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Abstract

In a Riemannian manifold M, elastica are solutions of the Euler-Lagrange equation of the following
second order constrained variational problem: find a unit-speed curve in M, interpolating two given
points with given initial and final (unit) velocities, of minimal average squared geodesic curvature. We
study elastica in Lie groups G equipped with bi-invariant Riemannian metrics, focusing, with a view to
applications in engineering and computer graphics, on the group 50(3) of rotations of Euclidean 3-space.
For compact G, we show that elastica extend to the whole real line. For G = 50(3), we solve the
Euler-Lagrange equation by quadratures.

2000 Mathematics subject classification: primary 49K99,49Q99.

1. Introduction

Let M be a finite-dimensional C°° Riemannian manifold. Let (•, •) denote the Rie-
mannian metric, || • || the corresponding Riemannian norm and V the corresponding
Levi-Civita covariant derivative (see [3,6] for background). Given T > Oandp, e M,
vt e TPi M for i = 0, 1, let ^,tl)1 be the space of C°° curves x : [0, T] -> M satisfying
jc(;T) = pit x(iT) = Vi for j = 0, 1, where x = dx/dt, and define a functional
* : K,,u, - • [0, oo) by

The critical points of <t>, Riemannian cubics, are studied in [7-9,11] and references
therein. When vo and v\ are unit vectors, the elastic problem is to minimise 4> over
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106 Tomasz Popiel and Lyle Noakes s [2]

curves x e ^ .u , subject to the nonholonomic constraint

(1.1) 2

for all t 6 [0, T]. That is, the curves are required to have unit speed; in this case,
l|Vd/d,i||2 is the squared geodesic curvature of x. The first order necessary conditions
for x 6 ^,OiU| to solve the elastic problem are given in the following theorem, which
can be proved using the Pontryagin Maximum Principle (which can be found in [5]).

THEOREM 1.1. A curve x e ^,,,Vl solving the elastic problem satisfies, for all
t e [0, r ] , the constraint (1.1) and the (Euler-Lagrange) equation

(1.2) Vl/d,x + R (Vd/d,x,x)x + Wd/d, (kx) = 0,

for some C°° function X : [0, T] ->• R.

Here R is the Riemannian curvature of M, defined, with opposite sign convention
to [3,6], for C°° vector fields X, Y,ZonM by

R(X, Y)Z = VXVKZ - VYVXZ - V[x,nZ,

where [•, •] is the Lie bracket. We call any C°° curve x : I -> M (where / is an open
interval) satisfying (1.1) and (1.2) on /, for some A., an elastic curve.

Elastic curves, or elastica, in simply-connected 2 and 3-dimensional spaces of
constant curvature have been studied by Jurdjevic [4,5]. In the present paper, we
investigate elastica in the Lie group SO(3) of rotations of Euclidean 3-space £3,
equipped with a bi-invariant Riemannian metric. As in previous work on Riemannian
cubics [7-9,11], we have in mind applications to engineering and computer graphics,
including trajectory planning for rigid body motion (as a set, the configuration space
of a rigid body is SOQ) x E3).

Since the unit 3-sphere S3 C EA with standard Riemannian metric double-covers bi-
invariant 50(3) by a local isometry, our elastica are locally equivalent to the symmetric
elastica in 53 studied in [5]. Jurdjevic's construction of symmetric elastica in S3 in
terms of quadratures was obtained using optimal control theory and the Hamiltonian
formalism, and extends naturally to spheres of arbitrary dimension. We use an
essentially different approach to study the locally equivalent elastica in 50(3). First
we reduce the Euler-Lagrange equation (1.2) to a second order differential equation
for an auxiliary curve V = x~lx in the Lie algebra of 50(3). Once V is known,
the first order equation x = x V can be solved for x. This approach has previously
been used to study Riemannian cubics in 50(3) [7-9,11]. While it relies in a crucial
way on the geometry of 50(3), it is arguably more elementary than Jurdjevic's. Our
resulting global construction (by quadratures) of elastica of a bi-invariant Riemannian
metric on 50(3) is a useful alternative to the local construction of [5].
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We begin with the following generally applicable result, which characterises elas-
tic curves as solutions of an unconstrained differential equation, subject to initial
conditions of a particular form. It will be used in section 3.

THEOREM 1.2. A C°° curve x : / -> M is an elastic curve if and only if

(1.3) V3
d/dlx + R (Vd/d,x , i ) x + Vd/d, U l j Vd/dlx 12 + b J x J = 0

for some constant b e K and all t € I and, for some t0 e I,

(1.4) l 2

(1.5) O

(1.6) 0 = (V ,VL 0 . Hto)) + I V, ,* iLj2 •

PROOF. First suppose x is an elastic curve. Then (1.1) holds on / , and the first two
derivatives of | | i | | 2 vanish on /, giving the following identities:

(1-7) (Vrf/(f ti,i) = O,

(1-8) (Vd/dlx,x)+\\Vd/dtx\\2 = 0.

