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Introduction. In this paper all sets considered are assumed to be compact subsets of
Euclidean Space E". A number of results concerning the total edge-lengths of polyhedra
have been given by various authors, many of which are mentioned in references in [1]. In
[1], it was conjectured that all polytopes inscribed in the unit sphere and containing its centre
have total edge-length greater than 2/i. This was proved true for simplicial polytopes and
shown to be best possible in the sense that there exist simplices with the stated property and
with total edge-length arbitrarily close to 2«. In this paper we shall show that the bound is
not always best possible if the magnitudes of the faces of such polytopes are restricted and
we shall also give some related results on surface areas. This work was carried out while the
author was a research student at Royal Holloway College, London and is a revised version
of part of the author's thesis approved for the Ph.D. degree.

NOTATION. If x e E", let

S"[x,X] = {y-\y-x\=l} and B"[x,X] = {y:\y-x\Zl}

denote the n-dimensional sphere and ball, respectively, of radius A and centre x.
For any m-dimensional polytope P, let L(P), Am{P) and Vm(P) denote the total edge-

length, surface area and volume of P, respectively. For a measurable X, let nr(X) denote
the Hausdorff r-dimensional measure of X; see for example [2].

If X, Y are convex sets, let 8(X, Y) denote the Hausdorff metric distance between X
and 7, see [3]. Let

p(X,Y)= M\x-y\.
xeX
yeY

Finally for an arbitrary set X, we shall write conv X and &KX to denote the convex hull and
affine hull of X, respectively (so that aff X is the linear subspace of E" of minimal dimension
which contains X).

We shall first consider the case where all r-dimensional faces are restricted for r = 1, . . . ,
/i—1. If e > 0, let ^""^(e) denote the family of polytopes in E", which are inscribed in
S"[o, A], which contain o, and whose r-dimensional faces have /-measure less than e for
r= 1, . . . , n - l .

LEMMA 1. Letd"-\e)= sup d(P, Bn[p, A]).

Then 8"-\e) -+ 0 ay e -> 0, if n ^ 2.

Proof. The proof is by induction on the dimension n. Let 5 be given with 0 < 5 < A.
Firstly suppose n = 2. Then, if e < 2(2X5-52)1'2, it follows that
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40 J. N. LILLINGTON

<5

whenever Pe&n'\t). The lemma then is proved when n = 2 and we suppose the result is
true in each dimension k with 2 ̂  k ^ n — 1.

Now each facet F of P is inscribed in an (« — l)-sphere which is the intersection of afFF
and S"[o, X]. Let F' denote that facet for which the corresponding (n— l)-sphere has maximal
radius. Suppose this sphere has centre o' and radius p. We note that for every facet F

p{o, F) £ p(o, F') £ p(o, affF) = p(o, o'). (1)

Thus o'eF', for otherwise oo' would meet some facet in o", with o" not equal to e' and
between o and o'. This would contradict (1). It is now convenient to write P(e) = P,
o'(e) = o', F(e) = F, F'(e) = F' and /z(e) = p..

We shall show that there exists eo(n, X, 5) such that

>2 (2)

whenever P{£)e0>"'\z) and e < eo. Suppose this is not so. Then there is a sequence {fij^i
monotonically tending to zero as / tends to infinity and a sequence of polytopes Pie^eS/"1'^^
such that

M e , . ) ^ for i = l , 2 , . . . . (3)

Let F"{Zi) denote the polytope similar to F'(e,-) which is reduced in the ratio rj: /ifo) about
o'(et) as centre of similitude for i = 1, 2, By an appropriate translation we may further
assume that F"(et) is inscribed in an (n - l)-sphere S""1 [o,;;], and contains o for i = 1,2,
Further the r-dimensional faces of ^"(e.) have /--measure less than

for r = 1 , . . . « — 2 and i = 1, 2, . . . . Thus

F"(e,-)e<r-1-*(e,-) for i = l , 2 , . . . .

Hence by the induction hypothesis,

d(F"(ei),B"-1[o,,1-])^0 as j ^ o o . (5)

But by the hypothesis of the lemma,

F"-1(F"(e1))^0 as i^oo . (6)

It is well known, see for example [3], that V'1 is continuous over the metric 3 and therefore
(5) and (6) are contradictory. Thus statement (2) holds true.

