
20 

Many charges, stability of matter 

In the low-energy sector, to an excellent approximation, the world consists of pho­
tons, electrons, and nuclei. To simplify the forthcoming discussion, let us consider 
only one species of nuclei with charge eZ, Z = 1, 2, .... In fact, we also assume 
that the nuclei are infinitely heavy and located at positions q, ... , r K E JR3. This 
is hardly realistic, but not of central importance for the stability issues studied here. 
We also ignore nuclear spins. To include them would require yet another layer of 
considerations. With these assumptions we have an arbitrary number of photons, 
N electrons, and K nuclei governed by the Hamiltonian 

N 1 2 
H = L -(CJj · (pj- eA'P(Xj)) + Hf + V<pcoul, 

J=l 2m 
(20.1) 

compare with (13.39). CJj are the Pauli spin matrices for the j-th electron. Since 
electrons are fermions, the corresponding Hilbert space is 

(20.2) 

with Pa denoting the projection onto the subspace of antisymmetric wave func­
tions. V<pcoul is the smeared Coulomb potential, cf. (13.17), which in the case con­
sidered here is given through 

V<pcou!(X], ... , XN) = e2 I d3klcp(k)l 2 1k1-2 ( L eik·(x;-x;) 

l~i<j~N 

N K 
-Z L L eik·(x;-r;) + z2 L eik·(r;-r;)). (20.3) 

i=l j=l l~i<j~K 

One of the most basic facts about nature, which the Hamiltonian (20.1) should 
better explain, is the apparent stability of ordinary matter over extremely long pe­
riods of time. It has become customary to divide the issue roughly into 
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(i) atomic stability, 
(ii) energy stability (or H-stability), 

(iii) thermodynamic stability. 

327 

An atom is the special case of (20.1) with K = 1 (hence q = 0) and N, Z 
arbitrary. Atomic stability means that the ground state for H looks like what we 
know from real atoms in nature. In particular, provided that N < Z + 1, or per­
haps N ::S Z + 1 admitting a negatively charged ion, H has a ground state eigen­
vector with an exponentially localized electronic density. Also the ultraviolet cutoff 
should not have to be fine-tuned. Our understanding of the stability of atoms and 
molecules within nonrelativistic QED has advanced spectacularly over the past 
few years. An overview is provided in section 20.1. 

Energy stability and thermodynamic stability refer to the property that matter at 
the human scale is (volume) extensive: Adding two buckets of water of 10 liters 
each merely results in 20 liters of water. Since now many molecules are involved, 
(20.1) is to be considered for large N with N ~ K Z, Z ::S 1 00. For an energy 
stable system, the volume of the combined system in its ground state is at least 
as large as the sum of the volumes of the subsystems. It is more convenient to 
re-express this property in energetic terms. If E (N; K, q, ... , r K) denotes the 
ground state energy of H in (20.1), then for an H-stable system 

E (N; K, q, ... , r K) :::: -co (N + K) (20.4) 

with suitable co :::: 0 independent ofthe location of the nuclei. In fact, such a bound 
obviously holds, since 

H :=:: Vcpcoul :::: -~( J d3klq?'(k)l 2 1kl-2)(e2 N + e 2Z 2 K). (20.5) 

While correct, (20.5) teaches us little about the physics involved, since the bound 
is cutoff-dependent and is not of the order of one Rydberg, as expected. 

The condition (20.4) overlooks the fact that even when the electrons are stripped 
off to infinity they still carry a self-energy. Denoting as before the self-energy of a 
single electron by Eself, the sharper stability condition is 

E(N; K, r1, ... , rK)- NEself :::: -c1 (N + K) (20.6) 

with some suitable constant q independent of the location ofthe nuclei. Hopefully 
q is of order of a Rydberg and less sensitive to the cutoff than co. Energy stability, 
as far as aspects of the quantized radiation field are involved, is discussed in section 
20.3. 