In particular, (1.4)—(1.6) hold for any t0 e / . It remains to show that

(1.9) k = l\Vd/dtxl2 + b
2.

for some constant b. For this, take the inner product of (1.2) with x and use (1.1),
(1.7), the fact that (R(X, Y)Z, Z) = 0 for all X, Y, Z, and (1.8) to give

Now suppose x satisfies (1.3) for some b and (1.4)—(1.6) for some t0. Then (1.2)
holds on / with X defined by (1.9), so we just need to show that | | i (0ll2 = 1 f°r aU
t e I. Write / = (sus2). We show that | | i ( r) | | 2 = 1 for all t e [t0, s2) (the proof
for (s{, t0] is similar). Suppose not, and write y = | t e [t0, s2) : \\x(t)\\2 = 1} and
r = sup(<5'7). We show that in fact | | i(f) | | 2 = 1 on some open interval containing r ;
this contradicts r = sup(^) , and it follows that | |i(r)ll2 = lon[r0, ^2)- Write xx = x,
x2 = x, x3 = Vd/d,.i and JC4 = Vd/dt.i. Then (1.3) can be written as the following
system:

X{ = X2,

(1.10)
, x2)x2 - 3 (x4, x3) x2

3 4
/ 3 , A

- I - IU3II2 + b\ x3.
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Take a coordinate chart ( / C M containing JC(T) and let U c |Rm be the image of U
under the chart diffeomorphism (here m is the dimension of M). Let J be the maximal
open sub-interval of /containing r and with x ( /) c (/. We show that | |i(r)| |2 = 1 for
all t e J. Let T be the C°° map that takes each u e 0 to the Christoffel transformation
P; : K™ x R™ -> Rm (we avoid coordinate notation for the sake of presentation).
Then, in U, for any vector field fi defined along the curve x, for all t e / ,

( l . i i) riiw
(6(0, i(o

where V, Cl, x are the images of V, Q, x under the chart diffeomorphism. Write
N := 0 xR.m xRm xRm and define X : N -*• Rm x l m x Rm x Rm to be the mapping

-T

: (yi,y2,

where ^ is the image of R under the chart diffeomorphism and the inner product and
norm are now computed in the chart. Then, by (1.10)—(1.11), the differential equation
(1.3) is described in U by the vector field corresponding to X. That is, denoting the
image of xt under the chart diffeomorphism by Jc, and writing x = (Jcj, Jc2, Jc3, Jc4), we
have x = X(x). Since ||i(OII2 = 1 on [t0, r ) , (1.7) and (1.8) hold on [t0, r). By
the smoothness of x, these equalities also hold at t = T. That is, x(x) lies in the
submanifold of N given by

K = j ( v , , >>2, v3> y4) e N : H^ll ' , = 1, (y3) y2>,, = 0, (y4, yi)y, + l l^l l ' , = o | .

We now show that X is tangent to Nt. It then follows that the image of the integral
curve x : J ->• Â  of X lies in V̂»; in particular, ||i(OII2 = 1 for aH t e J,
as claimed. Differentiating the constraints that define Â , and applying (1.11), we
find that the tangent space to A\ at y := (yi, y2,yj, y*) € Â« is the set of all
(zi, Z2, Z3, Z4) € Km x Km x Km x 0T satisfying

0 = (z2 + r w (y2, Zi), y2)yi , 0 = (zi + Tyi(y3, Z l ) , y2)yi + (y3, z2 + 1%, (y2, z0)yi ,

0 = (24 + Tyi (y4, zi), y2)yi + (y4) z2 + r , , (y2, z,))^ + 2(z3 + Ty, (y3, Z l ) , y3)y_.

A short calculation shows that X(y) lies in this space, as required. D

The rest of the paper is organised as follows. In section 2 we take M to be an
arbitrary Lie group G with (•, •> bi-invariant. In this setting, solutions of (1.3) with
(1.1) (elastic curves) satisfy a system consisting of a first order equation relating x to
an auxiliary curve V in the unit sphere of the Lie algebra of G, and a second order
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equation for V. In section 3 we show that if G is compact, (1.3) subject to (1.4)—(1.6)
is solvable on the whole real line. We then take G = 50(3) and construct the elastic
curves x : R ->• 50(3) in terms of quadratures: V is found in sections 4 and 5, and x
in section 6.

2. Elastica in Lie Groups

From now on, suppose the manifold Af is a Lie group G and assume the Riemannian
metric (•, •) of G is bi-invariant, that is, invariant with respect to both left and right
multiplications (note that any Lie group admits a left-invariant metric, and any compact
Lie group admits a bi-invariant metric). Let e be the identity of G, <S = TeG the Lie
algebra and [•, •] the Lie bracket. Let || • || : ̂  -> [0, oo) be the norm corresponding
to the restriction of (•, •) to <£. Recall (see [3]) that bi-invariance of a left-invariant
metric (•, •) is equivalent to the condition

(2.1) ([X, Y], Z) = ([Z, X], Y), for all X, Y, Z e &.

