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Three-dimensional magnetohydrodynamic
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A brief critique is presented of some different classes of magnetohydrodynamic
equilibrium solutions based on their continuity properties and whether the magnetic
field is integrable or not. A generalized energy functional is introduced that is
comprised of alternating ideal regions, with nested flux surfaces with an irrational
rotational transform, and Taylor-relaxed regions, possibly with magnetic islands and
chaos. The equilibrium states have globally continuous magnetic fields, and may
be constructed for arbitrary three-dimensional plasma boundaries and appropriately
prescribed pressure and rotational-transform profiles.
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1. Introduction

A fundamental requirement for magnetically confining plasmas for fusion research
is to construct configurations for which the macroscopic forces acting on the plasma
are balanced. The simplest, non-trivial equilibrium model considers only the pressure
gradient and Lorentz forces, and force balance is described by

∇p= j×B, (1.1)

where ∇p is the pressure gradient, j = ∇ × B is the current density and B is the
magnetic field. This equation is sometimes referred to as the ideal force balance
equation, and it can be derived as the Euler–Lagrange equation for states that
minimize the plasma energy functional under ideal variations (Bernstein et al. 1958;
Kruskal & Kulsrud 1958; Hirshman, Sanchez & Cook 2011). The energy functional
and its variations will be described below.

Despite the dramatic oversimplification of plasma dynamics, this equation is widely
used to define the equilibrium. Indeed, it is used because of the simplicity: accurate
numerical evaluations for simple plasma models are, understandably, faster than
those of more complicated models. It therefore becomes practical to compute the
hundreds of thousands of equilibria required for experimental design optimization,
equilibrium reconstruction and so on, in strongly shaped, three-dimensional (3-D)
geometries. Furthermore, if the macroscopic forces acting on the plasma are not at
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least approximately balanced, then there is little point in considering the microscopic
forces.

Preferably, exact solutions should be elucidated that can be approximated with
standard numerical discretizations consistent with the mathematical structure of the
solutions, so the numerical error will reliably and predictably decrease with increasing
numerical resolution. As with all differential equations, boundary conditions must be
supplied to obtain a unique solution (for the sake of simplicity, this paper will ignore
the possibility of bifurcations, for which two distinct solutions may be found for
the same boundary conditions). In fact, the correct choice of boundary conditions is
crucially important in guaranteeing the existence of well-defined solutions.

There are fundamental mathematical problems with (1.1) that are associated with
its elliptic and hyperbolic characteristics (Grad 1960; Shiraishi, Ohsaki & Yoshida
2005), which this paper will not address. The mixed ideal–relaxed equilibrium model
introduced below will, in the ‘ideal regions’, avoid the difficulties associated with
the real characteristics by following Betancourt & Garabedian (1985) in assuming the
existence of nested toroidal flux surfaces, which allows the equation B · ∇p= 0 to be
immediately solved by p = p(ψ), where ψ labels the enclosed toroidal flux. In the
‘relaxed’ regions, attention will be restricted to a subset of solutions of (1.1), namely
linear force-free fields that satisfy ∇×B=µB for constant µ, and the assumption of
nested surfaces is not required.

This paper shall restrict attention to the so-called fixed-boundary case, for which the
plasma boundary is prescribed, herein assumed to be smooth, and for which B · n= 0,
where n is normal. It is, however, simple to generalize the following to the free-
boundary case, for which a supporting ‘vacuum’ field generated by currents external
to the plasma must be provided.

This paper shall also adopt what may be called the ‘equilibrium’ approach: the
pressure, p(ψ), is to be provided and is required to not change during the calculation.
Depending on the particular class of equilibrium to be constructed, at least one other
profile function must usually be provided, such as the parallel current density, µ(ψ),
or the rotational transform, -ι(ψ). The equilibrium calculation is then to determine
the magnetic field that satisfies force balance and is consistent with the given plasma
boundary and the given profiles. Note that, typically, if the parallel current density is
specified a priori, then the rotational transform is only known a posteriori, and vice
versa.