As the name indicates, thermodynamic stability means that the thermodynamic 
potentials are volume extensive. In particular, the thermodynamic pressure, i.e. 
the force per unit area on the confining container, is in essence size independent. 
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For proper statistical mechanics also the nuclei should have a finite mass. In our 
context a natural model would be to assume charge neutrality, i.e. N = K Z, and 
that the nuclei form a regular crystal lattice. Then one aspect of thermodynamic 
stability is a ground state energy proportional to the number of particles, which 
requires (20.6) to be augmented by an upper bound linear in N + K. We refer to 
the notes at the end of the chapter for further details. 

No surprise, energy and thermodynamic stability are best understood in the case 
when the interaction with the radiation field is neglected. This raises the question: 
In what sense is the standard N -body Coulomb Hamiltonian a good approximation 
to (20.1)? In the classical context we discussed this problem rather exhaustively in 
section 11.2. Quantum mechanics adds a layer of difficulty, as will be explained in 
section 20.2. 

20.1 Stability of atoms and molecules 

The number of electrons, N, is regarded as fixed and the goal is to understand 
under what conditions, in their lowest-energy state, they are all bound to the nuclei. 
For this purpose the interaction between nuclei can be dropped. We also ignore 
the smearing of the Coulomb potential. On the other hand, we want to allow a 
variation in the nucleon charge, i.e. the j-th nucleus is located at ri and has charge 
e Z J, Z J > 0, j = 1, ... , K. With these modifications, the Hamiltonian reads 

(20.7) 

The form factor ensures a smooth cutoff at large k, but qi(O) = (2n)-312 as it 
should. The bottom ofthe spectrum for Hv (N) is 

Ev (N) = infrr(Hv (N)) = inf (1/f, Hv (N)o/)H. 
1/1,111/riiH=l 

(20.8) 

We will have to compare with free electrons whose Hamiltonian is 

(20.9) 
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Its lowest energy is denoted by E 0 (N). It is unlikely that the effective interaction 
induced by the photon cloud overrules the combined Coulomb repulsion and Fermi 
exclusion. Thus E 0 ( N) = N E 0 (1) is expected, but will not be assumed here. 

The general strategy is to introduce a suitable notion of the ionization energy 
Eion(N). Then the binding energy is defined by 

(20.10) 

If Ebin(N) > 0, the energy interval6. = [Ev (N), Eion(N)) is nonempty and states 
with an energy distribution supported by 6. should be well localized near the nu­
clei. Amongst them there will be the stable ground state. 

It seems clear how to proceed. If one electron is moved to infinity it has en­
ergy E 0 (1) and the corresponding lowest-energy state of Hv (N) has the energy 
Ev (N- 1) + E 0 (1). Of course it could be energetically more favorable to move 
two electrons to infinity, etc. Thus 

(20.11) 

with the convention Ev (0) = 0. Note that if the interaction with the photon field 
is turned off, formally setting (jJ = 0, then E 0 (N) = 0 and (20.11) agrees with the 
standard definition of the ionization energy for the Coulomb Hamiltonian. 

There is a more direct way of moving electrons to infinity. As in chapter 16, 
we regard tfr(x) as a C2N ® F-valued wave function, x = (xi, ... ,XN ). We define 
PR as the projection on the subspace of wave functions satisfying tfr (x) = 0 for 
lx I < R. Then the alternative definition is 

Eion(N) = lim infa(PRHV (N)PR). 
R---+oo 

(20.12) 

As proved by Griesemer (2002) the definitions (20.11) and (20.12) of the ioniza­
tion energy agree in the context of the Pauli-Pierz Hamiltonian. Note that with 
(20.12) it is obvious that Ebin :::: 0. Also, if Hv (N) admits surplus electrons, nec­
essarily Ebin = 0. 

Let us denote byE;,.= E;,.(Hv (N)) the spectral resolution of Hv (N), i.e. E;,. 
is the projection corresponding to the energy interval ( -oo, A.]. 