Now let / c K be an open interval. Given any C°° curve x : / ->• G, we can define
a C°° curve V : / -> & by

(2.2) V(t) = (dLx(t)-,)mx(t),

where Lg : G -*• G is left multiplication by g e G, namely Lg(h) = gh, and
(dLs)h : ThG -> TghG is the derivative of Lg at /i 6 G. As noted in [7], allowing
for the opposite sign convention to [6] for the Riemannian curvature R, [6, Theorem
21.3] gives the following result.

LEMMA 2.1. Let x : / -> G be a C°° curve, with V : I -> & defined by (2.2).
Then, for all t e I,

(i) (dLxil)->)x(l)Vd/d,x = V(f),
(ii) (dLm-i)xO)Vl/d,x = V(t) + 1/2[V(O, V(t)],

(hi) (rfLxW-.)xWVj/Ai = £f (0 + [V(0, V(0] + l/4[V(0, [V(r), V(r)]],
(iv) (dLm-*)mR(Vd/dlx, x)x = - l /4[V(f) , [V(0, V(0]].

We now obtain the following characterisation of elastic curves in G.

THEOREM 2.2. A C°° curve x : I -+ G is an elastic curve if and only if the curve
V : I -* & defined by (2.2) satisfies

(2.3) V(t) = [V(0, V(*)] - ( I V(t) ||2 + (V(t), C)) V(t) + C,

(2.4) I|V(OII2 = 1,
for some constant C 6 if and all t e I.
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PROOF. First suppose x is an elastic curve. Since x satisfies (1.1), left-invariance
of the Riemannian metric gives (2.4):

(2.5) 1 = ||i(0H2 = |(dLl W-.) j t Wi(»)|2 = ||V(f)||2.

By Theorem 1.2, x satisfies (1.3) for some b. Applying (dLm-\)x(t) to (1.3) and using
(2.2), Lemma 2.1(i,iii,iv) and left-invariance, we find

dt3 ~ *• ' •• '

Integrating once, we have, for some constant >

(2.6) V = [V, V] •

It remains to write (2.6) in the form (2.3). First note that, by (2.4), the first two
derivatives of 11V \ |2 vanish. So

(2.7) (V, V) = 0,

(2.8) (V, V)+ || V||2 = 0.

Taking the inner product of (2.6) with V and applying (2.1) and (2.7), we have
(V, V) = (V, C). So for some constant b e K,

(2.9) \\v\\2 = 2(V,C)+b.

Similarly, taking the inner product of (2.6) with V gives

Therefore, and by (2.8) and (2.9), we have b = -b/2 and thus

(2.10) 1 \\V(t)\\2 + b= || V(f)||2 + <V(f), Q .

Substitution into (2.6) gives (2.3), as required. Now suppose V satisfies (2.3) and
(2.4). Then (1.1) holds, by (2.5), and it remains to show that x satisfies (1.2) for
some k. Writing X = \\V\\2 + {V, C) and differentiating (2.3) gives

(2.11) ^ [ ] j

Applying (2.2) and Lemma 2.1(i,iii,iv), we have, for all t € / ,

(dLm-i)xm {ylld,x + R (Vd/d,x, x) x + Vd/d, (kx)) = 0.

Since (dLm-\)m is an isomorphism, x satisfies (1.2), as claimed. •
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By analogy with the Lie quadratics of [7-9] and [11] (unconstrained solutions of
V = [V, V] + C), a curve V : I -+9 satisfying (2.3) and (2.4) for some C e 9
and all t e I will be called an elastic Lie quadratic with constant C. If x : / -> G
is an elastic curve, the curve V defined by (2.2) is an elastic Lie quadratic; it will be
called the elastic Lie quadratic associated with x. For later reference, we re-state the
observation (2.9) from the preceding proof.

COROLLARY 2.3. Let V : I -*• <S be an elastic Lie quadratic. Then for some
constant b e K and all t e I,

b=\\V(t)\\2-2(V(t),C).

COROLLARY 2.4. LetV : I -» & be an elastic Lie quadratic and define W : / -> 9
by W(t) = V{f) + (||V(OII2 + (V(0, Q)V(t). Then

(2.12) Wit) = [W(t), V(t)],

for all t e I, and \\W(t)\\ is constant.

PROOF. AS noted in the proof of Theorem 2.2, differentiating (2.3) gives (2.11)
(with k = || V||2 + (V, C)), which can be written in the form (2.12). Therefore, and
by (2.1), d\\W\\2/dt = 2([W, V], W) = 0. •

Differential equations of the form (2.12) are called Lax equations. They are
important in the theory of integrable systems, since if a matrix differential equation
can be written in the form W = [W, V] then the spectrum of W is preserved by the
flow (see [2]). In the present situation, the Lax equation (2.12) is crucial to the solution
of (2.2), or equivalently

(2.13) x(t) = (dLx(t))eV(t),

for an elastic curve x in terms of its elastic Lie quadratic V. In section 6, we construct
this solution in the case G = 50(3), using results of our related paper [12], in which
(2.13) is solved in both 50(3) and 50(1, 2) subject to an arbitrary constraint of the
form W = [W, V]. Solutions of (2.13) subject to W = [W, V] in arbitrary semisimple
Lie groups have been developed in [10].