The equilibrium approach is in contrast to, for example, what may be called the
‘transport’ approach, whereby an initial pressure and magnetic field both evolve
dynamically in time (or iteratively) according to, for example, the resistive, extended
magnetohydrodynamic (MHD) equations (Sovinec et al. 2003; Jardin, Breslau &
Ferraro 2007) towards what might be called a resistive, or ‘Ohmic’, steady state
(Park et al. 1986; Suzuki et al. 2006; Schlutt et al. 2012, 2013). For example, the
pressure might be allowed to evolve according to an anisotropic diffusion law, which
is effectively a transport equation. The transport approach certainly has merit and
can include additional, non-ideal physics; however, it does not easily lend itself
to constructing an equilibrium state with a given pressure. (See also the simulated
annealing method advanced by Furukawa & Morrison (2016), which advances an
initial state according to a modified set of equations derived from reduced MHD with
constrained Casimirs.)

Equation (1.1) implies B · ∇p= 0, so the pressure is constant along each magnetic
field line. This constraint has important consequences: the pressure, which is an
‘input’, is intimately related to the magnetic field, which is an ‘output’ of the
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numerical calculation. A necessary feature of equilibrium codes is to appropriately
constrain the magnetic field to ensure that intact magnetic flux surfaces coincide with
the prescribed pressure gradients: an equilibrium code that solves ideal force balance
must constrain the topology of the field to be consistent with the given pressure.

1.1. Different classes of solution
By restricting attention to axisymmetric configurations with a rotational symmetry,
∇p= j×B reduces to the Grad–Shafranov equation (Grad & Rubin 1958; Shafranov
1966; Boozer 2005). The ignorable coordinate guarantees the existence of solutions
with integrable magnetic fields. Here, the word ‘integrable’ is used in the dynamical
systems context (Goldstein 1980) to refer to magnetic fields with a continuously
nested family of ‘flux’ surfaces that remain invariant under the magnetic field-line
flow. Arbitrary smooth functions for the pressure and current-density profiles, for
example, may be admitted.

Hereafter, this paper will consider the ‘3-D’ case, for which the plasma boundary
does not have a continuous symmetry or an ignorable coordinate, and for which
the magnetic field may or may not be integrable, depending on whether δ-function
current-densities (i.e. sheet-currents) are admitted or not. Identifying computationally
tractable, physically acceptable solutions is much more complicated than in the
two-dimensional case. Since the early days of research into magnetically confined
plasma it was recognized that 3-D MHD equilibrium states may be ‘pathological’
(Grad 1967).

There are several problems that must be addressed, depending on the class of
solution that one seeks.

Solutions can be categorized as having either continuous or discontinuous pressure
and magnetic field, p and B, with either continuous or discontinuous derivatives, ∇p
and j, and with either integrable or non-integrable magnetic fields. Hereafter, we will
use the word ‘smooth’ to describe a function that is continuous and has continuous
first derivatives.

Identification of the continuity properties of the solution is crucial as this determines
which numerical discretizations may be employed. The continuity properties of the
solution to a differential equation are partly determined by the continuity properties
of the supplied boundary conditions. To obtain continuous solutions, the pressure
and rotational transform must also be continuous, but this is not sufficient: it is
also required to ensure that any singularities that may be present in the differential
equation are avoided.

1.1.1. Smooth pressure, smooth non-integrable field
It seems reasonable to seek 3-D solutions with a smooth pressure and a smooth

magnetic field. Being analogous to 1(1/2) dimensional Hamiltonian systems (Cary
& Littlejohn 1983), continuous smooth 3-D magnetic field-line flows with shear are
typically non-integrable (Lichtenberg & Lieberman 1992; Meiss 1992), possessing a
fractal mix of (i) invariant surfaces known as Kolmogorov, Arnold Moser (KAM)
surfaces (Moser 1973; Arnold 1978), which have ‘sufficiently irrational’ rotational
transform, (ii) magnetic islands, which appear where the rotational transform is
rational and (iii) chaotic ‘irregular’ field lines, which are associated with the
unstable manifolds of the periodic field lines and ergodically fill a highly non-trivial
volume. (Note that a magnetic vector field may be a smooth function of position,
B(x+ δx)≈B(x)+∇B(x) · δx, but the magnetic field lines may be chaotic/irregular.)
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From B · ∇p= 0, it follows that any non-trivial, continuous pressure consistent with
such a field must also be fractal, with ∇p = 0 across the chaotic volumes and with
non-zero, finite pressure gradients at a non-zero measure of KAM surfaces. The KAM
surfaces nowhere densely fill a finite volume, and thus an uncountable infinity of
discontinuities in the pressure gradient must arise (Kraus & Hudson 2017). Solutions
with an infinity of discontinuities are intractable from a numerical perspective.
Discontinuities in the pressure gradient drive discontinuities in the perpendicular
current density, j⊥ =B×∇p/B2, and the magnetic field is not smooth.