Theorem 20.1 (Exponential localization). Let Ebin(N) > 0 and let us choose 

A, f3 such that A+ (/32 /2m)< Eion(N), Ev (N) :SA, f3 > 0. If E;,.tjf = tjf, then 

(20.13) 

The proof is due to Griesemer (2004). In fact, the proof exploits only properties 
of the Laplacian. As in chapter 16, we regard H = L 2 (IRn, Hf) = L 2 (IRn, dn x) ® 
Hf with some Hilbert space Hf of "internal degrees of freedom". The operator 
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H with domain D (H) is self-adjoint on H. Let f E C 00 (IRn, IR) with f and \7 f 
bounded. The crucial assumption concerns the double commutator 

[[H, f], f] = -21\7 !12 (20.14) 

with f regarded as a multiplication operator. Note that (20.14) holds in the case 
:F = CC and H =-~.But (20.14) holds also for H = Hv (N) setting n = 3N. As 
before the ionization threshold for H is 

Eion = lim inf C5(PRH PR). 
R--+oo 

(20.15) 

Proposition 20.2 Let H satisfy (20.14) and let A+ {3 2 < Eion. f3 > 0. Then 

(20.16) 

Let us return to the existence of a ground state for Hv (N). If Ebin > 0, the 
exponential localization is a favorable indication. But it could happen that more 
and more photons are bound by the electrons. Thus we need a soft photon bound 
of the type of Theorem 15.1. The proof is now considerably more demanding and 
established by Griesemer, Lieb and Loss (2001 ). 

Theorem 20.3 (Existence of a ground state). If Ebin(N) > 0, then Hv (N) has a 
ground state. 

Because of Pauli exclusion and spin, no obvious positivity is available which 
would ensure uniqueness. Note that there is no restriction on the coupling strength 
e. Also, by Proposition 20.2, the ground state is exponentially localized with length 
less than 1j--/2mEbin(N). 

The existence of a ground state is reduced to the issue of whether Ebin (N) > 0. 
While the statement looks innocent and seems to require only the clever choice of 
a wave function, the actual construction is ingenious and has been achieved only 
very recently by Lieb and Loss (2003). The main obstacle is the, in position space, 
nonlocal nature of the photon kinetic energy. 

Theorem 20.4 (Strictly positive binding energy). Let eZtot be the total nuclear 

charge, Ztot = ~f=l Zj.lf 

N < Ztot + 1, (20.17) 

then Ebin (N) > 0. 

In nature ions carrying one, or perhaps two, extra electrons are rather common. 
Such fine chemical features are difficult to access. In fact, even on the level of the 
Coulomb Hamiltonian the excess charge for stable ions is poorly understood. 
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20.2 Quasi-static limit 

We plan to investigate under what limiting conditions the many-particle Pauli­
Pierz Hamiltonian can be approximated by the Coulomb Hamiltonian with possi­
ble corrections. The implementation of the limit (11.8) on the quantum level has 
not yet been attempted. Thus we have to be satisfied with the more down-to-earth 
limit c --+ oo already discussed briefly at the beginning of section 11.2. c --+ oo 
means that the interaction between the charges becomes instantaneous, a princi­
ple on which the Coulomb Hamiltonian is built. To study this limit we had better 
reintroduce the velocity of light, which amounts to 

N 1 1 2 
H(c) = L -. (uj · (Pj- r;:;ejA<p(Xj))) + V<pcoul + cHf. (20.18) 

j=l 2m1 vc 

A'P(x), V<pcou!. and Hf do not depend on c. The prefactors as written result from 
reintroducing w(k) = clkl. The masses and charges are arbitrary. 

c has a dimension. So what we really mean is lvl/c--+ 0, where v is some 
characteristic velocity of the charges. Thus either c --+ oo at fixed I vI or I vI --+ 0 
at fixed c. The latter can also be achieved by assuming the particles to be 
heavy and, hence, by replacing in (20.18) m j by 8-2m j, 8 « 1. On the classi­
callevel the limits c --+ oo and 8 --+ 0 are related through the time scale change 
t to 8t, and thus are completely equivalent. Quantum mechanically the two 
Hamiltonians are not unitarily related, which reflects the additional scale coming 
from n. 