3. Compact G: Extendibility of Elastica to

In this section we prove the following result.
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THEOREM 3.1. Suppose G is compact. Then for any b,tQ € K, x0 e G, and
vo,vuv2e T^G satisfying

(3.1)

there exists a unique solution x : R -> G of (1.3) satisfying

(3.2) *(lb)=*o, x(to) = vo, Vd/dtx\t=to = vx, V^ , i | ( = i o = v2.

The proof is by means of two lemmas, the first of which applies to any G.

LEMMA 3.2. Given b, t0 € K, x0 e G and v0, vu v2 € TXoG satisfying (3.1), there
exists a constant K > 0 such that, for any open interval I containing t0 and any
solution x : / -> G of (1.3) satisfying (3.2), we have

(3-3) ||Vrf/*il,||v2/Aje|<A-,

for all t € I.

PROOF. Let / be an open interval containing t0 and x : I -+ G a solution of (1.3)
satisfying (3.2). By Theorem 1.2, x is an elastic curve. Let V be the associated elastic
Lie quadratic. By Corollary 2.3 and (2.4), we have, for some constants b e i& and

(3.4) \\v\\j

So by Lemma 2.1(i) and left-invariance of the Riemannian metric,

By Corollary 2.4, ||V + (\\V\\2 + {V, C))V\\ = a for some constant o > 0. In
particulars > ||V|| - | |(| |V||2 + (V, C))V\\. So by (2.4) and (3.4),

(3-5) ||VI < a + | v | 2

By (2.3), (2.4), (3.4) and (3.5),

\\[V, V]\\ < || V\\ + I V f + |(V, C)\ + \\C\\ < a + 2\b\ +

Therefore, and by Lemma 2.1(ii), left-invariance and (3.5), we have

https://doi.org/10.1017/S1446788700036417 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036417


[9] Elastica in 50(3) 113

Setting K = max {V2||C|| + \b\, l/2(3a + 4\b\ + 13||C||)}, (3.3) holds on /. It
remains to show that K depends only on b, x0, v0, Ui and v2, so that the same bounds
(3.3) hold for any solution x : / ->• G of (1.3), (3.2) defined on any open interval
/ B t0. By (2.2) and Lemma 2.1, V(t0), V(t0) and V(t0) depend only on x0, v0, ui
and v2. Therefore, and by (2.3) and (2.10) (which holds here, as in the proof of
Theorem 2.2), C depends only on b, x0, v0, vx and v2. Similarly, b, a and therefore K
depend only on b, x0, v0, V\ and v2. D

LEMMA 3.3. Suppose G is compact. Then for any / > 0, there exists <5/ > 0
such that given any b, t0 e K, x0 6 G and v0, V\,v2 e TXoG satisfying (3.1) and
\\vi\\, E11̂211 < I, there exists a unique solution x : (t0 — Si, t0 + Si) —> G of (1.3)
satisfying (3.2).

PROOF. Picard's theorem on local unique solvability of ordinary differential equa-
tions almost asserts this, but with Si depending on x0, v0, Ui and v2. But x0 and v0 lie
in compact sets, so restricting v\ and v2 to also lie in a compact set permits a uniform
choice of 5;. •

PROOF OF THEOREM 3.1. By Picard's theorem, for some 8 > 0, there exists a
unique solution x : / -> G, where I = (t0 — S, t0 + S), of (1.3) satisfying (3.2). Let K
be given by Lemma 3.2, so that (3.3) holds on /, and let SK be given by Lemma 3.3.
Then, taking e > 0 with e < S,SK and setting t^ := t0 + 8 — e, Lemma 3.3 says
that x can be extended uniquely to the interval (t0 — S, t£ + 8K), which contains / .
By Lemma 3.2, this extension also satisfies (3.3). It follows that x can be extended
uniquely to (t0 — 8, oo). Similarly, x can be extended uniquely to (-oo, t0 + 8) and
thus to K. •

By Theorems 1.2 and 3.1, when G is compact all elastic curves in G extend uniquely
to K. So there is no loss of generality in restricting our attention to elastic curves
defined on the whole real line. The rest of the paper constructs the elastic curves
x : OS -> 5(9(3) in terms of quadratures.

4. G = SO(3) : Solution for (V(0, C)

From now on we take G = SO(3). Then Sf = so(3), the set of all skew-symmetric
real 3x3 matrices. Recall that E3 is a Lie algebra with Lie bracket the cross product x.
The map B : E3 ->• so(3) defined by B(v)w = v x w is a Lie algebra isomorphism.
Since the Euclidean inner product is, up to a positive multiple, the unique inner product
on R3 satisfying (2.1), we can assume without loss of generality that B is an isometry.

https://doi.org/10.1017/S1446788700036417 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036417


114 Tomasz Popiel and Lyle Noakes H [10]

Let us also denote the Euclidean inner product and corresponding norm on E3 by (•, •)
and || • 11. For later reference, recall that, for all wi, w2, w3 e E3,

(4.1) (w1 x w2) xw3 = (u>i, w3) w2 - {w2, w3) wu

Let x : R ->• 50(3) be an elastic curve and V : K -> so(3) the associated elastic
Lie quadratic. Let C be the constant of V. Now define V — B~l(V) : R -> £3 and
C = fi~'(C). This change of notation is made for convenience. Since B is a Lie
algebra isomorphism and isometry, V satisfies (2.4) and

(4.2) V(t) = V(t) x V(t) - (I V(0 | 2 + (V(0, C>) V(/) + C,

for all t € R. That is, V is an elastic Lie quadratic, with constant C, in the Lie algebra
(E3,x). We work with V rather than V, solving (4.2) with (2.4). The following result
is easily verified.

