ON THE EXISTENCE OF THE
BURKILL INTEGRAL

H. KOBER

1. Introduction. The main problem of the present paper is the existence
of the Burkill integral of an interval function f(I) which is not supposed to be
continuous. Little is known about this case, though otherwise the theory of
the integral can be considered as complete: we may refer to Ringenberg's
comprehensive paper (2) in which further references are given.

We shall deal with the problem by introducing the notion of infinitesimal
additivity and will show that the indefinite integral can be continuous even
when f(I) is not. Finally we apply the main result to the generalised arc
length of a curve; the result appears not to be known even with respect to the
familiar notion of arc length.

Let RO < x; < 4;;7=12,...,n) be a fixed interval in the Euclidean
space Eu,(n > 1), and let an interval function f(I) be defined for any closed
interval

I(a1; < x;< 0250 < a1y <az; < 4;) CR

Any f(I) is supposed to be finite for every I C R. The following result is known
(2; 3, p. 168).
TueOREM 1. If (i) f(I) tncreases by subdivision (abbreviation f(I) C SA4),

(ii) the upper Burkill integral of |f(I)| over R is finite, and (iii) f(I) is continuous
on R, then its Burkill integral over R and, therefore, over any I C R, exists.

We replace the condition of continuity by a much weaker one.

TueoreEM 1’. (a) Theorem 1 holds when the condition (iii) is replaced by
(iii"): f(I) is infinitestimally additive on R (see 2.1).

(b) When R is the linear interval (0,4 ) and f(I) is subadditive, then f(I)
1s Burkill integrable if and only if (i) its lower Burkill integral is bounded above
and (ii) f(I) is infinitesimally additive on R.

Again for non-continuous f(7), f,f can be continuous (§ 5).

2. Some additional definitions and notations. A representation of an
interval I in the form [ = I, 4+ ...+ I, = Y I is said to be a subdivision
& of I, or &(I). The I’s are always required to be finite 1n number and not
to overlap. We write f(©) for X_f(I,); ||Ix|| for the diameter of I;;||&]| for max
LIk =1,...,m). When the I;’s are arranged in rows and columns
(n > 2)& is said to be a mesh-division. Any finite number of non-overlapping
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intervals form a figure, denoted by F or X I;. While [ is closed, I° is open;
|1] is its Lebesgue measure, in Eu,, for example, the area of the interval.
The upper, lower Burkill integral; the Burkill integral, respectively, of
f(I) over I C R are denoted by Uf, L;f; [;f. The existence of the latter
integral is meant to imply its finiteness.
If, for any I C R,
f(I)<f(Il)+f(I2) (I =1+ 1I,,

then f(I) is said to be subadditive (f(I) € st); if, for any &, f(I) < f(S),
then f(I) € SA. Clearly SA C st; and S4 = st in Eu,.

By ¢ we denote any oriented interval of # — 1 dimensions such that
1 C R°(n > 2), while in Euy, 1 is any point of R® = (0, 4). Thus in Eu,, ¢
is any line segment parallel to one of the axes which does not form part of
the perimeter of R and has no point outside R. When # = 2 and both end-
points of 7, or # = 3 and all the sides of 7 lie on R — RY etc., we use sometimes
the notation 7*. A function f() is said to be infinitesimally additive if for
any fixed 1
2.1 JUI) + fI2) — fI) =0 (I=L+I,CR)

whenever I,], = ¢ and |I| — 0. An interval ¢* is said to be irregular if there
is at least one sub-interval ¢ C 7* for which 2.1 does not hold. We remark
that, if f(I) is of bounded variation over R (abbreviation: f € V; V,;f = total
variation of f over I), then the limits of

fI), f(I.), f(I) (4 fixed, I1|Iy = 1, |, + I.| = |I] —0)

exist, and the drregular i* are countable.

3. Some lemmas

LEmMmaA 1. If fRf exists then, given € > 0, there is a § > 0 such that whenever a

figure
> I, CR and max ||[L]| <6 (k=12,...),

3.11 l > {f(Ik) - flkf}\ < e
3.12 > ’f(Ik) —f{kf' <e

While 3.11 is known (2; 3, p. 167), 3.12 is deduced from it by considering
separately the intervals I for which the corresponding differences occurring
in the sum in 3.11 are > 0 or < 0, respectively.