Let us first study the limit c --+ oo. Except for normal order the Hamiltonian 
(20.18) reads 

N 1 1 N e· 
H(c) = L -pJ + V<pcoul- r;:; L -1 Pj · A'P(Xj) 

j=l 2m j v c j=l m j 

1 ~ ej 1 ~ e7 . 2 
- r;:; L-Uj · B'P(xj) +-L- :A'P(xj): +cHf. 

vc j=l 2mj c j=l 2mj 

(20.19) 

H (c) should be compared with the weak coupling Hamiltonian (17 .4 ), written for 
the long-time scale A - 2 r and with the abbreviation Hint= Q · A'P(O), 

HJc =A - 2 Hat + A -I Hint + A - 2 Hf. (20.20) 

The interaction part Hint satisfies (Q, Hints-2)F = 0, which holds also for (20.19), 
since (Q, A'P(xj) Q)F = 0, (Q, B'P(xj) Q)F = 0, and (Q, :A'P(Xj)2: Q)F = 0. 
The central insight of the weak coupling theory is that the correction to Hat results 
from balancing A - 2 (Hint)2 with the time averaging due to A - 2 Hf; compare with 
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(17.22). Clearly this balance can be achieved also in (20.19) by considering the 
long-time scale 

t = c2 r with r = 0(1). (20.21) 

Then Hf has the prefactor c3 , Hint the prefactor c312 with a sub leading correction 
of order c, and Hat has the prefactor c2 . The analog of (17.24) becomes 

(20.22) 

In the limit c ---+ oo the dependence on Lat drops out. In particular, this implies 
that the correction term must be nondissipative; compare with (17 .35) which is 
evaluated at w = 0. 

Let us first write out the limiting objects. The analog of Hat is 

It is corrected by 

N 1 
Hrpcoul = L -2 . PJ + Vrpcoul · 

j=l mJ 

()() 

(-i)Vrpdarw = i I dt (Q, Hinte-itHtHintQ):F, 

0 

which upon working out the integrals becomes 

which is the Darwin correction. We set 

(20.23) 

(20.24) 

(20.25) 

(20.26) 

Note that the integrability condition (17.27) is satisfied, since the integrand in 
(20.24) is bounded by (1 + t 2)-1. In contrast to section 17.2, Hint has an un­
bounded factor acting on H.p, which necessitates a restriction on the initial wave 
function. We summarize as 
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Theorem 20.5 (Coulomb Hamiltonian and correction). Let 1jf E L 2 with 

(1/f, Hcoulo/) £2 < 00. Then 

lim II (e-iH(c)c2t- e-i(H<pctarw+CHf)c2t)o/ ® !:211 = 0. 
C---+00 

(20.27) 

Since the limit (20.27) is on the long-time scale c2 , the Darwin correction is mean­
ingfully singled out. 

Except for operator ordering, (20.27) is in accordance with the results in section 
11.2. However in Lctarw of (11.27) the kinetic energy is modified and the Coulomb 
potential is not smeared out, which reflects the fact that limits here and in section 
11.2 differ somewhat. 

For the limit m j ---+ oo we can also rely on methods developed before. We start 
with the classical symbol 

q = (qJ, ... , qN), p = (pJ, ... , PN). The Weyl quantization of H(q, p) is 
H (c) of (20.18) with m i replaced by s-2m i, where for convenience we returned 
to c = 1. The leading symbol for H (q, p) is 

N 1 
Ho(p, q) = L -2 . PJ + Vcpcoui(q) + Hf. 

i=l ml 

(20.29) 

Its ground state band has the projection Po(q, p) = 1 ® Pa,, independent of q, p, 

and the eigenvalue eo(q, p) = L_f=l (PJ /2m j) + Vcpcoui(q). Thus, following sec­
tion 16.4, the Coulomb Hamiltonian can be understood as Peierls' substitution for 
(20.28). It approximates on the time scale s- 1 t the true unitary evolution projected 
to 1 ® Pa,. 