Then if e < e0, it follows that each facet of P(e) is distant at least (A2-f/2)1/2 from o
and thus
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ON POLYTOPES WITH SMALL FACES 41

Hence for all P(e)e&>n-i-(e),

8(P(e), Bn[o, A]) g <5(B|>, (A2-*/2)1'2], B[o, A])

= | by (2). (7)

Thus
d"-x(e)<8, (8)

and the lemma is proved.

THEOREM 1. Let A"-x(e) = inf A\P).

Then

A">Xe)-*A(Bn[p, A]) as 8-+0 i/ n ^ 2.

/Voo/. Let 5 > 0 be given. For each e > 0, choose P(e) e ̂ "1> A(e) satisfying

A"-\e)+^A\P(e)). (9)
By Lemma 1, if e < eo(n, A, 5), then

A])-^^))^^ (10)

since A" is continuous over the class of compact convex sets. Hence (9) and (10) imply

A"' \B) ^ A\B"io, X])-5. (11)

The remainder of the proof is trivial and is omitted.

LEMMA 2. Let X be a bounded set in E", « ^ 2, with positive Lebesgue measure. Then if
e > 0 and {JC1; . . . , xq} is a finite set of points of X with the property that

sup( min |x-x,|)<e,
xeX l S i S ,

then there exists a constant M{n, X) such that all arc-wise connected sets E containing
{xiy..., xq} have linear measure n\E) > M(n, X)e~(n~1).

Proof. Let C be a closed hypercube containing X of side-length /. For each integer k
divide C into (3k)n open disjoint equal hypercubes of side l/3k. Suppose exactly m{k) of these
hypercubes contain at least one point of X. Then X is contained in the union of these m{k)
hypercubes together with a closed set Y of Lebesgue measure zero. Thus

where X(X) denotes the Lebesgue measure of X.
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Consider the partition of C as an array of (3k)n open hypercubes C(iu ..., in) where
1 £ ij g 3k for j = 1 , . . . , n. Let

T(Pi, • • •, pn) = U C(3ri+p!, . . . ,3 r B + pn)

r § rg n

where 1 g p,- ^ 3 for j = 1 , . . . , n. Then each T(pu ..., ptt) is a union of open hypercubes
and each is distant 2l/3k from any other. Also

C = U T0>i> ••••?»)
l's'i'sn

and so if exactly /n(p! , . . . , pn) hypercubes of T(px pn) contain at least one point of X
then

PI = 1 Pn = 1 \ ' /

by equation (12). Hence by equation (13), there exist particular values of pu ..., pn with
1 ^ p t ^ 3 , . . . , 1 ^ pn ^ 3 for which

For these values we write

T(pt,..., pn) = T and m(pu ..., pn) = m. (15)

We may suppose, without loss of generality, that

0 < e < Z/12. (16)
We may further suppose k so large that

Denote the hypercubes of T which contain a point of X by Cu ..., Cm. For i = 1, 2 , . . . , m,
let C'i and C" be the hypercubes obtained from Cj by magnifications of C, in the ratio 2 : 1
and 3 : 1 respectively about the centre of C( as centre of similitude. Now each Cf contains
a point of X, and by the choice of e it follows that any set {xu ..., xq} satisfying the con-
dition of the lemma must have points in common with CJ for / = 1 , . . . , m. Then since E
is arc-wise connected it follows that there is an arc in E joining each such point to the
boundary of C" which must therefore have length at least I/6k for / = 1 , . . . , m. Thus

i n - i

> - • ( - ! X(X) by (14)

>M(n,X)E-(n-1) by (16) and (17),

where M(n, X) = 2k{X)j\2". The lemma is proved.
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ON POLYTOPES WITH SMALL FACES 43

THEOREM 2. LetLn-\e) = inf L(P).
P e &"• -He)

Then

L"1/l(8)->oo as e-»0 if n = 3.