LEMMA 4.1. For any A e 50(3) and any t0 e R,

(i) t \-y A(V(t)) is an elastic Lie quadratic in E3 with constant A(C),
(ii) t \-+ V(t — to) is an elastic Lie quadratic in E3 with constant C.

So we can assume without loss of generality that

(4.3) C = [0 0 cf for some c e R , Vi(0) = 0,

where, here and throughout, we write V(t) = [Vj(f) V2(t) V3(0]r-

EXAMPLE 1. Suppose C = [0 0 c]T and, for some h e R, V(h) = [0 0 l ] r

and V(h) = 0. Set V0(t) = [0 0 l ] r for all t e R. Then V0(0 satisfies (4.2) for
all t e OS, with ||Vb(OII2 + <V0(0, Q = c, V0(h) = V(h) and V0(h) = V(h). So
V(t) = V0(t) for all t sufficiently near h, by local uniqueness in Picard's theorem.
Since neither (4.2) nor the values of V0(h) and Vo(h) are affected by the choice
of h, V(r) = V0(0 = [0 0 l ] r for all t € R. Similarly, V(t) is constant if
V(h) = [0 0 - l ] r and V(h) = 0.

When C = 0, V is said to be null. Null Lie quadratics in E3 (solutions of
V = V x V) have been studied by the second author in [7]. Null elastic Lie
quadratics in E3 admit a much simpler, closed form description.

PROPOSITION 4.2. Suppose V is null and satisfies (4.3). Then

V(t) = [a sin (cot) a cos (cot) Vl — a2\

for all t 6 R, where a = */b/(b + 1) andco= 1/Vl - a2.
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Here, as before, b is the constant of Corollary 2.3. For the rest of this section and
the next, assume C £ 0, so that c ^ 0 in (4.3). Set

for all t € D&. By (2.4), \y(t)\ < \\C\\, and by (4.3), V3(0 = y(t)/c. If y is known,
(4.2) reduces to the following system of linear differential equations:

v(t) y(t)
(4.4) V,(0 = V2(0 — - V2(0 — - (3y(t) + b)Vx(t),

c c

(4.5) V2(t) = - V,(0— + V,(0— - (3y(0 + 6) V2(r).
c c

We now show that y satisfies a differential equation from the theory of elliptic func-
tions. First, we have an additional integral for elastica in 50(3).

LEMMA 4.3. (V(r) x V(t), C) + y(t) is constant.

PROOF. Take the cross product of (4.2) with V. Then by (2.4), which also implies
(V, V) = 0, and (4.1), we have V xV + V = C xV. So

— (V x V + V, C)= (C x V, C) = 0 . •

Now define two constants (note that the second is just b + 1):

(4.6) *, = (V(r) x V(t), C) + y(t) + \\C\\2,

k2=\\V(t)\\2-2y(t) + l.

THEOREM 4.4. The function y : R -> [-| |C||, ||C||] satisfies

(4.7) y(tf = 2k, + 2kiy(t) - k2y(t)2 - 2y(t)\

for some constant J t 3 eR and all t € K.

PROOF. Recall that || V||2 + y = 3y + k2 - 1 and take the inner product of (4.2)
with C, giving y + (3y + k2)y = kx. Now integrate to get (4.7). •

By left-invariance of the Riemannian metric, Lemma 2.1(i) and since B is an
isometry, || V\\2 is the squared geodesic curvature of the elastic curve x:

= I V | | 2 .

By Corollary 2.3 and Theorem 4.4, ||V||2 also satisfies a differential equation of the
form (4.7). So we recover Jurdjevic's prior result for the squared geodesic curvature
of elastica in S3 [5, Chapter 14, Theorem 3]. If y is constant then so is || V||2, and V
admits a closed form description.
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PROPOSITION 4.5. Suppose V satisfies (4.3) and y(t) is constant. Then

(4.8) V(t) = [a sin (cot) a cos (cot) V3(0)]T ,

for all t e R, where a = VI - V3(O)2 and co = 11 V(0)||/a. D

To find y when y is non-constant, we first consider the possible roots of the cubic
polynomial in y given by the right hand side of (4.7). Define p : [—||C||, ||C||] -» K
by p(z) = 2*3 + 2klZ - k2z

2 - 2z3.

LEMMA 4.6. Ify(t) is non-constant then p has three real roots.