To obtain corrections we have to first compute h 1· Since (Q, HintQ) = 0 and 
since Po does not depend on p, q, h 1 = 0, in accordance with the previous find­
ings that the Darwin correction is of order s-2 . Thus we need h2. In section 16.4 no 
explicit formula was given, since it is already somewhat lengthy. In our particular 

https://doi.org/10.1017/9781009402286.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.021


334 Many charges, stability of matter 

case, many simplifications occur and as a net result one finds that 

(20.30) 

While, since in agreement with the previous result, (20.30) is very satisfactory on 
a formal level, a complete proof has to deal with the fact that the ground state band 
is not separated by a gap from the remainder of the spectrum. If one is willing to 
impose a gap by hand through a massive dispersion w, then a suitable version of 
the results described in section 16.4 becomes available. The picture so derived is 
somewhat different from the c --+ oo limit: the almost invariant subspace is tilted 
by order £ relative to (1 @ P0.)H. Over the time scale £-2t the motion in this 
subspace is governed by ho + E2h2. 

20.3 H-stability 

For the (no-cutoff) Coulomb Hamiltonian 

(20.31) 

the H-stability is a famous result by Dyson and Lenard. An independent proof 
was achieved by Lieb and Thirring, who succeeded in a fairly realistic estimate 
of the stability constant. For stability to hold the electrons must satisfy the Pauli 
exclusion principle, as they do in nature. For bosons the energy would decrease as 
- N 5 13. If the nuclei have a finite mass, for a H -stable system at least one of the 
two species must be fermions. 

To extend H-stability to the realm of nonrelativistic quantum electrodynamics, 
one has to establish a lower bound on Hv (N) = H, see (20.7), linear inK+ N. 
Note that for spinless electrons H ::::_ Hcoul by the diamagnetic inequality (14.69) 
and one is back to the H-stability in (20.31 ). Thus the difficult point is to deal with 
electron spin and the associated magnetic energy. The Schrodinger representation, 
as explained in chapter 14, suggests that for the purpose of a lower bound, Hf 
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could be substituted by the classical field energy stored in the A-field, i.e. by 

If 3 2 Emagn = 2 d xB(x) . (20.32) 

If it could be established that Hf - Emagn :::: 0, then 

N 1 2 
H = H + Emagn- Emagn :=:: L l(o-J · (pj- eA<p(Xj))) + Vcoul + Emagn. 

}=I 

(20.33) 

H-stability of the Coulomb Hamiltonian with magnetic field energy added would 
have to be shown for an arbitrary external transverse vector potential. 

To progress towards our goal we note that, for an arbitrary operator A, 

I (1/1, A 21/1) I :::: II A *1/1 II II A 1/1 II :::: ~ (1/1, (AA * +A* A)o/) and therefore 

(A + A *)2 :::: 2(AA * + A* A) . (20.34) 

We split the magnetic field as B'P (x) = B;}; (x) + B;; (x) and apply (20.34 ), 

B'P(x)2 :=:: 4B;};(x)B;;(x) + 2[B;};(x), B;;(x)], (20.35) 

which remains true when multiplied by f (x) :::: 0. Then 

~ J d3xf(x)B'P(x)2 :=:: llflloo L J d3k(2n) 3 1$(k)l2 1kla*(k, A)a(k, A) 
2 A=l.2 

+llfll1 f d3kl$(k)l 2 1kl. (20.36) 

Let us assume that l$(k)l :=:: (2n)-312 and J d3kl$(k)l lkl = CA < oo. For f we 
choose f (x) = I if lx - r J I :=:: I for some j and f (x) = 0 otherwise. Then 