Given an arbitrary, non-integrable magnetic field, it is a highly non-trivial problem
to determine the fractal topological structure of the magnetic field lines. Which
irrational surfaces survive 3-D perturbations depends in part on how ‘irrational’ the
rotational transform is and how the system is perturbed from integrability. Individual
KAM surfaces can be identified (with significant computational cost) using Greene’s
residue criterion (Greene 1979); however, no one has yet, to the authors’ knowledge,
described how to determine the measure of phase-space that is occupied with KAM
surfaces for a given, non-integrable field.

It is the inverse of this task that is required for the equilibrium approach: one must
first provide a continuous pressure profile with a fractally discontinuous gradient, and
then appropriately constrain the representation of the non-integrable magnetic field to
be topologically consistent with this given profile, i.e. to ensure that the flux surfaces
coincide with the pressure gradients.

It is quite difficult to work with explicitly fractal functions. For example, consider
the pressure-gradient profile defined by the Diophantine condition, which plays
a prominent role in KAM theory and thus also in determining the structure of
non-integrable magnetic fields,

p′(x)=
{
−1, if |x− n/m|> d/mk, ∀n,m,
0, otherwise,

(1.2)

where d > 0 and k > 2. The pressure gradient is zero in a non-zero neighbourhood
of all rationals, x = n/m. This function is not Riemannian-integrable. A standard
discretization to compute the pressure on axis, with p(1) = 0, given by p(0) =
−∑N

i=1 p′(xi)1x, where xi= i/N and 1x= 1/N, fails spectacularly, as do higher-order
quadratures that are based on regular grids (Kraus & Hudson 2017).

To approximate such ‘fractal’ equilibria with non-integrable magnetic fields, a more
reliable approach is to first provide well-defined, non-fractal pressure and rotational-
transform profiles, which in turn provide a well-defined, non-fractal equilibrium that
can be approximated with standard numerical discretizations to arbitrary accuracy, and
then to consider the limiting properties of a sequence of such equilibria as the pressure
and rotational-transform profiles approach fractals. We shall return to this idea later.

1.1.2. Smooth pressure, smooth integrable field
Instead of admitting equilibria with non-integrable fields, an alternative is to seek

solutions with a smooth pressure and smooth, integrable magnetic field (Bauer,
Betancourt & Garabedian 1982; Hirshman & Whitson 1983; Hirshman, van Rij &
Merkel 1986; Taylor 1994). Such fields, having continuously nested flux surfaces,
presumably are consistent with smooth pressure and transform profiles; however,
unphysical currents arise near the rational rotational-transform surfaces.

The perpendicular current density consistent with (1.1) is j⊥ = B × ∇p/B2.
By enforcing ∇ · j = 0, with j = j‖B + j⊥, a magnetic differential equation then
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determines the parallel current, B · ∇j‖ =−∇ · j⊥. Magnetic differential equations are
densely singular, and thus are intractable numerically. For integrable fields, straight
field-line coordinates, x(ψ, θ, ζ ), can be constructed and the magnetic field can be
written B = ∇ψ × ∇θ + -ι(ψ)∇ζ × ∇ψ . The Fourier harmonics of j‖ must satisfy
(Bhattacharjee et al. 1995)

j‖,m,n = i(
√

g∇ · j⊥)m,n
x

+∆m,nδ(x), (1.3)

where ∆m,n is an as-yet undetermined constant and x(ψ)≡ m-ι(ψ)− n. The Jacobian
satisfies 1/

√
g=B · ∇ζ .

The δ-function current density is just a mathematical approximation of localized
currents, and is acceptable in a macroscopic, perfectly conducting ideal-MHD model.
(For example, the current-density associated with a finite current passing along a very
thin strand of super-conducting wire is extremely well approximated by a δ-function.)
Including δ-functions in the current density will result in a non-smooth magnetic field.