We proceed to some elementary existence theorems.

LeEMMA 2. The integral fRf exists if, and only if, given € > 0, there isa 6 > 0
such that for subdivisions ©1,S, of R

3.21 (@) = f(@)l <o (I&:BI <87 =1,2);
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or if

3.221 | Zk {f(lk) - ZI f(Im}' <e¢
or

3.222 Zk: flez) — Z f(I)

whenever R = Y I, max||[]|< 6 and I, = > Iy

Part 3.21 is trivial. The necessity of the condition of 3.221 follows from
it; so does the sufficiency, when &, is taken as Y I; and Y . .I;, as a sub-
division both of &;(R) and of &,(R). Hence the condition 3.222 is sufficient
also. Its necessity is deduced from 3.12 by the additivity of the Burkill integral.

LeEMMA 3a. When f(I) € SA the integral exists if, and only if, (i) Lgf < =,
and (ii) given ¢ > 0, there is a 6 > 0 such that for any figure F = 3 I, C R,
with ”F” < 6 and Ik = Ikl + Ikg,

(3.3) 2 flm) + f(Te) — f(T)} < e

k

LemMA 3b. In Eu,, (i) can be replaced by the weaker condition (ii') f(I) is
infinitesimally additive (see 2.1).

<e

Proof af Lemma 3a. The necessity of the condition follows immediately
from 3.221. To prove the converse we may consider Eu, for n = 2 only. Clearly
Lif > f(R) > — . We show that, for any S(R), f(&) < Lgf; which
implies that

Unf< LRf, UR = LR = fRf-

Since f(I) € SA we may for convenience suppose that &(R) (R = X.J;)
be a mesh-division. Fixing ¢ and ¢ according to (ii), we find an &*(R) (R =
S°I,) such that f(&*) < Lif + ¢, and that ||&*|| is smaller than 6 and the
sides of each J;. Denote the I,’s that lie in one, two or four of the J; by I,
I, or I,, respectively, and set

Io=Ipn+1p I, =104+ ...4 1,4
where each I,;, I, belongs to one J, only. As f(I) € S4,

HORIDNCARDID I (CHED NP I

= 2SI+ X {Z_ fI) —f(lq)} + 2 {2 yies

—fIn+ L) = fs + Ld} + 2 I+ L)
+ fT+ L) = J(2) '
< f(S*) 4 3¢ < Lgf + 4e
by (ii). Taking ¢ — 0 we complete the proof.
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Proof of Lemma 3b. We proceed as before, but observe that in Eu, the
I)’s are either of the type I, or I, and that the number of the I,'s is less than
N, the number of the J,'s. Taking a suitable &* we show that, given ¢ > 0,

f(©) < Lrf+ e+ Ne;

therefore, Up = Lpg, so that the integral exists. Conversely, to obtain 2.1
we take F = I D 4 and observe that ||F|| = |I] in this case.
Finally we state two results which are not difficult to prove.

If f(I) € SA and Ugf is finite and L.f additive, then [ xf exists.
In Euy, if Uglf] < o and f(I) is infinitesimally additive, then both U,f
and L;f are additive.

4. Proof of Theorem 1’. Again we show that (iii’) is not a necessary
condition.

Part (b) follows from Lemma 3b. To deal with (a) we take n = 2. We
have to show that, for any