PROOF. Suppose p has only one real root. Then by (4.7), y(t) = 0 for at most one
value of y(t). Since y(t) is not identically 0, y(t) = 0 for at most one value of t,
say y(tt) = 0. Without loss of generality, we can assume y(t) < 0 for all t > tt.
Therefore, and since \y(t)\ < | |C| | for all t e K, the limit L = lim,-^ y(f) exists.
We claim that for any m e 1+, there exists tm such that — 1/m < y{t) < 0 for all
t > tm. If not, there exists e > 0 with y(t) < —e for all t e i But then the Mean
Value Theorem gives y(n + 1) < y(n) — e for all n e 2+ , which is a contradiction
since y{t) is bounded below. So the claim is true, and thus limm_>0O y(tm) = 0.
Taking t = tm in (4.7) and letting m —>• oo, we have 0 = p(limm_<.oo;y(fm)). So
L = Hindoo y{t) = lim^oo y(tm) is a root of p. But L ^ y(tt) since y(t) < 0 for all
t > tt. This contradicts our assumption, so p must have three real roots. •

We now use Theorem 4.4 to find y. Denote the roots of p by y < ft < a. We
consider the four possible cases for these inequalities separately.

PROPOSITION 4.7. Ify = f} = aory < f} = a then y(t) is constant.

PROOF. If y = fi = a then Lemma 4.6 applies. If y < fi = a then (4.7) reads
y2 = — 2(y + a)2(y — y). So y(t) < y for all t € K, and thus y(t) = 0 for at most
one value of y(t). Now the same argument as in the proof of Lemma 4.6 shows that
y(t) is constant. •

EXAMPLE 2. Suppose V(0) = [ 1 0 Of, V(0) = [0 1 Of and C = [0 0 I]7".
Then k2 = 2, *, = k3 = 0 and thus y{t)2 = -2y{t)2(y(t) + 1) for all t e R. So
y(t) = 0 and thus V(t) = [cos(0 sin(f) 0] r for all f e (R.

PROPOSITION 4.8. Suppose y = P < a. If y(0) = P then y(t) is constant.
Otherwise, for some real constant k and all I E K ,

(4.9)

In this case, l i m , ^ V3(r) = p/c andXim,^ \\V{t)\\2 = 2p + b.
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PROOF. Equation (4.7) reads

(4.10) y(tf = -2(y(r) - a)(y(t) - P)\

If y(0) = p then y{t) is constant. Otherwise, integrating (4.10) shows that y(t) is one
of

y±(0 - (P - a) tanh

where (y(0) — a)/(/3 — a) = tanh2(A:). We can choose y = y+ and /: such that
y+(0) = y(0). Since y(t) < a, by (4.10), k is real. So y(r) can be written in the form
(4.9). The limits follow from (4.3) and Corollary 2.3. •

So if y(0) = P then V is given by (4.8). If 0 < y(0) < a then as t -> oo,
converges either to a constant (if 2fi + b = 0) or (otherwise) to the curve given by
(4.8) with a = Jl - (P/c)2 and to = *Jip + b/a.

EXAMPLE 3. Suppose V(0) = [ 1 0 0] r , V(0) = [0 1 0]7" andC = [0 0 1/2]7".
Then k{ = - 1 / 4 , k2 = 2 and jfe3 = 0, giving y = p = - 1 / 2 and a = 0. So
lim,_0Oy(0 = - 1 / 2 . Also b = | |V(0)||2 - 2y(0) = 1. That is, 2p + b = 0. So

= [0 0 - l ] r , since || V(OII = 1.

EXAMPLE 4. Suppose V(0) = [0 0 l ] r , C = [0 0 c]7" ^ 0 and y = P < a.
Then y(0) = 0 since (V,V) = 0. So y(0) e {a, )3}. If c < 0 then y(0) = y3 and
y(t) is constant by Proposition 4.8. We claim that c > 0 contradicts the assumption
y = P < a. After evaluating the fc,-, (4.7) reads

But y(0) = a since c > 0. So y(t)2 = -2{y(t) - c)(y(t) - P)\ Comparing
coefficients, p2 = c((||V(0)||2 + l)/2 - c - l) and 2£ = -(\\V(0)\\2 + 0 /2 .
So (d| V(0)||2 + l)/2 - 2c)2 + Ac = 0, contradicting c > 0. Similarly, if V(0) =
[0 0 — l ] r and y = P < a then c > 0 and y(f) is constant.

When y < p < a, y can be expressed in terms of the Jacobi elliptic function
sn(«|m), where u e fl& and 0 < m < 1 (see [1] for the definition).

PROPOSITION 4.9. Suppose y < P < a. Then

(4.11) y(t) = (P - a) sn2 It m2

for all t e lR , where m = (a — P)/(oc — y) and k is a real constant.
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PROOF. Equation (4.7) reads

HO2 = -liyit) - a)(y(t) - fi)(y(t) - y).

Since y < fl < a, we have 0 < m < 1. So, by integrating, we find that y(t) is one of

y±(t) = {fi-a) sn2 ±t.
2

m I +a,

where (y(Q) — a)/(/3 — a) = sn2(k\m). We can again choose y = y+ and k such that
y+(0) = y(0). Since y < 0 < y(0) <a,kis real. D

If y is known, V can be found, as shown in the next section.