The 1/x singularity is far more problematic. For a special choice of straight field-
line angles, namely Boozer coordinates (Boozer 1982; D’haeseleer et al. 1991), the
magnetic field may be written B = β(ψ, θ, ψ)∇ψ + I(ψ)∇θ + G(ψ)∇ζ , so that
1/B2 =√g/(G+ -ιI), and

(
√

g∇ · j⊥)m,n =
p′
√

gm,n(nI −mG)

G+ -ιI
. (1.4)

The magnitude of
√

gm,n may be considered to be an ‘output’ quantity: it is determined
by the geometry of, and the tangential magnetic field on, the rational surfaces, both
of which are determined by the magnetic field. For an arbitrary boundary, there is no
apparent a priori control over the geometry of the internal flux surfaces.

Assuming the pressure satisfies p(x)≈ p+ p′x+ p′′x2/2+ . . ., the current through a
cross-sectional surface bounded by x= ε and x= δ, and θ = 0 and θ =π/m, associated
with the resonant harmonic of the parallel current density described by (1.3) is

− 2
m

i(nI −mG)
(G+ -ιI)

p′
√

gm,n

-ι′
(ln δ − ln ε), (1.5)

where all terms are evaluated at the rational surface. This approaches infinity as ε
approaches zero.

This shows that there are cross-sectional surfaces close to every rational surface
through which the total current is infinite, and this is unphysical. To guarantee such
problems are avoided, and assuming that there are no restrictions on

√
gm,n, the

pressure gradient must be zero on each rational surface. The next order term for the
current through the cross-sectional surface is proportional to p′′(δ − ε), and so we
must require that p′′ <∞. For any system with shear, the rational surfaces densely
fill space, and so either the pressure profile is trivial, with p′ = 0 everywhere, or the
pressure gradient must be discontinuous.

There is another possibility: rather than flattening the pressure to avoid the
logarithmic infinities in the parallel current, one may restrict attention to so-called
‘healed’ configurations, for which the resonant harmonic of the Jacobian,

√
gm,n,

vanishes at each resonant surface (Weitzner 2014; Zakharov 2015; Weitzner 2016).
Such a condition could only be satisfied for a restricted class of 3-D plasma
boundaries.
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There is another problem with ideal-MHD equilibria with integrable magnetic fields
and rational surfaces, which is frequently overlooked: the solutions are not analytic
functions of the boundary. The equation describing the first-order plasma displacement,
under the constraints of ideal-MHD, induced by a small deformation to the boundary
is L0[ξ ]≡ δj[ξ ]×B+ j× δB[ξ ]−∇δp[ξ ]= 0. (Expressions relating the perturbed field,
δB, and pressure, δp, to ideal plasma displacements, ξ , are given below.) As discussed
by Rosenbluth, Dagazian & Rutherford (1973), this is a singular equation, and the
perturbed surfaces overlap and perturbation theory breaks down. The problem of non-
analyticity led Rosenbluth et al. (1973) to consider a nonlinear treatment of 3-D ‘kink’
states, and this analysis has recently been revisited in the context of understanding
the effect of resonant magnetic perturbations (RMPs) in tokamak plasmas (Loizu &
Helander 2017).

1.1.3. Discontinuous pressure, discontinuous non-integrable magnetic field
Discontinuous and non-smooth solutions to differential equations are not a problem

per se. Well-defined equilibrium solutions with a finite number of discontinuities have
been introduced. In 1996, stepped-pressure equilibrium states were introduced by
Bruno & Laurence (1996), and theorems were provided that guarantee the existence
of such equilibria, provided the 3D deviation from axisymmetry was sufficiently small.
These configurations were recognized as extrema of the multi-region, relaxed MHD
(MRxMHD) energy functional that was later introduced by Dewar and co-workers
(Hole, Hudson & Dewar 2006; Hudson, Hole & Dewar 2007; Dewar et al. 2008;
Hudson et al. 2012).

Stepped-pressure equilibria can be thought of as being comprised of a finite number
of nested Taylor states (Taylor 1974, 1986), in each of which the pressure is flat and
the field satisfies a Beltrami equation, ∇ × B= µB with constant µ. The constraints
of ideal-MHD are not continuously enforced, and this eliminates the problem of
non-analyticity at the rational surfaces. The magnetic field may reconnect, i.e. the
topology is not constrained, and magnetic islands will generally open at resonances.
Where islands overlap, field-line chaos can emerge. For such ‘irregular’ field lines,
the rotational transform is not well defined.