B(R) (R = X1, f(©) < Laf;

we may suppose that & be a mesh-division since f(I) € SA4. Let /%, ..., 4,*
and 4yu1*, ..., ty+rt be the lines generating &, parallel to the x; and x.
axis, respectively. If the variation of f(I) on R is zero at each of these lines
then, given ¢ > 0, we deduce by a known argument (3, pp. 166, 168) that
f(&) < Lgf + 3¢ and take ¢ — 0. Suppose now that the variation of f(I) on
R is not zero at 1,*, say. Let I,I3, ..., I2ry1 be the intervals lying between
xe = 0 and 41*; I, 14, ..., Iyp.e between 7,* and 7,*. We can draw 4’ between
x; = 0 and 4%, 7"/ between 4,* and 4,*, both lines parallel to 7,* and arbitrarily
near it, and such that the variation of f(I) on R vanishes at 7’ and 7’; these
lines divide Ig_y or I, (B =1,2,...,T 4+ 1) into Iy_1,1 and I_1.2, Or into
Iy 1 and Iy, respectively, where Io12 and Is,, are adjacent. Set Io_12
+I2k,1 = Ig,k- ASf(I) € 54,

f(I2k—1) + f(In) < f(IZk—l,l) + f(IZ’k) + f(-[2k) + A

A= f(In12) + f(Tor) — f(I3) = 0 (3" — 1, "' — 41),
since f(I) is infinitesimally additive. Proceeding in this way we replace &(R)
by a &'(R) such that the variation at each of the lines producing &' (R) is
zero and that

f®) <f@) + ¢
which completes the proof.
Clearly (iii") is weaker than the condition that f(I) be continuous; in
Eu, (n > 2) however, (iii’) is not a necessary condition either. Consider the

square 0 < x; < 1,0 < x2 < 1 and take f(I) = 0 except in the following
cases.
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(a) One side of I is formed by a segment, of length /(0 < I < 1) say, of the
line x; = 1. Then take f(I) = L.

(b) Part of the line x; = } is contained in the interior of I, and the total
length / of the closed segment concerned is < 1. Then f(I) = 2I.

Plainly f(I) € S4, f(I) is integrable, and fRf = 2. Yet f(I) is not
infinitesimally additive. Take 7* as the segment 0 < x2 < 1 of x; = . Then

l = ].,f(I1> =f([z) = ]., (I1I2 = l.*, I = II+IQ)
while f(I) = 0. Thus the term
JI) + fT) — fI) =2

and does not tend to zero.

5. Continuity of the indefinite integral. We deduce

THEOREM 2. Suppose that f(I) is Burkill integrable.

(a) Then F(I) = f if s continuous on R if and only if, given € > 0, there
are numbers 8,n > 0 such that |2 f(I;)| < ¢ whenever |I| <8, I = 3.I; and
1l <.

(b) The continuity of f(I) is necessary and sufficient for that of F(I) (i) in
Eu,, (ii) when

F(D] < [ZfU0I (I =21,

for instance when f(I) increases by subdivision and is non-negative.

The statement (a) is deduced from the inequality
”Zf(fk) —’F(I)”<%e (maxl <n)
k

which follows from Lemma 1. Since continuity is well-known to be a sufficient
condition (3, p. 167), (bii) is now evident. In Euy, we have |I| = ||I]|. Hence
it is necessary that

I

|f(I)| < efor |I] < min (8,9).

Thus f(I) is continuous.
Note that in Eu,, » > 1, the condition in (a) does not imply continuity of
f(I). Take n = 2; R as the square

0<a; <1 f(I) = |I| + 12

when I touches the line x; = 1 along a segment of length I, f(I) = |I| other-
wise. Clearly f(I) is not continuous, while F = [gf exists; F(I) = |I|, which
s continuous.

6. A rectifiable curve. The curve C{x:i(¢), x2(t), ..., %)} in Eu, is
defined by functions x,(¢) of bounded variation over

R = <Ora’>v .7 = 1y21 ceey My Xy (O —) = xJ(O)r xj(a‘ +) = xj(a)~
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Its arc length 4, is

Agq = lubd. >, F(I); F(I) = {Em_: (xj(r))z}%, > I, = R, max|I,| —0,

k
where x;(I) = x;(ts) — x,(¢;) for I = (¢1,62) C R. If all the x;(¢) are continuous
then not only the upper bound, but also the proper limit of }_ F(I},), that is
fRF(I), is known to exist. We deduce

THEOREM 3. Given a curve C{x:(t), ..., x,(t)}, the Burkill integral fRF(I)
exists if, and only if, C is normal. This holds for the generalisel form of F(I) as
defined below.