5. G = SO(3) : Solution for V(t)

When y(t) is constant, V is given by (4.8). We now assume y(t) is non-constant,
continue with the assumption C = [0 0 c]T ^ 0, but drop the assumption that
Vx(0) = 0. As before, for all t € K,

V(r) = [V,(0 V2(O ^T1 ] 7 .

with y(r) given by either (4.9) or (4.11). In this section we solve the system (4.4),
(4.5) by quadratures for Vi and V2. Let || • || denote the Euclidean norm on either K2

or OS3, as necessary. Set

Z(0=[V,(0 v2(0]r,

(5.1) r(t) ••

for all r e R, so that ||Z(OII2 = r(t)\ by (2.4).
First, suppose / c R is an open interval with r(t) ^ 0 for all t e I. If we

choose t0 e I and 0O £ R such that Z(f0) = r(fo)[cos0o sin60]r then, since
r(r) ^ 0 on / , there exists a unique C°° map 0 : / ->• R satisfying 0(t0) = 6Q
and Z(t) = r(0[cosd(r) sin0(r)]r,for all f € /. By (4.6),

(5.2) r (0 2 0(0 = Vi(OV2(0 - V,(r) V2(0 = y ( 0 fe' + c,
c

and thus
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for all t e I. In particular, if the set

S \ ' ) ~~ \l t u^ • ' \ * / ~ ~ VI

is empty then we can solve (4.4), (4.5) on the whole real line in this fashion. If <" (r) is
non-empty we also need another method, described after the following two lemmas.

LEMMA 5.1. Suppose £(r) is non-empty. Then

(i) ifZ(h) = Ofor some h e R then V(t) is constant,
(ii) ify=/3<a then y(t) is constant.

PROOF. Choose r, e %(r). Then V(tt) = [0 0 ± l ] r . First suppose V(tt) =
[0 0 I]7". Then taking t = U in (4.6) gives

(5.3) *, = c + c2.

Since (V,V) = 0, y(h)y(h) = 0. If y(h) = 0 then A;, = c2 by (4.6), contradicting
c ^ 0. So y(^) = 0 and thus &, = y(h) + c1. So by (5.3), y(h) = c and thus
Z(/i) = 0. Therefore, V(t) is constant by Example 1 and Lemma 4.1(ii). Similarly,
V(t) is constant if V(tt) = [0 0 -I] 7" , completing the proof of (i). For (ii), if
y — @ < a then y(t) is constant by Example 4 and Lemma 4. l(ii). •

Now let K : R -> [0, oo) be the curvature of Z, regarded as a function of t (not of
arc length).

LEMMA5.2. IfV(t) is non-constant and f (r) is non-empty then, for all t 6 R,

(5.4) K(t) =

PROOF. Since Z(t) 7̂  0, by Lemma 5.1(i), we have

llzwll3

for all f e K. By (4.4) and (4.5),

Vi V2 - V, V2 = | |Z | 2 ^ - (V, V, + V2V2) - + Oy + b) (V, V2— Vi V2)

By Corollary 2.3, ||Z||2 = 2y + b - y2/c2. Since (V, V) = 0 we have

Together with (5.2), these give (5.4). •
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Now assume £(r) is non-empty. Suppose / c K is an open interval with /e(0 £ 0
for all t e I. Choose t0 e I and define s : / -> [0, oo) to be the arc length of Z, that
is, set

Reparameterise Z by arc length and let ' denote differentiation with respect to arc
length. By Lemma 5.1(i), Z(t) £ 0 for all t e / and thus ||Z'(*)|| = 1 for all
s 6 5(7). Define it : J(7) -» [0, oo)by £ o j = /t. Then ^(5) ^ 0 for all s e s(/) . So
the (planar) Serret-Frenet frame of Z, namely

= 2'«, W ) - ^

is defined on.?(/), and /f (5) = ||7'(i)|| by definition. Therefore, the (planar) Serret-
Frenet equations

(5.5) T'(s) = >c(s)N(s), N'(s) = -ic(s)T(s)

hold for all s e s(I). Write s0 = s(t0), T(s) = [^(5) T2(s)]T and N(s) =
[N\ (5) N2(s)]T, Then the Serret-Frenet equations have solution

Ti(s) = at cos((p(s)) + bt sin((p(s)), Nt(s) = bt co%(<p(s)) - a,

for all 5 6 £(/), where i = 1,2, the a,, 6, are constants, and

Jso
<p(s)

Then, for all s e s(I),

Z(s) =

The following result guarantees that, given any t0 e K, one of the above methods may
be used to solve (4.4), (4.5) near t = t0.

LEMMA 5.3. Suppose y(t) is non-constant and £(r) non-empty. Then there exists
8 > 0 such that given any t0 e R, either

r(t)£Q for all t e (t0-8, t0+ 8), or x(t)jL0 for all t e (t0 - 8,to +8).