The discontinuities in the pressure coincide with a finite set of ‘ideal interfaces’,
Ii, with strongly irrational rotational transform, that separate adjacent Taylor states.
Strongly irrational numbers may, for example (Hudson et al. 2012), be simply
expressed as -ι= (p1 + γ p2)/(q1 + γ q2), where γ = (1+√5)/2 is the golden mean
and p1/q1 and p2/q2 are neighbouring rationals (Meiss 1992). On these interfaces,
the magnetic field is constrained to remain tangential, and the discontinuities in
the pressure are balanced by discontinuities in the field strength, so that the ‘total
pressure,’ P ≡ p + B2/2, is continuous across the Ii. The existence of tangential
discontinuities in B implies the existence of sheet-currents. Stepped-pressure states,
or MRxMHD states as they are also called, are almost everywhere relaxed but
include a discrete set of (zero-volume) ideal interfaces. Example pressure and
rotational-transform profiles are shown in figure 1.

1.1.4. Continuous pressure, discontinuous integrable magnetic field
Another class of solutions with discontinuous magnetic fields, which are globally

ideal, was introduced recently by Loizu et al. (2015b), namely stepped-transform
equilibria: equilibria with continuously nested flux surfaces with a discontinuous
rotational transform. These were introduced after investigations (Loizu et al. 2015a)
into the 1/x and δ-function current-densities in ideal-MHD equilibria with integrable
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FIGURE 1. Piecewise-constant, discontinuous pressure profile (left), and the discretely
defined, strongly irrational rotational-transform profile, with some low-order island chains
for illustration.

fields revealed the necessity to enforce infinite shear, -ι′ = ∞, at the rational
surfaces in order to obtain consistent solutions. Effectively, the rational surface is
removed from the equilibrium, and the non-integrable current-densities are avoided.
Stepped-transform states can self-consistently support globally smooth, arbitrary
pressure profiles. Removing the rational surfaces also removes the problem of
non-analyticity, provided the discontinuities in the rotational transform across the
rationals exceeds a minimum value – the sine qua non condition (Loizu et al. 2015b)
– for which analytic estimates were provided. The discontinuities in the rotational
transform imply discontinuities in the tangential magnetic field, and so sheet-currents
must also exist in these solutions.

The original investigation (Loizu et al. 2015b) of these stepped-transform states
was restricted to cylindrical geometry, with only one resonant deformation, and so
only one rational surface was of concern, and so only one discontinuity in the
rotational-transform profile was required to eliminate the pathologies. In the general
case with an arbitrary 3-D boundary, every rational surface would generally result
in unphysical currents. It is easy to generalize the concept to define equilibria
with piecewise-constant rotational transform, for which the rotational transform
is everywhere strongly irrational, and for which there is a finite collection of
discontinuities/sheet-currents. Example profiles are shown in figure 2.

Both the stepped-pressure and the stepped-transform classes of equilibria possess
sheet-currents and discontinuous magnetic fields. This is acceptable within a
macroscopic, ideal-MHD context, as well as from a mathematical perspective, as
a finite set of discontinuities is easy to accommodate numerically. The discontinuities
in the magnetic field may create difficulties for subsequent calculations, for example,
gyrokinetic calculations of transport.

In this paper, a new class of well-defined, numerically tractable, non-fractal
equilibria is introduced that allows for non-integrable magnetic fields that are
continuous, i.e. for which there are no sheet-currents. These states are a combination
of the piecewise-constant rotational-transform equilibria with nested flux surfaces
and smooth pressure profiles, and the piecewise-constant pressure equilibria with,
generally, magnetic islands and chaotic field lines.

2. Combined ideal–relaxed energy functional
The new equilibrium states are comprised of alternating ideal and relaxed regions

and are extrema of the mixed ideal–relaxed energy functional, which will now
be described. Restricting attention to toroidal configurations, the plasma volume is
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FIGURE 2. Arbitrary, smooth pressure profile (left), and the piecewise-constant, strongly
irrational, discontinuous rotational-transform profile (below). No island chains are
admitted.

partitioned into N subregions, Ri, i= 1, . . . ,N, and we denote the toroidal boundaries
separating the subregions by Ii. The magnetic axis (or axes) lies in R1, which is a
toroid and is bounded by I1. For i= 2, . . . ,N the Ri are annular, and ∂Ri= Ii−1 ∪ Ii.
The outermost boundary, IN , is coincident with the plasma boundary. On each of the
Ii the magnetic field is constrained to be tangential, B · n= 0. In each Ri, the plasma
energy (Kruskal & Kulsrud 1958) is

Wi ≡
∫
Ri

(
p

γ − 1
+ B2

2

)
dv. (2.1)

The equilibrium states minimize Wi in each volume with respect to variations in the
pressure and the magnetic field, but with suitable constraints imposed so as to avoid
trivial solutions, and with respect to deformations in the internal boundaries, i.e. the
Ii for i= 1,N − 1.