N 

H :=:: L ~(o-J · (Pj- eA'P(xj))) 2 + Vcoul + ~ J d3xf(x)B(x)2 - KCA. 
}=I 2 2 

(20.37) 

The energy stability with an arbitrary external B-field is difficult, but has been 
done. Unfortunately the field energy balances the Coulomb attraction only for lei 
sufficiently small. To have H-stability for all e one also has to include the B-field 

gradients. In addition, the choice of f should be optimized. As one result we state 

Theorem 20.6 (H-stability of nonrelativistic QED). Let iP be the fonn factor 

with sharp cutoff at A. Then there exists a positive constant C(e, Z) such that 

H:::: -C(e, Z)(A + I)K (20.38) 

independently of N. 
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The proof of Theorem 20.6 relies on the H-stability ofthe Hamiltonian on the right 
hand side of (20.37) and thus requires the electrons to be fermions. 

In the Pauli-Fierz Hamiltonian (20.7) the self-energy of the electrons is not 
subtracted. Thus, in principle, the stability bound (20.38) could exclusively be due 
to the positive contribution from the self-energy. To rule out such an unphysical 
mechanism we employ a technique, briefly touched upon already in section 19.3. 
The results available are sharper in the case of spin less electrons with Hamiltonian 

N 1 2 
HN = L -(Pj- eArp(Xj)) + Hf + Vcoul =TN+ Hf + Vcoul· (20.39) 

j=l 2 

Since N is the important parameter, it is displayed explicitly. The no-cutoff 
Coulomb potential carries the information on the K nuclei located at r1, ... , rK. 

Let E(N) be the bottom of the spectrum of HN and Eo(N) that of TN+ Hf. The 
binding energy for H N is defined as in (20.1 0) with the nucleon repulsion as an 
additive constant. Then, using (20.11) and assuming E 0 (N) = Eo(N), 

Ebin(N) _:::: Eo(N)- E(N). 

Similar to (19.95) the Coulomb energy is bounded from below as 

N 

Vcoul 2::: -Ke2 L IPj- eArp(Xj)l 
j=l 

(20.40) 

(20.41) 

with K = ((rr/2)Z + (2.22)Z213 + 1.03)/4rr. Therefore, usmg Schwarz's in­
equality, 

(20.42) 

The function f(x) = x- Ke2V2F/ -JX takes its minimum at Xmin = !(Ke2 ) 2 N, 

j(Xmin) = -!(Ke2) 2 N. Thus, if 

1 
Eo(N) _:::: 2N(Ke2) 2 (easel), (20.43) 

then HN 2::: -~(Ke2) 2 Nand E(N)- Eo(N) 2::: -(Ke2 ) 2 N. On the other hand, if 

1 
Eo(N) 2::: 2N(Ke2) 2 (caseii), (20.44) 

we can use the fact that f is monotonically increasing to conclude that H N 2::: 
f(Eo(N)) and E(N) 2::: Eo(N)- (e2K)V2F/ -J Eo(N). We summarize as 

Theorem 20.7 (Upper bound for N -particle binding energy). For the Hamilto­

nian HN of(20.39), in case I 

(20.45) 
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and in case II 

(20.46) 

Note that energies are in units of mc2. 

The bound (20.46) is unexpected, since the binding energy is estimated in terms 
of the self-energy of a system of N electrons without Coulomb repulsion. The 
Pauli exclusion principle has not yet been invoked. 

To make further progress one needs a good estimate on Eo(N). Fermions like to 
stay alone and the state of lowest energy should be achieved once they are infinitely 
separated. 

Conjecture 20.8 For fermions 

Eo(N) = N Eo(l). (20.47) 

If Conjecture 20.8 is assumed to hold, then the condition for the two cases reads 

1 1 
(case I): Eo(l) ::: 2(Ke2) 2 , (case II): Eo(l) 2::: 2(Ke2) 2 . 