Definition 1. A curve C({x1(¢), ..., xn(#)} is normal if all x;(¢) € V and if,
for any ¢t € R, thereisa p,(0 < p; < 1) such that
61 x](t) = ptx]'(t —) + (1 - pl)xj(t +)7 ] = 1121 e, m,
that is, if any point associated with ¢ lies on the line segment joining the two
points x;(t —), x;(¢ +) (j = 1,...,m); which clearly coincide when all the

x;(t) are continuous at ¢.
Definition 2 (Generalisation of the arc length). Let the function
FOuye ooy (0 < y; < )
be (i) non-negative, (ii) continuous, (iii) strictly increasing concerning each

v, (iv) homogeneous of degree one and (v) subadditive, i.e.

0< j<°°
f(y1+zly-~~7ym+zm)<f(y1)"-yym)+f(zl)'~'1zm) <0<::j<m)

and such that there is equality only if the z; and y; are effectively proportional
(that is, for some finite ¢ > 0, ¥; = o3, or 3; = ay,). Clearly

F(I) =f(}xl(I)lv RN lxm(I)l) € s4

as the x,(I) are additive; and the generalised arc length is defined as the upper
Burkill integral UF. We obtain the ordinary arc length when

m 1/p
f(ylv'-'rym)=<]z=:1 yf) ’ P=2,

but f satisfies the above conditions also for 1 < p < « by Minkowski’s in-
equality (1, §2.11). So does, for instance, the function

fOny:) = 0" + kyy: + 327, 0<Ek<2
By (iv), f=0 for y; =y, =... =19, =0, while f > 0 otherwise by
(iii). Again by (iii) and (iv),
F<fL, ..., ) max vy, f > yf(1,0,...,0), f > »f(0,1,0,...,0),....

Thus
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m

62 3 (DU, 1> P > ¢ 3 kDl = minff10,. ),

f10,1,...),...}/m,

so that UF < o« if and only if all x;(!) € V.
Suppose now that 6.1 be satisfied. Take any point ¢t = 7 € R?,

Iy = (tt), Io = (t,tz), I = (tr,t2) C Ry; [I| — 0.

6.3 F(Il) + F(l,) — F(I) '_’)f(|u1lr ey luMD +f(|7)1|v ceey l”ml)
_f(lwllr L] lwml)y

where u; = x;({) — x,;(t =), v; = x;(¢ +) — x;(t), w; = x;(t +) — x;(¢t —),
and by 6.1, u; = (1 — p)w,, v; = p, w,. By the homogeneity of f the ex-
pression on the right in 6.3 vanishes. Hence F(I) is infinitesimally additive,
therefore f gF(I) exists.

Conversely suppose that F(I) is Burkill integrable. Then it must be in-
finitesimally additive. By 6.3, therefore,

64 f(lwlly ceey lwm,) = f(lull’ se ey luml) +f(lvllr ceey lvm|)~
Now |w,| < |u,| + |v,]. By (iii) and (v), therefore, 6.4 remains true when

|w,| is replaced by |u,| + |v,|. Hence
6.5 fiua] + loa), (uaf + Joe), ..} = f(oal, .2 ) + (o], .20

Any u; and v; have equal signs; for if % ,v; were negative for some 7, |w,| would
be <|u,| + |v,|, and since f is strictly monotone, 6.4 and 6.5 would contradict
each other. Hence u,v; > 0. By (v), 6.5 implies that the |u,;| and |v, be
effectively proportional. Thus for some ¢ > 0, depending on ¢ only, v,
=ou;(j=12,...,m) or u; = ov;. Taking p, = d(1l 4+ o)~ or (1 + )7},
respectively, we arrive at 6.1. This completes the proof.

Remark 1. Clearly (iv) and (v) imply that f is a convex function.
For n <1, UpF (x;(I)eV, ICI,C Eu,) is a lower semi-continuous functional.

Remark 2. There are applications of our main theorem to the areas of
surfaces z = f(x,y) which are not continuous or even nowhere continuous.
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