In the ideal regions we restrict attention to integrable magnetic fields, with nested
flux surfaces, which may be labelled by the enclosed toroidal flux. The equation of
state, dt(p/ργ )= 0, where dt≡ ∂t+ v ·∇ and v is the ‘velocity’ of an assumed plasma
displacement, v = ∂tξ , may be combined with mass conservation, ∂tρ +∇ · (ρv)= 0,
to obtain an equation that relates the ideal variation in the pressure to the plasma
displacement, δp = (γ − 1)ξ · ∇p − γ∇ · (p ξ). Variations in the magnetic field are
related to ξ by Faraday’s law, ∂tB=∇×E, and the ideal Ohm’s law, E+ v×B= 0,
where E is the electric field, and we write δB = ∇ × (ξ × B). Note that this last
constraint does not allow the topology of the field to change. The first variation of
Wi is

δWi =
∫
Ri

(∇p− j×B) · ξ dv −
∫
∂Ri

(p+ B2/2) ξ · ds. (2.2)

In the Taylor-relaxed regions, the variations in the field and pressure are not related
to (internal) plasma displacements. The mass and entropy constraints do not apply
to individual fluid elements but instead to the entire volume, and the constraint on
the pressure is piV

γ
i = ai, where Vi is the volume of Ri and ai is a constant. The

internal energy in Ri is
∫
Ri

pi/(γ − 1) dv = aiV
(1−γ )
i /(γ − 1), and the first variation

of this due to a deformation, ξ , of the boundary is −p
∫
∂Ri

ξ · ds. The variation of
the magnetic field is arbitrary, δB=∇× δA, except for (i) constraints on the enclosed
toroidal and poloidal fluxes, Ψt,i ≡

∫
P A · dl and Ψp,i ≡

∫
T A · dl, where P and T are
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Continuous magnetohydrodynamic equilibria 9

suitable poloidal and toroidal loops, (ii) conservation of the global helicity in each
relaxed region,

Hi ≡
∫
Ri

A ·B dv, (2.3)

and (iii) the constraint that B · n = 0 on ∂Ri. Much can be said about the helicity
constraint (Woltjer 1958; Taylor 1974, 1986; Berger 1999), and we refer the interested
reader to the recent paper by Moffat (2015).

The flux constraints can be enforced by constraining the representation for the
vector potential, and the helicity constraint can be enforced by introducing a Lagrange
multiplier, µ. The constrained energy functional in the relaxed regions is

Fi ≡Wi − µ2 (Hi −Hi,0). (2.4)

Note that if Ri is the innermost, toroidal region, the poloidal flux is not defined and
only the constraints on the helicity and toroidal flux are required.

The first variation is

δFi =
∫
Ri

(∇×B−µB) · δA dv −
∫
∂Ri

(p+ B2/2) ξ · ds, (2.5)

where A= ξ ×B has been used on the Ii.
The total constrained energy functional for the ideal–relaxed plasma is

F ≡
∑
i∈I

Wi +
∑
j∈J

Fj, (2.6)

where, for example, I≡{1, 3, 5, . . .} and J≡{2, 4, 6, . . .}, which makes the innermost
volume an ideal region. Alternatively, a relaxed region may be assumed for the
innermost volume, in which case I ≡ {2, 4, 6, . . .} and J ≡ {1, 3, 5, . . .}.

The Euler–Lagrange equations for extremizing states are as follows: in the ideal
regions we have ∇p = j × B, in the relaxed regions we have p = const. and ∇ ×
B = µB, and across the Ii we have [[p + B2/2]] = 0. Note that fields that satisfy
∇×B=µB also satisfy ∇p= j×B, somewhat trivially, with ∇p= 0, so these mixed
ideal–relaxed states globally satisfy ∇p= j×B.