As explained in section 19.3, Eo (I) ::: cze4!7 (A"Ac) 1217 . Consequently 

Ebin :S (Ke2)2 N 

Ebin :S (Ke2)vf2C2e217 (A"Ac) 617 N 

(case I), 

(case II). 

(20.48) 

(20.49) 

The binding energy is extensive. However, our estimate on the stability bound di­
verges with the cutoff A. Since energies are calibrated in units of mc2 , the folklore 
tells us that multiplying the true stability constant by m / meti should result in a 
A-independent pre factor. 

Notes and references 

Stability for the Coulomb Hamiltonian is covered extensively and excellently in 
survey articles. Particularly recommended are Lieb (1976, 1990), which have 
become classics. Some of the original articles are reprinted in the Lieb Selecta 
(2001), where the reader should in addition consult the introduction by Thirring, 
see also Thirring (2002). The first proof of stability is Dyson and Lenard (1968). 
The use of the Thomas-Fermi theory as a comparison standard is introduced in 
Lieb and Thirring (1975). Extensions to Coulomb systems with relativistic kinetic 
energy are investigated by Conlon (1984), Feffermann and de la Llave (1986), and 
were finally settled in Lieb and Yau (1988a, b). The basic discovery is that stabil­
ity holds only under a smallness condition on Za and a. If electrons were bosons, 
they would cluster with a density increasing with N. In the ground state energy 
this can be seen in a faster than linear decrease with N. For bosons and fixed 
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nuclei it is known that EN :::::: -N513 (Lieb 1979 and references therein), while 
with bosonic nuclei of finite mass, EN ~ - N 7 15 (Dyson 1967; Conlon, Lieb and 
Yau 1988). 

Thermodynamic stability for Coulomb systems is proved by Lieb and Lebowitz 
(1972), 

If photons were scalar, then the Coulomb potential has the "wrong" sign; see 
section 19.2. This leads to instability, some partial aspects of which are studied in 
Gallavotti, Ginibre and Velo (1970). 

Section 20.1 

For Schrodinger operators, :F = C, the exponential localization of Proposition 
20.2 goes back to Agmon (1982). Griesemer (2004) observes that it remains valid 
for general F. Theorem 20.4 is proved by Lieb and Loss (2003). For the helium 
atom, N = 2, the strict positivity of the binding energy is established by Barbaroux 
et al. (2003). 

Section 20.2 

For the Nelson model, i.e. a scalar Bose field, the limit c --+ oo is studied by Davies 
(1979), see also Hiroshima (1997a), and the limit m --+ oo by Teufel (2002). They 
prove that the dynamics is well-approximated through the Coulomb Hamiltonian. 
Our observation seems to be new, but could have been made already by Davies, if 
he had chosen the Gross-transformed Nelson Hamiltonian as a starting point. 

Section 20.3 

The argument leading to Theorem 20.6 is taken from Fefferman, Frohlich and 
Graf (1997), see also Bugliaro, Frohlich and Graf (1996). The harder part is to 
establish stability for the Hamiltonian on the right hand side of (20.37), which is 
achieved by Feffermann (1996) with a "sufficiently small" constant and is sub­
sequently improved and simplified by Lieb, Loss and Solovej (1995) to include 
the physical case. Theorem 20.7 is a result by Lieb and Loss (2002). They also 
establish that the self-energy for N electrons is bounded as c1 a 112(A'Ac)312 N _:::: 
Eo(N) _:::: c2a2l 7 (A'Ac) 1217 N with suitable constants c1, c2, which is somewhat 
weaker than our Conjecture 20.8. The discussion does not change; only the 
prefactors are less sharp. For bosons the bounds c3a 112 (A'Ac)312 N 112 _:::: Eo(N) _:::: 
c4a 217 (A'Ac) 1217 N 517 are available, which together with Theorem 20.7 strongly 
indicate that, as to be expected, bosons remain unstable when the quantized radi­
ation field is added. The basic inequality (20.41) holds also in the case where the 
electron spin is included, see Lieb and Loss (2002). 
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