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Abstract

In a recent paper by Shanthikumar and Sumita (1987), it is conjectured
that the ergodic sojourn time of a customer in G/IFR/1 queues is
minimized by FIFO (first in, first out) discipline in the sense of increasing
and convex ordering. This paper shows that their conjecture is true. In fact,
FIFO discipline minimizes E[L}_; f(Tow) — o] for any non-decreasing
and convex function f, where N is the (constant) number of arrivals, 6(k) is
the customer identity of the kth departing customer, and a, and 1, denote
the arriving and departing times of the nth customer, respectively.

IFR SERVICE TIME; SINGLE-SERVER QUEUE; DYNAMIC SCHEDULING;
INTERCHANGE ARGUMENT

1. Introduction and summary

Consider a single-server queue having a sequence of random arrival epochs (A,))-; and an
i.i.d. (independently and identically distributed) random sequence (S,),_; of service times
where N is the (constant) number of arrivals. Suppose that customers are served according to
one of the work-conserving service disciplines which are independent of actual service times.
Denote by SD the class of such service disciplines. SD includes pre-emptive (resume) service
disciplines. In a recent paper by Shanthikumar and Sumita [8] it is conjectured that the
ergodic sojourn time is minimized by FIFO (first in, first out) service discipline, in the sense
of increasing and convex ordering =, ;, if the service time is IFR (increasing failure rate). In
their notation,

(1.1) G/IFR/1;Tapo =1 T,, forall meSD,

where T, is the ergodic sojourn time when discipline 7 is used. Indeed, they have showed
(1.1) for Erlang service time distributions of any order. This conjecture seems to stem from
Jackson [3] and Schrage [7] (see also Kleinrock [4], p. 146).

The main purpose of this paper is to prove a stronger result than (1.1) for a discrete-time
model of dynamic scheduling problems associated with G/IFR/1 queues. Since continuous
IFR distributions are absolutely continuous except possibly at the right endpoint (see e.g.
[1]), a continuous-time model can be well approximated by our discrete-time model using an
ordinary discretization of time. A simple limiting argument then proves (1.1) for the
continuous-time model except for a pathological arrival process.
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2. Main results

Suppose that N customers arrive only at discrete time epochs, say t=1,2,---. Let
A =(a,)y_, be the arbitrary arrival process which is statistically independent of service times.
It is assumed that customers are appropriately numbered so that a, is the arrival epoch of
customer n. Each customer requires a positive integer-valued service time with finite mean.
Let S, be the service time of customer n. Define u(t)=Pr[S,=t+1|S,>1]. u(r) is often
called the failure rate function of S,. The service time is said to be IFR if u(r) is
non-decreasing in ¢, where u(t) is appropriately defined for ¢ such that Pr [S, > ¢] = 0. If this is
the case, the single-server queue is denoted by G/IFR/1 when there are infinite waiting
rooms.

Let & € SD be any scheduling policy and denote by 7, the departure epoch of customer n.
Of course, 1, is dependent on policy 7 and service times S,. Let (k) denote the customer
identity who departs the system at the kth departure epoch. For any non-decreasing and
convex function f, define

N
2.1) V(7)) = E,,[ > f(Tow — ag(k))], meSD.
k=1
Then the next theorem holds

Theorem 1. Suppose that the system is initially empty. If the generic service time is IFR,
then FIFO discipline minimizes Vy(s) for all non-decreasing and convex functions over all
neSD.

We note that 7, — de(, is the sojourn time of customer 6(k). If the system is ergodic, all
customers eventually leave the system. Thus, for sufficiently large N, Viy(x)/N closely
approximates E[f(T,)], if it exists. This observation leads to (1.1) for the discrete-time
model. The transform of the result to the continuous-time model can be done in such a way as
described in the end of Section 1.

Remark 1. In the previous paper [2], we showed that the expected sojourn time in
G/IFR/1 queues with two classes of customers is minimized by a simple index rule. As a
consequence of that result, it has been seen there that FIFO discipline minimizes the expected
sojourn time in G/IFR/1 queues (in fact, this result holds for G/DMRL/1 queues).

To prove Theorem 1, the next lemma is the key.
Lemma 1. Let & € SD. For each non-decreasing function g, define
(2.2) Jo(7) = E.[g(Tow) k=1,2,---.