PROOF. Since y(t) is non-constant, either y = j 8 < a o r y < 0 < a r , as noted
in Section 3. By Lemma 5.1(ii), we must have y < f} < a. So y(t) has the
form (4.11), and is therefore periodic [1]. Thus for any value t) in the range of v,
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the set {t e R|y(0 = rj] is discrete and has no accumulation points in R. Write
£(/c) = {t e R | K ( 0 = 0}. We claim that the (Euclidean) distance

D (f(r), £(*)) = inf {|f, - h\ : r, e £(r), h 6 f (*)}

between £(/•) and £(/c) is nonzero. By (5.1) and (5.4), £(r) and £(/c) are both discrete
with no accumulation points in R. It remains to check that they have empty intersec-
tion. Lettt 6 £(r). Then V(tt) = [0 0 ± l ] r . Suppose V(r.) = [0 0 I]7". Then
(5.3) holds. Therefore, and by Corollary 2.3, (5.4) reads

f (0 =

F(oir
Since y(tt) = c we have K(tt) = ||V(fJ||/||Z(r,)||3. Since ||Z(r.)|| £ 0 and
thus ||V(r»)|| ^ 0, by Lemma 5.1(i), K(U) £ 0. Similarly, «(f») ^ 0 if V(U) =
[0 0 - l ] r . So the claim is true. Now take 5 = D(£(r), S(K))/2. •

With V known, it remains to solve V(t) = (dLxW-i)xWx(t) for*.

6. G = SO(3): Solution for x(t)

In this section, (•, •) and || • || denote the inner product and norm on either so(3)
or E3, as necessary. Define W : R -> so(3) by

•(V(r),

By Corollary 2.4, | |# ( r ) | | = cr for some constant a > 0 and all t € R. Since B is
a Lie algebra isomorphism and isometry, the curve W = B~](W) : R -> E3 satisfies,
for all t € R, (2.12) with [•, •] replaced by x, and || W(0ll = °-

First suppose a ^ 0. Let 52 denote the unit sphere in E3. Then setting
W3(t) = W(t)/o, for all t 6 R, defines a map W3 : R -)> 52. There exists a C°°
map W, : R -> 52 such that (W,(r), W3(0> is identically 0. To see this, note that
the set {(?, v) e R x 52|(W3(O, v) = 0} is a C00 fibre bundle over R with fibre
S1. Since R is contractible, the bundle is trivial, and Wi can be defined using any
cross-section. Having chosen Wu define W2 : R -> 52 by W2(r) = W3(r) x W,(r).
Now set (p{t) = /0' (Wjd), W2(§) + V(£) x W2(^))^,

and

for all t e R. Finally, define U : R -> 50(3) by I/(r) = [t/,(f) f/2(0 W3(r)]. By
(2.12) and [12, Theorem 1], we have the following result.
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THEOREM 6.1. If a ^0 then x (r) = x (0) U(0)U(t)T for all t e R.

It remains to consider the case a = 0. Given g e 50(3), let Lg and fls be
the left and right multiplications (respectively) by g. Define inner automorphisms
Ig = Lgo Rg-t of 50(3) and Lie algebra automorphisms Adg := (dlg)e (here e is the
identity, as in section 2). Recall (see [13]) that the derivative ad at e of the adjoint
representation Ad : g >-> Adg of 50(3) is given by ad^(n) = [£, rj], for £, 77 € so(3).
Now define V* : R - • JO(3) by V*(f) = -AdmV(t). Recall that an elastic Lie
quadratic is null if its constant is 0. By [12, Theorem 10], we have the following
result.

LEMMA 6.2. Suppose a = 0. Then V* is a null elastic Lie quadratic. The elastic
curve x* : K —>• 5O(3) with associated elastic Lie quadratic V* and x*(0) — XQ is
given, for all t e R, byx*{t) — x^x(0)x(t)T.

Let C* be the constant of V*. By Corollary 2.4, the curve W* : R -> so(3) defined
by

W*(t) = V*(r)

satisfies a* = ||W*(r)ll for some constant a* > 0 and all f € R. By [12, Theorem
10], we have the following additional result.

LEMMA 6.3. If a = 0 and a* = 0 then V*(t) is constant. •

So assume a = 0. Then, by Lemma 6.2, to find x it suffices to find x*. When
a* = 0, V*(t) is constant and it is straightforward to solve V*(t) = (dLx.^-i)x.wx*(t)
for x*. When <r* ^ 0, the null elastic Lie quadratic V* is found as in section 4, and
then x* is given by Theorem 6.1.

EXAMPLE 5. Suppose

V(0) = [l 0 0 ] r , V(0) = [0 0 -1.25]7", C = [0 0 l ] r .

Then y(t) = {V(t), C) is given by (4.11) with (to 6 significant figures)

a = 0.876515, 0=-0 .556701, y = -1.60106.

Suppose x(0) = e. Representing x locally by a curve in £3 is problematic, especially
near singularities of the representation. Instead, Figure 1 shows the third column
x3 : R -> 52 of x for t e [0, 26].
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FIGURE 1. x^(t), for / 6 [0,26], in Example 5.
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