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WEAK CONTINUITY OF A COMPOSITION MAP BETWEEN 
SPACES OF COMPACT OPERATORS AND BANACH VALUED 

CONTINUOUS FUNCTIONS 

RAJAPPA K. ASTHAGIRI 

ABSTRACT. This paper characterizes the Banach space E for the sequential con­
tinuity and the continuity on bounded sets of the composition map m: C(S, E)wk x 
K{E,F)wk —• C{S,F)wk. Here, K(E,F) denotes the Banach space of compact linear 
operators on the Banach space E to the Banach space F with the usual operator norm, 
and for any Banach space E, Ewk denote the Banach space E with the weak topology. 
Also we denote by C(S, E) the Banach space of E valued continuous functions on a 
nonvoid compact Hausdorff space S with sup norm. 

A Banach space X has the Dunford-Pettis property [3] whenever given a weakly null 
sequence (xn) in X and a weakly null sequence (x*) in X* it follows that \\mnx*nxn = 0. 
An immediate consequence of this condition is the following: 

THEOREM. The Banach space E has the Dunford-Pettis property if and only if the 
composition map m: C(S, E)wk x K(E, F)wk —• C(S, F)Wk given by (</>, 7) —> To<j) (where 
(Tocj) )(s) = T((f) (s))for all s in S) is sequentially continuous. 

PROOF. A quick observation that for non-void compact S and Banach spaces E, F the 
spaces E,E*, and K can be embedded into C(S, E), K(E, F), and C(S, F), respectively, in a 
fairly canonical manner implies that the evaluation map e : E x E* —• K is the restriction 
of the composition mapping C(S, E) x K(E, F) —• C(S, F). Thus the sequential continuity 
of m can be tested at its restriction e having weak sequential continuity, i.e., is equivalent 
to the Dunford-Pettis property of E. 

So, it remains to be shown that if E has the Dunford-Pettis property then m is se­
quentially continuous. We use Kalton's and Lewis' characterisations of weak sequential 
convergence in K(E, F) and C(S, E), respectively. 

Kalton's test [2, 4] for weak sequential convergence in K(E, F) states that a bounded 
sequence (Tn) in K(E,F) is weakly null if and only if limne**7^/* = 0 for e**eE**, 
f *eF*. On the one hand, this implies that the bounded sequence (Tn) in K(E, F) is weakly 
null if and only if for each/ *eF* the sequence (7^ / *) is a weakly null sequence in E*. 
On the other hand, Lewis's test [2, 5] for weak sequential convergence in C(5,£) = 
(C(S)&E) shows that a bounded sequence (</>„) in C(S,E) is weakly null if and only if 
(<t>n(s)) in E is weakly null for each seS. Thus, suppose E has the Dunford-Pettis property, 
(Tn) is weakly null in K(E,F) and (<f>n) is weakly null in C(S,E). Then the sequence 
(Tno(f)n) is bounded in C(S,F); (7^/*) is a weakly null sequence in E* for each/* in 
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F* and (<j>n(s)) is weakly null in E for each s in S. Therefore for each s in S and/ *eF\ 
limn(7^/ *)(cj)n(s)) = 0 and hence \\mn{{Tno(j>n)(s)J *) = 0. Now, from Lewis's test we 
can conclude that {Tno<j)n) is a weakly null sequence in C(S, F). m 

REMARK. If the composition map m is continuous on bounded sets, then as observed 
earlier, the evaluation map e is also weakly continuous on bounded sets. Hence from 
Corollary 1 of [1], it follows that there exists no infinite dimensional Banach space E for 
which the composition map m is continuous on bounded sets. 

Finally I would like to express my sincere thanks to R. M. Aron, J. Diestel and to the 
referee for their useful comments. 
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