Then the policy that, at each time epoch, selects a customer with the largest expended service
time minimizes J,(x) for all k =1, 2, - - -, and all non-decreasing functions g.

Proof. Denote the policy stated in the lemma by n.. We prove that s minimizes
Ji(w) = E,[g(Tow) A L)] for all g, k and L over & € SD where we denote min {x, y} as x A y.
Then by letting L—, we can obtain the desired result by the monotone convergence
theorem [6]. For L =1, &, obviously minimizes J,(r). Hence we prove it for L, assuming
that it holds for /=1, - - -, L — 1. Without any loss of generality, we assume that, at t =1,
there are n customers in the system and ¢,=¢,=---=t, where f, denotes the expended
service time of customer k. Let x,, be the policy that, at 1 = 1, selects customer m and then
follow the policy 7, after ¢ = 1. If the inequality J () =J{(7,,) is shown to hold for all k,
m=1,---,n, and g, the principle of optimality of dynamic programming [5] guarantees the
lemma (note that the function g is bounded below). To this end, we should consider the
following two cases.

Case 1. t,_,>1t,. In this case, under policy x,,, customers 1 through n receive service in
the order of their numbers.

Case 2. t,,_,=t,. Suppose t,=t,+1=t,,,=---=t,_,, where m —2=[=0 with ¢,= .
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Then, under policy m,,, customer m completes his service before customers /+ 1 through
m — 1 are admitted to service.

In both cases, note that customers who arrive at the system after time 1 are not admitted to
service before customers 1 through n complete their service. This follows from the definitions
of nrand x,,.

Let r, be the remaining service time of customer k at t =1, and define R, = Y, ,r,. For
policy 7y, one easily sees that J;(sr) = E[g(R, A L)]. Let rf =r, — 1 given that r, > 1. Then,
since S, is IFR, it follows that E[g(r})] = E[g(r.)] for any non-decreasing function g (we write
this by r{ =,1.).

Case 1. If k Zm, it is seen by the definition of 7, that J{(r,,) = E[g(R: A L)]. For k <m,
by conditioning on r,,, we have

(2.3) Ji(m, | r=1)=E[g((1+ Rc_) AL)] and Jg(m,|r,>1)=E[g(1+R:) A L)].
It follows that

(2.4) Ji(m,) = pu(t,)E[g((1 + Rey) A L))+ (1 — p(t,))E[g((1 + Re) A L))

By conditioning on r, (k <m), one also has

(2.5 Ji(mwp) = p(t)E[g((L+ Rey) A L)) + (1 — p(t)E[g((1 + ri + Riy) A L)].

Note that rf =,r. Thus, E[g((1+R)AL)IZE[g((1+ri+R,_))AL)] so that, since
u(t,) Z u(t,,), (2.4) and (2.5) imply J5(7,.) 2 J;(r), which is desired.

Case 2. For | <k <m, by conditioning on r,,, we have
Ji(#, | r=1)=E[g((1 + Ry_)) A L)] and J5(,, | 1, > 1) = E[g((1 + 1} + R 1) A L)].
Hence,
(2.6)  Ji(mp) = u(t,)E[g((1 +Ri1) A L) + (1= (1)) E[g((1 + ri + Re_y) A L)].

Since f, =t,, so that ri=,r; as well as u(t,)=u(t,), (2.6) together with (2.5) shows
Ji(np) = J(n,,). For k =1, one has (2.3). Thus, the same arguments applying (2.4) and (2.5)
as in Case 1 conclude the desired result. If k =m, it is trivial that J;(x;) =J5(x,,). This
completes the proof of the lemma.

It should be noted that n=0 or t;=---=1¢,=0, i.e. the system is initially empty, the
optimal policy coincides with FIFO discipline.
We are now in a position to prove Theorem 1.

Proof of Theorem 1. We now assume that customers are numbered in the order of arrival.
If customers arrive simultaneously, these customers are appropriately numbered so that
0=a,=a,=---. Since f is convex, it is easily seen that

N N
kzl F(Towy = @000) Z 2 f(Toy — @)
= k=1

with probability 1. It follows that, for any & € SD,

Va(m) = E”[él F(tou) — ao(k))]
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The second inequality above is due to Lemma 1, since f is non-decreasing. Therefore, the
theorem follows.
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