Proof. Let P(e)e^"1' A(e) have vertices Xj^) , . . . xm(1!)(e) and suppose

L(P(e))£Ln'x(e) + l for each e > 0. (18)

By the compactness of S"[o, X] we can choose x(e) such that

min | x(e) — Xj(e) | = sup min |x —X;(e)|
1 g i g m(e) J S S " [ J , J] 1 S i £ m(e)

and we may suppose

| x(s) — Xj(e) | = min | X(E) — xf(e) I (19)

for each s > 0.
We shall now show

| x(e)—xt(e) | -»0 as e -> 0. (20)
Otherwise there exists 5 > 0 and a sequence {ej}f= i tending to zero as j tends to infinity
such that

Ixie^-x^l^d for y = l , 2 , . . . . (21)
But, for ; = 1 , 2 , ...,

) !X( ) )^k^M! (22)

41 by
But by Lemma 1,

),J3"|>,r])^O as 7-^00, (23)

and thus (22) and (21) are contradictory. Thus statement (20) follows and we may choose a
sequence <5(e) tending to zero as e tends to zero such that

sup min | x - x,(e) | < 5(e) (24)
-x e S"[o, J] 1 S i S m(£)

for each e > 0.
We next project by orthogonal projection on to an (n— l)-dimensional subspace of E"

which contains o. Then the union of the edges of P(e) projects on to an arc-wise connected
set E say, which contains the projections of the vertices of P(e). Then by application of
Lemma 2 with the projection of S"[o, X] in place of X and noting that distances are not in-
creased under orthogonal projection, it follows that there exists a constant M(n, X) for which

L(P(e)) ^ nl(e) > M(n, A)5(e)-("-2).
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Thus

for each e > 0 by (18), and the theorem is proved.
We note that the lower bounds for both the surface area and total edge-length of poly-

topes in the class SP' \e) are indeed greater than in the general case; for example, by con-
sidering the extremal simplex described in [1]. The conditions imposed on the polytopes
in the previous theorems seem rather severe in that the measures of all the non-trivial faces are
restricted. However, again by considering the example above, it is possible to restrict all
faces of dimension greater than 1 and yet still not be able to improve the bounds of zero for
the sum of the measures of the r-dimensional faces for 2 ^ r ^ n — 1 and 2nX, the conjectured
lower bound for the total edge-lengths in the general case.

It is possible, however, to obtain different and interesting results by restricting only
the edges and relaxing the conditions on the remaining faces. We illustrate this with two
examples in E3.

If e > 0, let i?3'x(£) denote the family of polyhedra in E3, which are inscribed in
S3[o, A], which contains o, and whose edges have length less than e.

THEOREM 3. LetA3-\s) = inf A{P).
P e 93< -He)

Then
3 \ 2 as 8->0.

Proof. We shall first prove that

\ 2 (25)
e-»0

by an appropriate example.
For each positive integer n let Pn be a regular polygon of n sides which is inscribed in

S3[o, X] and distant XIn2 from o and let P'n denote the reflection of PB in o.
Then the polyhedron Qn = conv(Pn, Pf,) has surface area

AQn) = A2«(l-l/n4)sin(27t/n)+(4A2/n)(l-l/n4)1/2sin(7t/n)

-> 2;d2 as n -* oo.

Thus (25) follows.
It remains to prove the reverse inequality. Let 8 be given with X > 5 > 0 and consider

e > 0 satisfying

0<-<2<5;i-<52. (26)
4

Let P e 3?3 •k and suppose F is any facet of P. Then affF either does not meet D3 [o, X—5]
or meets D3[o, X-8] in a single point or in a disc D2[u, rj], say. Now if the latter case occurs,
suppose affF meets D3[o, X-8] in the disc D"[u, v] where v > r\. Then each edge of F is
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ON POLYTOPES WITH SMALL FACES 45

distant at least
/ E2\i/2

U 2 - - J >(v2-2SX+52)1/2 by (26)
2 2 2 1 ' 2

= V (27)
from u.

Thus each facet of P either does not meet D3[o, 2.-5] or meets D3[o, X—S] in a single
point or in a disc. Suppose there are N such discs and that each is distant Xt from o for
i = 1 , . . . , N. Also, let 1 = X-6. Then

A{P) ̂  4nl2 - A'(P)+A"(P) (28)

where A'(P) is the area of the surface of D3[o, 1] which lies exterior to P, and A"(P) is the
total surface area of the discs.

