WEAK CONTINUITY OF A COMPOSITION MAP BETWEEN SPACES OF COMPACT OPERATORS AND BANACH VALUED CONTINUOUS FUNCTIONS

RAJAPPA K. ASTHAGIRI

ABSTRACT. This paper characterizes the Banach space E for the sequential continuity and the continuity on bounded sets of the composition map $m: C(S, E)_{wk} \times K(E, F)_{wk} \to C(S, F)_{wk}$. Here, K(E, F) denotes the Banach space of compact linear operators on the Banach space E to the Banach space F with the usual operator norm, and for any Banach space E, E_{wk} denote the Banach space E with the weak topology. Also we denote by C(S, E) the Banach space of E valued continuous functions on a nonvoid compact Hausdorff space E with sup norm.

A Banach space X has the Dunford-Pettis property [3] whenever given a weakly null sequence (x_n) in X and a weakly null sequence (x_n^*) in X^* it follows that $\lim_n x_n^* x_n = 0$. An immediate consequence of this condition is the following:

THEOREM. The Banach space E has the Dunford-Pettis property if and only if the composition map $m: C(S, E)_{wk} \times K(E, F)_{wk} \rightarrow C(S, F)_{wk}$ given by $(\phi, T) \rightarrow To\phi$ (where $(To\phi)(s) = T(\phi(s))$ for all s in S) is sequentially continuous.

PROOF. A quick observation that for non-void compact S and Banach spaces E, F the spaces E, E^* , and K can be embedded into C(S, E), K(E, F), and C(S, F), respectively, in a fairly canonical manner implies that the evaluation map $e: E \times E^* \to K$ is the restriction of the composition mapping $C(S, E) \times K(E, F) \to C(S, F)$. Thus the sequential continuity of m can be tested at its restriction e having weak sequential continuity, i.e., is equivalent to the Dunford-Pettis property of E.

So, it remains to be shown that if E has the Dunford-Pettis property then m is sequentially continuous. We use Kalton's and Lewis' characterisations of weak sequential convergence in K(E, F) and C(S, E), respectively.

Kalton's test [2, 4] for weak sequential convergence in K(E, F) states that a bounded sequence (T_n) in K(E, F) is weakly null if and only if $\lim_n e^{**}T_n^*f^* = 0$ for $e^{**}\epsilon E^{**}$, $f^*\epsilon F^*$. On the one hand, this implies that the bounded sequence (T_n) in K(E, F) is weakly null if and only if for each $f^*\epsilon F^*$ the sequence $(T_n^*f^*)$ is a weakly null sequence in E^* . On the other hand, Lewis's test [2, 5] for weak sequential convergence in $C(S, E) = (C(S) \otimes E)$ shows that a bounded sequence (ϕ_n) in C(S, E) is weakly null if and only if $(\phi_n(s))$ in E is weakly null for each $s \in S$. Thus, suppose E has the Dunford-Pettis property, (T_n) is weakly null in K(E, F) and (ϕ_n) is weakly null in C(S, E). Then the sequence $(T_n \circ \phi_n)$ is bounded in C(S, F); $(T_n^*f^*)$ is a weakly null sequence in E^* for each f^* in

Received by the editors January 3, 1990.

AMS subject classification: 46B99, 46E15, 46E40, 47B05.

[©] Canadian Mathematical Society 1991.

 F^* and $(\phi_n(s))$ is weakly null in E for each s in S. Therefore for each s in S and $f^* \epsilon F^*$, $\lim_n (T_n^* f^*)(\phi_n(s)) = 0$ and hence $\lim_n ((T_n o \phi_n)(s), f^*) = 0$. Now, from Lewis's test we can conclude that $(T_n o \phi_n)$ is a weakly null sequence in C(S, F).

REMARK. If the composition map m is continuous on bounded sets, then as observed earlier, the evaluation map e is also weakly continuous on bounded sets. Hence from Corollary 1 of [1], it follows that there exists no infinite dimensional Banach space E for which the composition map m is continuous on bounded sets.

Finally I would like to express my sincere thanks to R. M. Aron, J. Diestel and to the referee for their useful comments.

REFERENCES

- 1. R. M. Aron and R. K. Asthagiri, Weak Continuity of Mappings Between Spaces of Compact Operators, accepted for publication in Portugalia Mathematica.
- 2. H. S. Collins and W. Ruess, Dual of Spaces of Operators, Studia Math 74 (1982), pp. 213-245.
- **3.** J. A. Diestel, *A Survey of the Results Related to the Dunford-Pettis Property*, Contemporary Mathematics, 2, pp 15–60, A.M.S. publication, (1980).
- 4. N. J. Kalton, Spaces of Compact Operators, Math. Ann. 208, pp. 267-278 (1974).
- 5. D. R. Lewis, Conditional Weak Compactness in Certain Inductive Tensor Products, Math. Ann. 201, pp. 201–209 (1973).
- **6.** A. K. Rajappa, (Asthagiri R. K.) Weak Continuity of Nonlinear Maps Between Banach Spaces, Dissertation, Kent State University, August, 1985.

Miami University
Middletown, OH 45042