yi,y2,. • • , 3 0 ( 0 < y j < » ) 

be (i) non-negative, (ii) continuous, (iii) strictly increasing concerning each 
yjy (iv) homogeneous of degree one and (v) subadditive, i.e. 

f(yi + zi, • • •> ym + Zm) < f(yu .. •, ym) +f(zi, • • •> O 

and such that there is equality only if the Zj and y3- are effectively proportional 
(that is, for some finite a > 0, yj = <rzj or j^- = 0-3 )̂. Clearly 

F(i) = fCMDi..., \Xm(i)\) e SA 

as the Xj{I) are additive; and the generalised arc length is defined as the upper 
Burkill integral UF. We obtain the ordinary arc length when 

/ m \l/p 

f(yi,-..,y») = {'Ziy?) . P = 2, 

but / satisfies the above conditions also for 1 < p < oo by Minkowski's in­
equality (1, §2.11). So does, for instance, the function 

f(yu y*) = (yi2 + hw + y?)\ o < * < 2. 
By (iv), / = 0 for yx = y2 = . . . = ym = 0, while / > 0 otherwise by 

(iii). Again by (iii) and (iv), 

/ < / (1 ,1 , . . . , 1) max yjJ > yi/(l ,0, . . . , 0), / > 3^(0,1,0, . . . , 0), . . . . 

Thus 

(0 < y, < 
\ 0 < Z, < co : 
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6.2 Ç M / ) | / ( l , • • . , 1) > ^(J ) > * Ç M / ) | ; c = min{/(l,0, . . . ), 

MU, . . . ) , . . . } / *» , 
so that UF < <* \l and only if all Xj(t) G V. 

Suppose now that 6.1 be satisfied. Take any point t = i £ i?°, 

h = <*lf*>, / 2 = (t,t2), I = <*i,fc> C 22,; | / | -> 0. 

6.3 Fih) + F(I2) - F(I) ->/( |«i | , . . . , W ) + / ( W , . . . , k | ) 
- / ( | w i | , • . . , W ) , 

where ŵ  = a^(£) — x;(£ — ), Vj = Xj(t + ) — Xj(i), Wj = #y(£ + ) — #y(£ — ), 
and by 6.1, Uj = (1 — pt)wj} Vj = pt Wj. By the homogeneity of / the ex­
pression on the right in 6.3 vanishes. Hence F (I) is infinitesimally additive, 
therefore JRF(I) exists. 

Conversely suppose that F(I) is Burkill integrable. Then it must be in­
finitesimally additive. By 6.3, therefore, 

6.4 /( |wi| , . . . , \wm\) = / ( | « i | , . . . , k | ) + / ( W , . . . , M ) . 

Now \WJ\ < \UJ\ + |»y|. By (iii) and (v), therefore, 6.4 remains true when 
\iVj\ is replaced by \uj\ + \vj\. Hence 

6.5 /{ ( | t t l | + h | ) , (\u2\ + h | ) , . . . } = f(\Ul\, . . . ) + / ( h | , . . . ). 

Any Uj and Vj have equal signs; for if UJVJ were negative for some j , \wj\ would 
be <\uj\ + \vj\, and since / i s strictly monotone, 6.4 and 6.5 would contradict 
each other. Hence UjVj > 0. By (v), 6.5 implies that the \uj\ and \vj\ be 
effectively proportional. Thus for some a > 0, depending on t only, vj 
= <rUj(j = 1,2, . . . , m) or Uj = aVj. Taking pt = <r(l + o-)"1 or (1 + o")-1» 
respectively, we arrive at 6.1. This completes the proof. 

Remark 1. Clearly (iv) and (v) imply t h a t / is a convex function. 

For w < l , UIoF (Xj(I)eV, IC.I0C.Eun) is a lower semi-continuous functional. 

Remark 2. There are applications of our main theorem to the areas of 
surfaces z = f(x,y) which are not continuous or even nowhere continuous. 
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