We note

A'(P) = £ 2TCJ(J-A,) (29)
i = 1

and
A"(P)= I 7t(P-A2). (30)

> = I

Now trivially 4nX~2 ^ ^'(^>)J and so if A'\P) ^ 2nl2, then ^(P) ^2^I2 by (28). Otherwise
suppose

A"(P)<2nl2. (31)
Then (28), (29), (30) imply

^ 4nP - V n(l2 - Af), since XZl, for / = 1 iV,
i = I

= 4nP-A"(P)

>2nX2 by (31).
Hence

A3-\e) Z Ink2 = 2n(l-S)2,

and the theorem follows since the choice of 5 was arbitrary.

LEMMA 3. Let X be a subset of S3[o, X] of positive (i2-measure. Then the orthogonal
projection of X on to any plane has positive n2-measure.

The proof involves standard arguments in measure theory and in order to save space
is omitted.

THEOREM 4. Let L3' \e) = inf L(P).

Then
L3' \e) -*• 4nX as e-yQ.

https://doi.org/10.1017/S0017089500003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003013


46 J. N. LILLINGTON

Proof. The polyhedron Qn defined in the beginning of Theorem 3 has total edge-length

L(Qn) = 41n(L-l/n4)1/2sin(7t/n) + 2A/n

-> 47iA as n -* oo.

Thus
UmL3'\e)^4nX. (32)

£-» 0

Let <5 >0 be given. In each e > 0, choose P(s)ei^3'x so that

(33)
Then by the Blaschke selection theorem, we may assume that there exists a sequence {e^fL t

tending to zero as i tends to infinity such that P(e^) tends to a convex set P contained in
D3[o, A] and also such that L(/>(si)) tends to some number L as / tends to infinity. Further,
by (33) and (32),

(34)

Now it was shown in Theorem 3 that, if 0 < J J < A , then either D3[o, k—r\\ c P(e,) or
D3[o, X — r\\ meets the frontier of P(e,) in closed discs, whenever / is so large that

Hence, taking the limit as / tends to infinity, it follows that P has this property also. Now
there exists r\0 > 0 for which D3[o, X-rj] meets frP, the frontier of P in at least one disc.
Otherwise P a D3[o, X-rj] for each r\ > 0. This implies that P(et) tends to D3[o, A] as /-»• co
and we could show, by an argument similar to that given in Theorem 2, that

L(P(Ej)) -> oo as i-* oo.

This would contradict (34).
We shall show that for each r\, 0 < r\ < r\Q, D3[o, X—r\\ meets frP in a finite number of

discs (of positive radius). Now if / is sufficiently large, then again, as in Theorem 3, we may
suppose that fr^E;) only meets D3[o, X-r\] in m; > 0 discs. Further each such facet of P(et)
which meets D3[o, A- J J ] is inscribed in a circle of radius at least (A2 —(A—>j)2)1/2. Thus if £
is given, 0 < <!; < (A2-(A->/)2)1/2, then, by Theorem 1, all wf facets of P(ef) which meet
D3[o, A—r\\ contain a disc of radius at least (A2 — (A—if)2)112 — t, whenever / is sufficiently
large. But, since P(e,) c D3[o, A],

4;tA2 ^ mi7C[(A2-(A-f?)2)1/2-^]2, (35)

and so for given J; the sequence {WJ},^! is bounded.
We shall now then consider r\ < t]0, and so, for all i sufficiently large, frP(ej) will meet

D3[o, A->j] in w,- > 0 discs. Let /^(fij),..., Fm(e^ denote the m; facets of P(e() which meet
D3[o, A—JJ]. Let L'(et) denote the sum of the edges of the polygons F^e , ) , . . . , Fmi(e,) for
i = l , 2 , . . . .

Then, since any two of these polygons have at most one side in common with each other,
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ON POLYTOPES WITH SMALL FACES 47

it follows that

£ (36)

for 1 = 1 ,2 , . . . . Let L"(et) be the sum of the circumferences of the discs formed by the inter-
section of D3[o, A—tf] with frP(e,). Let L" denote the corresponding sum for

D3\p, A-f/]nfrP.
Then

£ ) = L"(e() for £ = 1,2, (37)
i

Also trivially

L(P(e,)) > L'(e,) for 1 = 1 , 2 , . . . . (38)

Thus (36), (37) and (38) imply

UPieM + mT'e^LXet) for j = l , 2 (39)
Since P(et) tends to P as i tends to infinity it follows that D3[o, A-rj)r>P(e,) tends to

D3[o, X-r}]r\P as i tends to infinity. Thus

£'(£()->• L" as i->oo.