Having presented a combined ideal–relaxed energy functional and derived the
Euler–Lagrange equations governing extremal states, there are some subtleties
concerning the prescribed pressure and rotational transform that must be addressed
to eliminate the formation of sheet-currents. We seek solutions that have smooth
pressure and continuous magnetic fields, so the pressure and the pressure gradient in
each ideal region at each Ii must match that in the adjacent relaxed regions, where
the pressure gradient is zero. To avoid the non-integrable current-densities described
above, rational surfaces must be avoided in the ideal regions, so in the ideal regions
we restrict attention to magnetic fields of the form B = ∇ψ × ∇θ + -ιi∇ζ × ∇ψ ,
where -ιi is a strongly irrational constant.

Because of the possibility of reconnection and the formation of islands and irregular
field lines, in the relaxed regions the rotational transform may not be globally defined.
It is well defined on the Ii, which, because of the constraint B · n = 0, remain as
intact flux surfaces. However, if the Beltrami field is to be defined by prescribing the
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(a) (b) (c)

(d) (e) ( f )

FIGURE 3. An example, in cylindrical geometry, of a mixed ideal–relaxed equilibrium
with four regions. (a) The pressure profile. (b) The rotational-transform profile. (c) The
‘toroidal’ and poloidal components of the magnetic field, Bz and Bθ . (d) The pressure
gradient. (e) The poloidal component of the perpendicular current density, jθ⊥. ( f ) The
parallel current density, j‖ ≡ j ·B/B2.

enclosed toroidal and poloidal fluxes and the helicity, the rotational transform on the Ii

is a priori unknown, and must be computed a posteriori. We cannot a priori guarantee
that an initial selection for 1ψt,i, 1ψp,i and Hi is consistent with the existence of
continuous rotational transform across the Ii. It will generally be required to iterate
on the parallel current density – more formally, to iterate on 1ψp,i and Hi,0 – in the
relaxed regions to obtain the desired (single-valued) rotational-transform profile on the
adjacent Ii.

We thus have described an equilibrium with a globally smooth pressure profile with
‘flattening’ across the rational surfaces, and with a piecewise-flat, piecewise-a priori-
unknown rotational-transform profile. Smooth pressure gradients are supported in the
ideal regions, which are filled with flux surfaces with a constant, strongly irrational
rotational transform. Magnetic islands and chaotic field lines are allowed in the relaxed
regions, in which the pressure gradient is zero, the rotational transform may or may
not be defined, and j ·B/B2=µi is a constant. Example pressure and transform profiles
are shown in figures 3(a) and 3(b).

Figure 3 also shows the magnetic field and current density for an example mixed
ideal–relaxed equilibrium in a cylinder with ‘major radius’ R=1 and minor radius a=
0.1. The magnetic field is written B= rBθ(r)θ̂ +Bz(r)ẑ. The current density is written
j=∇ × B, which is manifestly divergence-free. In the ideal regions, the equilibrium
equation reduces to

dBz

dr
= −(p

′ + 2r-ι2Bz2 + r2-ι′-ιBz2)

Bz(1+ r2-ι2)
, (2.7)

where p(r) and -ι(r) = -ιi = strongly irrational are assumed given, and assuming
Bz(0)= 1. In the relaxed regions, the magnetic field is determined by continuing the
integration according to

dBθ

dr
= µBz − 2Bθ

r
,

dBz

dr
=−µrBθ , (2.8a,b)
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where µ must be provided. The rotational transform will vary across the relaxed
region in a fashion that is initially unknown. Thus, an iteration over µ is required to
ensure that the rotational transform is equal to a prescribed, strongly irrational value,
-ιi+2, at the boundary of the next ideal region.

It is interesting to note that the perpendicular current density, j⊥, is continuous. In
the ideal regions, j⊥ = B× ∇p/B2, and so if B and ∇p are continuous, as they are,
then j⊥ is continuous. The pressure gradient has been carefully chosen to ensure that
∇p= 0 at the boundary separating the ideal and relaxed regions, and this ensures that
j⊥ = 0 at these boundaries. In the relaxed regions, j⊥ is zero by construction.

The parallel current density is not continuous. In the ideal regions, the parallel
current density depends on the given pressure and rotational-transform profiles, and
is determined a posteriori as part of the equilibrium solution. In the relaxed regions,
the parallel current density must be determined iteratively to ensure that the rotational-
transform profile is continuous at the boundaries between the ideal and relaxed regions.
There is insufficient freedom to ensure that the rotational transform is also smooth,
and at the boundaries the parallel current density is generally discontinuous.