Hence, since the sequence {m(}|°= j is bounded, it follows from (39) that

L = L". (40)

Now consider a sequence {>/;} j°= i tending to zero monotonically as j tends to infinity with
rij<ri0 for ; = 1, 2 Then we can assume D3[o, A—rjj] meets frP in lj disjoint discs
D\{r\j), •-., Dtj(rij) of radii A^fy), . . . , A,/rij) respectively and so fr(D3[o, A—tij]nP) consists
of these discs together with an open subset W(rjj) of S3[o, A—rjj] for j'• = 1, 2, Let D'k(jij)
denote the projection of the disc £>*(*/;) from o on to S3[o, A] for k = 1, . . . , lj3 and similarly
W'{rjj) as the projection of W^j) forj = 1,2,

The £>»(>/;) are " caps " of S3[o, A] with a base of radius A&tij) say, where

^ (41)

for k = I,..., lj and j = 1, 2 , . . . . We note also that

DfaJ+1)=>Dfo,j) and W'%+1)czW'%) (42)

for k = 1 /,, and ; = 1,2,
Now equation (40) implies

£ kk%)
k = 1

* = i

X At a s J-^00' (43)
= I
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where we write
k'k = l i m Afc(fy) f o r k = 1 , •.. , 1 ,

j -» 00

and
/ = lim /;.

J-» 00

We note that these limits exist since both sequences are monotonically increasing with j .
The possibility that / = oo is not excluded. Now

4nk2 = -fi2(W'(tij))+2n £ -M>-(A2-A*O/,.)2)1/2] (44)
4 k = I

where we have used the fact that the area of the curved surface of a " cap " is equal to 4/rc
times its Hausdorff 2-dimensional measure. This follows from a result on page 54 of [2].

Further, (42) implies that

A f| W'(ai!)= Hm /iWO;,)), (45)

and thus, taking the limit as j tends to infinity in (44), we obtain

' \ '

Suppose firstly that

0. (47)

Then, if P(e,) has vertices t)1(ei) vm(e,), it is not difficult to show that

sup ( min | w-^(e,)|)->0 as e->0. (48)
„ I S I S D,,,

00

We now project E3 by orthogonal projection on to a plane. By Lemma 3, f] W(r\j) projects
; = i

on to a set of positive ^-measure and thus positive Lebesgue measure. Then, using the argu-
ment of Theorem 2 it is not difficult to show that this implies

L(P(EJ)) -> oo as i -> oo.

This would contradict equation (34). Thus

^(.Q^'KOW, (49)

and so, from (46),

47d2 = 27t i A(A-(A2-Ai2)"2)
k= 1

I

X X'k. (50)
k = 1
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Thus (43) and (50) imply
L ^ Ank,

and so, by (33),

Since the choice of 5 was arbitrary, the theorem is proved.

REMARKS. It is interesting to look at some possible generalisations of these theorems
for arbitrary convex sets. For example, suppose X is an arbitrary convex set with a non-
empty interior intA', with xeintAr and that ^"'\X, x ; e) is the family of polytopes which
are inscribed in X (i.e. the vertices of each polytope are contained in the frontier of X),
which contain x, and whose /--dimensional faces have //-measure less than e for r = 1, . . . ,
n — 1. We can then show that if

S"-x(X,x;e) = ^ ^sup (P, X),

then b"' \X, x ; e) tends to zero as £ tends to zero, whenever n ^ 2. The proof of Lemma 1
readily generalises, since, by using an argument similar to that described, we can show that
the radii of the circumspheres of each facet of Pit) tend to zero as e tends to zero. We can
then prove the natural extensions of Theorems 1 and 2 with &"' \X, x ; e) in place of 0"1' \B)
by the same methods as those described in these theorems.

There are more interesting conjectures concerned with Theorems 3 and 4. For example
if <P3'\X, x ; e) is the family of polyhedra inscribed in X, which contain x, and whose edges
have length less than e, then we might hope to prove:

CONJECTURE. Let

[L3'\X,x;e)
Then

fA3-\X,x;e)
L3-XX,x;s)r\ZAP('^X) " aS

where the infimum is over all planes H containing x, and P(HnX) is the perimeter of Hr\X.
It would also be interesting to have w-dimensional analogues of these theorems or to

prove other general theorems associated with polytopes which have restricted edge-lengths.
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