For the cylindrical example shown in figure 3, the cylindrical symmetry guarantees
the existence of nested flux surfaces in both the ideal and the relaxed regions. In
general geometry, this will not be the case. In the ideal regions, with strongly
irrational rotational transform, the existence of nested flux surfaces is enforced by
construction. The rational rotational-transform surfaces must lie in the relaxed regions,
where relaxation and island formation is allowed. For the chaotic (irregular) field lines
that may emerge, the rotational transform is not well defined.

We make some brief comments regarding a possible numerical construction for a
general, 3-D equilibrium that is a combination of the algorithms already implemented
in the VMEC (Hirshman & Whitson 1983; Hirshman et al. 1986) and SPEC (Hudson
et al. 2012; Loizu, Hudson & Nührenberg 2016) codes. In the ideal regions, given
the representation B=∇ψ ×∇θ + -ιi∇ζ ×∇ψ , the numerical task amounts to finding
the coordinate interpolation, x(ψ, θ, ζ ), between the Ii that minimizes Wi. This,
essentially, is the approach adopted in VMEC. In the relaxed regions, by using a
suitable gauge for the magnetic vector potential the magnetic can be represented as
B = ∇ × (Aθ∇θ + Aζ∇ζ

)
, and the numerical task amounts to finding the functions

Aθ(s, θ, ζ ) and Aζ (s, θ, ζ ) that extremize Fi, with suitable constraints imposed to
enforce the boundary conditions that B · n = 0 on the Ii and the flux constraints,
and where x(s, θ, ζ ) is an arbitrary coordinate interpolation between the Ii. This is
the approach adopted in SPEC. After computing the magnetic fields in each Ri, the
geometry of the Ii must be adjusted (and the fields in each region recomputed) to
satisfy continuity of the total pressure, P≡ p+ B2/2, across the Ii.

The new class of continuous solutions introduced herein can recover both classes
of discontinuous solutions, namely those with discontinuous pressure and those with a
discontinuous rotational transform, simply by letting the volume of the ideal or relaxed
regions reduce to zero as desired. This can be enforced by constraining the toroidal
flux in the appropriate regions.

Also, the number of volumes can become arbitrarily large. In practice, any
acceptable pressure and transform profiles can be well approximated. Examples
of what appear to be ‘fractal’ profiles are shown in figure 4.

This paper does not consider whether solutions with smooth pressure and continuous
magnetic fields are preferable to the discontinuous solutions with sheet-currents.
Ultimately, the question of which class of equilibria best models the observations
may only be answered by validation. Towards this goal, it is certainly interesting to

https://doi.org/10.1017/S0022377817000538 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000538


12 S. R. Hudson and B. F. Kraus

(a) (b) (c)

(d) (e) ( f )

FIGURE 4. Similar to figure 3, but with 64 regions.

note that the pressure profile shown in figure 3(a) has a similar form to pressure
profiles constructed by Ichiguchi et al. (2001) and Ichiguchi & Carreras (2011), who
demonstrated that equilibria with flattened pressure across the rational surfaces seem
to account for some experimental observations in the Large Helical Device (LHD)
experiment.

On a similar note, we remark that the approach adopted in this paper cannot
be trivially adapted to compute equilibria with a prescribed current-density profile.
By taking the defining profiles to be the pressure and the current density, the
rotational-transform profile is only known a posteriori. If, by chance, rational
rotational-transform surfaces coincide with pressure gradients, then the pathologies
associated with infinite currents and non-analyticity discussed in § 1.1.2 are not
avoided. This suggests, for a given 3-D boundary, that not all pressure and
current-density profiles are consistent with well-defined equilibrium solutions.

This point illustrates an implicit motivation for the approach adopted in this paper.
The pathologies with 3-D equilibria are associated with rational rotational-transform
surfaces. By specifying the rotational-transform profile a priori, we can ensure that
these ‘surfaces’ are located in the relaxed regions, where the pressure gradient is zero
and reconnection and island formation is allowed.

Even though a prescribed current density cannot be directly enforced, a given
current-density profile can presumably be achieved, at least approximately, by iterating
on the rotational transform.

We may expect that there will be a minimum allowed value for the jumps in the
rotational transform across the relaxed volumes that are similar to the sine qua non
condition described by Loizu et al. (2015b). This condition is required to ensure
that linear perturbation theory does not result in overlapping geometry, i.e. that the
solutions are analytic functions of the 3-D boundary. We intend to explore this in
future work.
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